2017年攀枝花市中考数学试卷含答案解析(Word版)

合集下载

2017年云南省中考数学试卷含答案解析

2017年云南省中考数学试卷含答案解析

2017年云南省中考数学试卷一、填空题(本大题共6个小题,每题3分,共18分)1.2的相反数是.2.已知关于x的方程2x+a+5=0的解是x=1,则a的值为.3.如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,=,则=.4.使有意义的x的取值范围为.5.如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为.6.已知点A(a,b)在双曲线y=上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为.二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.6.7×105B.6.7×106C.0.67×107D.67×1088.下面长方体的主视图(主视图也称正视图)是()A.B.C.D.9.下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a610.已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形11.sin60°的值为()A.B.C.D.12.下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖13.正如我们小学学过的圆锥体积公式V=πr2h(π表示圆周率,r表示圆锥的地面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9π,则这个圆锥的高等于()A.B.C.D.14.如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()A.30°B.29°C.28°D.20°三、解答题(共9个小题,满分70分)15.如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.16.观察下列各个等式的规律:第一个等式:=1,第二个等式:=2,第三个等式:=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.17.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?18.某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.19.在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.20.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F 分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF 的面积S.21.已知二次函数y=﹣2x2+bx+c图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O是原点.(1)不等式b+2c+8≥0是否成立?请说明理由;(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.22.在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?23.已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M 是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM 上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.2017年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每题3分,共18分)1.2的相反数是﹣2.【考点】14:相反数.【分析】根据相反数的定义可知.【解答】解:﹣2的相反数是2.2.已知关于x的方程2x+a+5=0的解是x=1,则a的值为﹣7.【考点】85:一元一次方程的解.【分析】把x=1代入方程计算即可求出a的值.【解答】解:把x=1代入方程得:2+a+5=0,解得:a=﹣7,故答案为:﹣7.3.如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,=,则=.【考点】S9:相似三角形的判定与性质.【分析】直接利用相似三角形的判定方法得出△ADE∽△ABC,再利用相似三角形的周长比等于相似比进而得出答案.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==.故答案为:.4.使有意义的x的取值范围为x≤9.【考点】72:二次根式有意义的条件.【分析】二次根式的被开方数是非负数,即9﹣x≥0.【解答】解:依题意得:9﹣x≥0.解得x≤9.故答案是:x≤9.5.如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为2π+4.【考点】MC:切线的性质;LE:正方形的性质;MO:扇形面积的计算.【分析】连接HO,延长HO交CD于点P,证四边形AHPD为矩形知HF为⊙O 的直径,同理得EG为⊙O的直径,再证四边形BGOH、四边形OGCF、四边形OFDE、四边形OEAH均为正方形得出圆的半径及△HGF为等腰直角三角形,+S△HGF可得答案.根据阴影部分面积=S⊙O【解答】解:如图,连接HO,延长HO交CD于点P,∵正方形ABCD外切于⊙O,∴∠A=∠D=∠AHP=90°,∴四边形AHPD为矩形,∴∠OPD=90°,又∠OFD=90°,∴点P于点F重合,则HF为⊙O的直径,同理EG为⊙O的直径,由∠B=∠OGB=∠OHB=90°且OH=OG知,四边形BGOH为正方形,同理四边形OGCF、四边形OFDE、四边形OEAH均为正方形,∴BH=BG=GC=CF=2,∠HGO=∠FGO=45°,∴∠HGF=90°,GH=GF==2+S△HGF则阴影部分面积=S⊙O=•π•22+×2×2=2π+4,故答案为:2π+4.6.已知点A(a,b)在双曲线y=上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为y=﹣5x+5或y=﹣x+1.【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数图象上点的坐标特征得出ab=5,由a、b都是正整数,得到a=1,b=5或a=5,b=1.再分两种情况进行讨论:当a=1,b=5;②a=5,b=1,利用待定系数法即可求解.【解答】解:∵点A(a,b)在双曲线y=上,∴ab=5,∵a、b都是正整数,∴a=1,b=5或a=5,b=1.设经过B(a,0)、C(0,b)两点的一次函数的解析式为y=mx+n.①当a=1,b=5时,由题意,得,解得,∴y=﹣5x+5;②当a=5,b=1时,由题意,得,解得,∴y=﹣x+1.则所求解析式为y=﹣5x+5或y=﹣x+1.故答案为y=﹣5x+5或y=﹣x+1.二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.6.7×105B.6.7×106C.0.67×107D.67×108【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:6700000=6.7×106.故选:B.8.下面长方体的主视图(主视图也称正视图)是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据正视图是从物体正面看到的平面图形,据此选择正确答案.【解答】解:长方体的主视图(主视图也称正视图)是故选C.9.下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a6【考点】4I:整式的混合运算.【分析】根据整式的混合运算即可求出答案.【解答】解:(A)原式=6a2,故A错误;(B)原式=﹣8a3,故B错误;(C)原式=3,故C错误;故选(D)10.已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【考点】L3:多边形内角与外角.【分析】设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.11.sin60°的值为()A.B.C.D.【考点】T5:特殊角的三角函数值.【分析】直接根据特殊角的三角函数值进行计算即可.【解答】解:sin60°=.故选B.12.下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖【考点】X3:概率的意义;V2:全面调查与抽样调查;W1:算术平均数;W4:中位数;W7:方差.【分析】分别根据全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义对各选项进行逐一判断即可.【解答】解:A、∵要了解灯泡的使用寿命破坏性极大,∴只能采用抽样调查的方法,故本选项正确;B、∵4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为102.5,故本选项错误;C、甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差不能确定,故本选项错误;D、某次抽奖活动中,中奖的概率为表示每抽奖50次可能有一次中奖,故本选项错误.故选A.13.正如我们小学学过的圆锥体积公式V=πr2h(π表示圆周率,r表示圆锥的地面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9π,则这个圆锥的高等于()A.B.C.D.【考点】MP:圆锥的计算.【分析】设母线长为R,底面圆半径为r,根据弧长公式、扇形面积公式以及圆锥体积公式即可求出圆锥的高【解答】解:设母线长为R,底面圆半径为r,圆锥的高为h,由于圆锥的侧面展开图是个半圆∴侧面展开图的弧长为:=πR,∵底面圆的周长为:2πr,∴πR=2πr,∴R=2r,∴由勾股定理可知:h=r,∵圆锥的体积等于9π∴9π=πr2h,∴r=3,∴h=3故选(D)14.如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()A.30°B.29°C.28°D.20°【考点】M5:圆周角定理;KG:线段垂直平分线的性质.【分析】利用圆周角定理得到∠BAC=40°,根据线段垂直平分线的性质推知AD=BD,然后结合等腰三角形的性质来求∠ABD、∠ABC的度数,从而得到∠DBC.【解答】解:∵∠BFC=20°,∴∠BAC=2∠BFC=40°,∵AB=AC,∴∠ABC=∠ACB==70°.又EF是线段AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故选:A.三、解答题(共9个小题,满分70分)15.如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.【考点】KD:全等三角形的判定与性质.【分析】先证明△ABC≌△DEF,然后利用全等三角形的性质即可求出∠ABC=∠DEF.【解答】解:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC与△DEF中,∴△ABC≌△DEF(SSS)∴∠ABC=∠DEF16.观察下列各个等式的规律:第一个等式:=1,第二个等式:=2,第三个等式:=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.【考点】37:规律型:数字的变化类.【分析】(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明.【解答】解:(1)由题目中式子的变化规律可得,第四个等式是:;(2)第n个等式是:,证明:∵====n,∴第n个等式是:.17.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;【解答】解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=120人,答:该校九年级大约有120名志愿者18.某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)首先根据题意,设该商店第一次购进水果x千克,则第二次购进水果2x千克,然后根据:(+2)×第二次购进的水果的重量=2400,列出方程,求出该商店第一次购进水果多少千克即可.(2)首先根据题意,设每千克水果的标价是x元,然后根据:(两次购进的水果的重量﹣20)×x+20×0.5x≥两次购进水果需要的钱数+950,列出不等式,求出每千克水果的标价是多少即可.【解答】解:(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,(+2)×2x=2400整理,可得:2000+4x=2400解得x=100经检验,x=100是原方程的解答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x元,则×x+20×0.5x≥1000+2400+950整理,可得:290x≥4350解得x≥15∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.19.在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.【考点】X6:列表法与树状图法.【分析】(1)根据题意先画出树状图,得出所有可能出现的结果数;(2)根据(1)可得共有9种情况,两次取出小球上的数字相同有3种:(6,6)、(﹣2,﹣2)、(7,7),再根据概率公式即可得出答案.【解答】解:(1)根据题意画图如下:所有可能出现的结果共有9种;(2)∵共有9种情况,两次取出小球上的数字相同的有3种情况,∴两次取出小球上的数字相同的概率为=.20.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F 分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF 的面积S.【考点】LA:菱形的判定与性质;KH:等腰三角形的性质.【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)设EF=x,AD=y,则x+y=7,进而得到x2+2xy+y2=49,再根据Rt△AOE中,AO2+EO2=AE2,得到x2+y2=36,据此可得xy=,进而得到菱形AEDF的面积S.【解答】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=AB=AE,Rt△ACD中,DF=AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49,①∵AD⊥EF于O,∴Rt△AOE中,AO2+EO2=AE2,∴(y)2+(x)2=32,即x2+y2=36,②把②代入①,可得2xy=13,∴xy=,∴菱形AEDF的面积S=xy=.21.已知二次函数y=﹣2x2+bx+c图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O是原点.(1)不等式b+2c+8≥0是否成立?请说明理由;(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】(1)由题意可知抛物线的解析式为y=﹣2(x﹣3)2+8,由此求出b、c 即可解决问题.(2)设M(m,n),由题意•3•|n|=9,可得n=±6,分两种情形列出方程求出m的值即可;【解答】解:(1)由题意抛物线的顶点坐标(3,8),∴抛物线的解析式为y=﹣2(x﹣3)2+8=﹣2x2+12x﹣10,∴b=12,c=﹣10,∴b+2c+8=12﹣20+8=0,∴不等式b+2c+8≥0成立.(2)设M(m,n),由题意•3•|n|=9,∴n=±6,①当n=6时,6=﹣2m2+12m﹣10,解得m=2或4,②当n=﹣6时,﹣6=﹣2m2+12m﹣10,解得m=3±,∴满足条件的点M的坐标为(2,6)或(4,6)或(3+,﹣6)或(3﹣,﹣6).22.在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?【考点】FH:一次函数的应用;C9:一元一次不等式的应用.【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题;【解答】解:(1)由题意:y=380x+280(62﹣x)=100x+17360.∵30x+20(62﹣x)≥1441,∴x≥20.1,∴21≤x≤62.(2)由题意100x+17360≤21940,∴x≤45.8,∴21≤x≤45,∴共有25种租车方案,x=21时,y有最小值=175700元.23.已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M 是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM 上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.【考点】MR:圆的综合题.【分析】(1)连接OC,根据等腰三角形的性质得到∠A=∠OCA,由平行线的性质得到∠A=∠BOP,∠ACO=∠COP,等量代换得到∠COP=∠BOP,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;(2)过O作OD⊥AC于D,根据相似三角形的性质得到CD•OP=OC2,根据已知条件得到=,由三角函数的定义即可得到结论;(3)连接BC,根据勾股定理得到BC==12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论.【解答】解:(1)连接OC,∵OA=OC,∴∠A=∠OCA,∵AC∥OP,∴∠A=∠BOP,∠ACO=∠COP,∴∠COP=∠BOP,∵PB是⊙O的切线,AB是⊙O的直径,∴∠OBP=90°,在△POC与△POB中,,∴△COP≌△BOP,∴∠OCP=∠OBP=90°,∴PC是⊙O的切线;(2)过O作OD⊥AC于D,∴∠ODC=∠OCP=90°,CD=AC,∵∠DCO=∠COP,∴△ODC∽△PCO,∴,∴CD•OP=OC2,∵OP=AC,∴AC=OP,∴CD=OP,∴OP•OP=OC2∴=,∴sin∠CPO==;(3)连接BC,∵AB是⊙O的直径,∴AC⊥BC,∵AC=9,AB=15,∴BC==12,当M与A重合时,d=0,f=BC=12,∴d+f=12,当M与B重合时,d=9,f=0,∴d+f=9,∴d+f的取值范围是:9≤d+f≤12.。

四川省攀枝花市2017年中考数学试题(解析版)

四川省攀枝花市2017年中考数学试题(解析版)

2017年四川省攀枝花市中考数学试卷一、选择题(共10小题)1.(2017攀枝花)﹣3的倒数是()A.﹣3 B.C. 3 D.考点:倒数。

分析:直接根据倒数的定义进行解答即可.解答:解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选D.点评:本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.(2017攀枝花)下列运算正确的是()A.B.C.(ab)2=ab2D.(﹣a2)3=a6考点:幂的乘方与积的乘方;算术平方根;立方根。

分析:根据幂的乘方的性质,积的乘方的性质,立方根、平方根的知识,对各选项分析判断后利用排除法求解,即可求得答案.解答:解:A.=﹣2,故本选项正确;B.=3,故本选项错误;C.(ab)2=a2b2,故本选项错误;D.(﹣a2)3=﹣a6,故本选项错误.故选A.点评:此题考查了幂的乘方,积的乘方,立方根,平方根的知识.此题比较简单,注意理清指数的变化是解题的关键,注意掌握立方根与平方根的定义.3.(2017攀枝花)下列说法中,错误的是()A.不等式x<2的正整数解中有一个B.﹣2是不等式2x﹣1<0的一个解C.不等式﹣3x>9的解集是x>﹣3 D.不等式x<10的整数解有无数个考点:不等式的解集。

分析:解不等式求得B,C即可选项的不等式的解集,即可判定C错误,又由不等式解的定义,判定B正确,然后由不等式整数解的知识,即可判定A与D正确,则可求得答案.解答:解:A.不等式x<2的正整数只有1,故本选项正确,不符合题意;B.2x﹣1<0的解集为x<,所以﹣2是不等式2x﹣1<0的一个解,故本选项正确,不符合题意;C.不等式﹣3x>9的解集是x<﹣3,故本选项错误,符合题意;D.不等式x<10的整数解有无数个,故本选项正确,不符合题意.故选C.点评:此题考查了不等式的解的定义,不等式的解法以及不等式的整数解.此题比较简单,注意不等式两边同时除以同一个负数时,不等号的方向改变.4.(2017攀枝花)为了了解攀枝花市2017年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.在这个问题中,样本是指()A.150B.被抽取的150名考生C.被抽取的150名考生的中考数学成绩D.攀枝花市2017年中考数学成绩考点:总体、个体、样本、样本容量。

2017年初中毕业升学考试(贵州毕节卷)数学(带解析)

2017年初中毕业升学考试(贵州毕节卷)数学(带解析)

绝密★启用前2017年初中毕业升学考试(贵州毕节卷)数学(带解析)学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、下列实数中,无理数为( )A .0.2B .C .D .22、2017年毕节市参加中考的学生约为115000人,将115000用科学记数法表示为( ) A .1.15×106 B .0.115×106 C .11.5×104 D .1.15×1053、下列计算正确的是( )A .a 3•a 3=a 9B .(a+b )2=a 2+b 2C .a 2÷a 2="0"D .(a 2)3=a 64、一个几何体是由一些大小相同的小立方块摆成的,其主视图和俯视图如图所示,则组成这个几何体的小立方块最少有( )A .3个B .4个C .5个D .6个5、对一组数据:﹣2,1,2,1,下列说法不正确的是( )A .平均数是1B .众数是1C .中位数是1D .极差是46、如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED=( )A .55°B .125°C .135°D .140°7、关于x 的一元一次不等式≤﹣2的解集为x≥4,则m 的值为( )A .14B .7C .﹣2D .28、为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为( )A .1250条B .1750条C .2500条D .5000条9、关于x 的分式方程+5=有增根,则m 的值为( )A .1B .3C .4D .510、甲、乙、丙、丁参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表: 选手 甲 乙 丙 丁 方差 0.023 0.018 0.020 0.021则这10次跳绳中,这四个人发挥最稳定的是( ) A .甲 B .乙 C .丙 D .丁11、把直线y=2x ﹣1向左平移1个单位,平移后直线的关系式为( ) A .y=2x ﹣2 B .y="2x+1" C .y="2x" D .y=2x+212、如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ACD=30°,则∠BAD 为( )A .30°B .50°C .60°D .70°13、如图,Rt △ABC 中,∠ACB=90°,斜边AB=9,D 为AB 的中点,F 为CD 上一点,且CF=CD ,过点B 作BE ∥DC 交AF 的延长线于点E ,则BE 的长为( )A .6B .4C .7D .1214、如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,且∠EAF=45°,将△ABE 绕点A 顺时针旋转90°,使点E 落在点E'处,则下列判断不正确的是( )A .△AEE′是等腰直角三角形B .AF 垂直平分EE'C .△E′EC ∽△AFD D .△AE′F 是等腰三角形15、如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 平分∠CAB 交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE+EF 的最小值为( )A .B .C .D .6第II 卷(非选择题)二、填空题(题型注释)16、分解因式:2x 2﹣8xy+8y 2= .17、正六边形的边长为8cm ,则它的面积为 cm 2.18、如图,已知一次函数y=kx ﹣3(k≠0)的图象与x 轴,y 轴分别交于A ,B 两点,与反比例函数y=(x >0)交于C 点,且AB=AC ,则k 的值为 .19、记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整)如下:根据图中信息,该足球队全年比赛胜了 场.20、观察下列运算过程: 计算:1+2+22+…+210. 解:设S=1+2+22+…+210,① ①×2得2S=2+22+23+…+211,② ②﹣①得 S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017= .三、计算题(题型注释)21、计算:(﹣)﹣2+(π﹣)0﹣|﹣|+tan60°+(﹣1)2017.四、解答题(题型注释)22、先化简,再求值:( +)÷,且x 为满足﹣3<x <2的整数.23、由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负. 如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.24、如图,在▱ABCD 中 过点A 作AE ⊥DC ,垂足为E ,连接BE ,F 为BE 上一点,且∠AFE=∠D .(2)若AD=5,AB=8,sinD=,求AF的长.25、某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.26、如图,已知⊙O的直径CD=6,A,B为圆周上两点,且四边形OABC是平行四边形,过A点作直线EF∥BD,分别交CD,CB的延长线于点E,F,AO与BD交于G 点.(1)求证:EF是⊙O的切线;(2)求AE的长.27、如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;面积.参考答案1、C.2、D.3、D.4、B.5、A.6、B.7、D.8、A.9、C.10、B.11、B.12、C.13、A.14、D.15、C.16、2(x﹣2y)217、96 .18、 .19、30.20、 .21、22、23、24、(1)证明见解析;(2). AF=2 .25、(1)这种笔单价为10元,则本子单价为6元;(2)有三种方案:①购买这种笔7支,购买本子5本;②购买这种笔4支,购买本子10本;③购买这种笔1支,购买本子15本.26、(1)证明见解析;(2)AE的长为:3 .27、(1)抛物线解析式为y=x2﹣3x﹣4;(2)存在满足条件的P点,其坐标为(,﹣2)(3)P点坐标为(2,﹣6)时,△PBC的最大面积为8.【解析】1、试题分析:有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定只有是无理数,故选C.考点:无理数2、试题分析:将115000用科学记数法表示为:1.15× ,故选D.考点:科学记数法—表示较大的数3、试题分析:A、原式=a6,不符合题意;B、原式=a2+2ab+b2,不符合题意;C、原式=1,不符合题意;D、原式=a6,符合题意,故选D考点:整式的混合运算4、试题分析:由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多5块.故选:B.考点:由三视图判断几何体5、试题分析:A、这组数据的平均数是:(﹣2+1+2+1)÷4=,故原来的说法不正确;B、1出现了2次,出现的次数最多,则众数是1,故原来的说法正确;C、把这组数据从小到大排列为:﹣2,1,1,2,中位数是1,故原来的说法正确;D、极差是:2﹣(﹣2)=4,故原来的说法正确.故选A.考点:极差,算术平均数,中位数,众数.6、试题分析:因为AB∥CD,∴∠C+∠CAB=180°,∵∠C=70°,∴∠CAB=180°﹣70°=110°,∵AE平分∠CAB,∴∠EAB=55°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣55°=125°.故选:B.考点:平行线的性质7、试题分析:≤﹣2,m﹣2x≤﹣6,﹣2x≤﹣m﹣6,x≥m+3,∵关于x的一元一次不等式≤﹣2的解集为x≥4,∴m+3=4,解得m=2.故选:D.考点:不等式的解集8、试题分析:首先求出有记号的2条鱼在50条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.由题意可得:50÷ =1250(条).故选A.考点:用样本估计总体9、试题分析:方程两边都乘(x﹣1),得7x+5(x﹣1)=2m﹣1,∵原方程有增根,∴最简公分母(x﹣1)=0,解得x=1,当x=1时,7=2m﹣1,解得m=4,所以m的值为4.故选C.考点:分式方程的增根10、试题分析:方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.由S乙2<S丙2<S丁2<S 2,甲∴这10次跳绳中,这四个人发挥最稳定的是乙.故选B.考点:方差,算术平均数.11、试题分析:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:y=2(x+1)﹣1,即y=2x+1,故选B.考点:一次函数图象与几何变换12、试题分析:连接BD,∵∠ACD=30°,∴∠ABD=30°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.故选C.考点:圆周角定理13、试题分析:因为Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,∴CD=AB=4.5.∵CF=CD,∴DF=CD=×4.5=3.∵BE∥DC,∴DF是△ABE的中位线,∴BE=2DF=6.故选A.考点:三角形中位线定理,直角三角形斜边上的中线.14、试题分析:因为将△ABE绕点A顺时针旋转90°,使点E落在点E'处,∴AE′=AE,∠E′AE=90°,∴△AEE′是等腰直角三角形,故A正确;∵将△ABE绕点A顺时针旋转90°,使点E落在点E'处,∴∠E′AD=∠BAE,∵四边形ABCD是正方形,∴∠DAB=90°,∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠E′AD+∠FAD=45°,∴∠E′AF=∠EAF,∵AE′=AE,∴AF垂直平分EE',故B正确;∵AF⊥E′E,∠ADF=90°,∴∠FE′E+∠AFD=∠AFD+∠DAF,∴∠FE′E=∠DAF,∴△E′EC∽△AFD,故C正确;∵AD⊥E′F,但∠E′AD不一定等于∠DAE′,∴△AE′F不一定是等腰三角形,故D错误;故选D.考点:旋转的性质;线段垂直平分线的性质;等腰三角形的判定;等腰直角三角形;正方形的性质;相似三角形的判定.15、试题分析:如图所示:在AB上取点C′,使AC′=AC,过点C′作C′F⊥AC,垂足为F,交AD与点E.在Rt△ABC中,依据勾股定理可知BA=10.∵AC=AC′,∠CAD=∠C′AD,AE=C′E,∴△AEC≌△AEC′.∴CE=EC′.∴CE+EF=C′E+EF.∴当C′F⊥AC时,CE+EF有最小值.∵C′F⊥AC,BC⊥AC,∴C′F∥BC.∴△AFC′∽△ACB.∴即,解得FC′=.故选:C.考点:轴对称﹣最短路线问题;角平分线的性质.16、试题分析:2x2﹣8xy+8y2=2(x2﹣4xy+4y2)=2(x﹣2y)2.故答案为:2(x﹣2y)2.考点:提公因式法与公式法的综合运用17、试题分析:如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD==60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=m,∴S△OCD=CD•OE=×8×4=16cm2.∴S正六边形=6S△OCD=6×16=96cm2.考点:正多边形和圆18、试题分析:如图:作CD⊥x轴于D,则OB∥CD,∴△AOB∽△ADC,∴,∵AB=AC,∴OB=CD,由直线y=kx﹣3(k≠0)可知B(0,﹣3),∴OB=3,∴CD=3,把y=3代入y=(x>0)解得,x=4,∴C(4,3),代入y=kx﹣3(k≠0)得,3=4k﹣3,解得k=,故答案为.考点:反比例函数与一次函数的交点问题.19、试题分析:由统计图可得,比赛场数为:10÷20%=50,胜的场数为:50×(1﹣20%﹣20%)=50×60%=30,故答案为:30.考点:条形统计图;扇形统计图.20、试题分析:令s=1+3+32+33+…+32017等式两边同时乘以3得:3s=3+32+33+…+32018,两式相减得:2s=32018﹣1,∴s=,故答案为:.考点:规律型:数字的变化类.21、试题分析:先依据负整数指数幂的性质、零指数幂的性质、绝对值的性质、特殊锐角三角函数值、有理数的乘方法则进行化简,最后依据实数的加减法则计算即可.试题解析:原式= +1+﹣+﹣1=3+1+﹣+﹣1=3+.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.22、试题分析:首先化简(+)÷,然后根据x为满足﹣3<x<2的整数,求出x的值,再根据x的取值范围,求出算式的值是多少即可.试题解析:( +)÷=[+]×x=(+)×x=2x﹣3∵x为满足﹣3<x<2的整数,∴x=﹣2,﹣1,0,1,∵x要使原分式有意义,∴x≠﹣2,0,1,∴x=﹣1,当x=﹣1时,原式=2×(﹣1)﹣3=﹣5考点:分式的化简求值.23、试题分析:(1)根据概率公式直接计算即可;(2)列表得出所有等可能的情况数,找出两指针所指数字都是偶数或都是奇数的概率即可得知该游戏是否公平.试题解析:(1)∵转盘的4个等分区域内只有1,3两个奇数,∴小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率=;(2)列表如下:12341(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)4(4,1)(4,2)(4,3)(4,4)所有等可能的情况有16种,其中两指针所指数字数字都是偶数或都是奇数的都是4种,∴P(向往胜)=,P(小张胜)=,∴游戏公平.考点:游戏公平性;概率公式;列表法与树状图法.24、试题分析:(1)由平行四边形的性质得出AB∥CD,AD∥BC,AD=BC,得出∠D+∠C=180°,∠ABF=∠BEC,证出∠C=∠AFB,即可得出结论;(2)由勾股定理求出BE,由三角函数求出AE,再由相似三角形的性质求出AF的长.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∴∠C=∠AFB,∴△ABF∽△BEC;(2)解:∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根据勾股定理得:BE=,在Rt△ADE中,AE=AD•sinD=5×=4,∵BC=AD=5,由(1)得:△ABF∽△BEC,∴,即,解得:AF=2.考点:相似三角形的判定与性质;平行四边形的性质;解直角三角形.25、试题分析:(1)首先设这种笔单价为x元,则本子单价为(x﹣4)元,根据题意可得等量关系:30元买这种本子的数量=50元买这种笔的数量,由等量关系可得方程,再解方程可得答案;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,根据题意可得这种笔的单价×这种笔的支数m+本子的单价×本子的本数n=1000,再求出整数解即可.试题解析:(1)设这种笔单价为x元,则本子单价为(x﹣4)元,由题意得:,解得:x=10,经检验:x=10是原分式方程的解,则x﹣4=6.答:这种笔单价为10元,则本子单价为6元;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,由题意得:10m+6n=100,整理得:m=10﹣n,∵m、n都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买这种笔7支,购买本子5本;②购买这种笔4支,购买本子10本;③购买这种笔1支,购买本子15本.考点:分式方程的应用;二元一次方程的应用.26、试题分析:(1)利用圆周角定理得到∠DBC=90°,再利用平行四边形的性质得AO∥BC,所以BD⊥OA,加上EF∥BD,所以OA⊥EF,于是根据切线的判定定理可得到EF是⊙O的切线;(2)连接OB,如图,利用平行四边形的性质得OA=BC,则OB=OC=BC,于是可判断△OBC为等边三角形,所以∠C=60°,易得∠AOE=∠C=60°,然后在Rt△OAE中利用正切的定义可求出AE的长.试题解析:(1)证明:∵CD为直径,∴∠DBC=90°,∴BD⊥BC,∵四边形OABC是平行四边形,∴AO∥BC,∴BD⊥OA,∵EF∥BD,∴OA⊥EF,∴EF是⊙O的切线;(2)解:连接OB,如图,∵四边形OABC是平行四边形,∴OA=BC,而OB=OC=OA,∴OB=OC=BC,∴△OBC为等边三角形,∴∠C=60°,∴∠AOE=∠C=60°,在Rt△OAE中,∵tan∠AOE=,∴AE=3tan60°=3.考点:切线的判定与性质;平行四边形的性质.27、试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P点坐标;(3)过P作PE⊥x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF的长,则可表示出△PBC的面积,利用二次函数的性质可求得△PBC面积的最大值及P点的坐标.试题解析:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2﹣3x﹣4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,∴PO=PD,此时P点即为满足条件的点,∵C(0,﹣4),∴D(0,﹣2),∴P点纵坐标为﹣2,代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,∴存在满足条件的P点,其坐标为(,﹣2);(3)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),过P作PE⊥x轴于点E,交直线BC于点F,如图2,∵B(4,0),C(0,﹣4),∴直线BC解析式为y=x﹣4,∴F(t,t﹣4),∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,∴S△PBC=S△PFC+S△PFB=PF•OE+PF•BE=PF•(OE+BE)=PF•OB=(﹣t2+4t)×4=﹣2(t﹣2)2+8,∴当t=2时,S△PBC最大值为8,此时t2﹣3t﹣4=﹣6,∴当P点坐标为(2,﹣6)时,△PBC的最大面积为8.考点:二次函数综合题.。

2017重庆中考数学试题及答案(A卷)Word版

2017重庆中考数学试题及答案(A卷)Word版

重庆市2017年初中毕业生学业水平暨普通高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答。

2.作答前认真阅读答题卡上的注意事项。

3。

考试结束,由监考人员将试题和答题卡一并收回。

参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为24()24b ac b a a --,,对称轴为2b x a =-。

一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.在实数-3,2,0,-4,最大的数是( B )A 。

-3B .2C 。

0D .-42.下列图形中是轴对称图形的是( C )A B C D3。

计算26x x ÷正确的结果是( C ) A 。

3 B .3x C .4x D 。

8x4.下列调查中,最适合采用全面调查(普查)方式的是( D )A 。

对重庆市初中学生每天阅读时间的调查B 。

对端午节期间市场上粽子质量情况的调查C 。

对某批次手机的防水功能的调查D .对某校九年级3班学生肺活量情况的调查5。

估计110+的值应在( B )A 。

3和4之间B 。

4和5之间C .5和6之间D .6和7之间6。

若13x =-,4y =,则代数式33-+y x 的值为( B )A 。

-6B 。

0C 。

2D 。

6 7。

要使分式34-x 有意义,x 应满足的条件是( D ) A .3>x B 。

3=x C 。

3<x D 。

3≠x 8.若ABC ∆∽DEF ∆,相似比为3:2,则对应高的比为( A )A 。

3:2B .3:5C 。

9:4D .4:99。

如图,矩形ABCD 的边AB=1,BE 平分∠ABC,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( B )A 。

2017年辽宁省14市中考数学真题汇编(含参考答案与解析)

2017年辽宁省14市中考数学真题汇编(含参考答案与解析)

2017年辽宁省14市中考数学真汇编(含参考答案)目录1.辽宁省沈阳市中考数学试题及参考答案 (2)2.辽宁省大连市中考数学试题及参考答案 (22)3.辽宁省营口市中考数学试题及参考答案 (38)4.辽宁省葫芦岛市中考数学试题及参考答案 (64)5.辽宁省锦州市中考数学试题及参考答案 (86)6.辽宁省辽阳市中考数学试题及参考答案 (109)7.辽宁省抚顺市中考数学试题及参考答案 (133)8.辽宁省盘锦市中考数学试题及参考答案 (158)9.辽宁省铁岭市中考数学试题及参考答案 (181)10.辽宁省阜新市中考数学试题及参考答案 (202)11.辽宁省鞍山市中考数学试题及参考答案 (220)12.辽宁省本溪市中考数学试题及参考答案 (247)13.辽宁省朝阳市中考数学试题及参考答案 (259)14.辽宁省丹东市中考数学试题及参考答案 (283)2017年辽宁省沈阳市中考数学试题及参考答案一、选择题(本大题共10小题,每小题2分,共20分) 1.7的相反数是( ) A.﹣7B.﹣47C.17D.72.如图所示的几何体的左视图( )A. B. C. D.3.“弘扬雷锋精神,共建幸福沈阳”,幸福沈阳需要830万沈阳人共同缔造,将数据830万用科学记数法可以表示为( )万. A.83×10 B.8.3×102 C.8.3×103 D.0.83×1034.如图,AB ∥CD ,∠1=50°,∠2的度数是( )A.50°B.100°C.130°D.140°5.点A (﹣2,5)在反比例函数y=k x(k≠0)的图象上,则k 的值是( )A.10 B .5 C.﹣5 D.﹣10 6.在平面直角坐标系中,点A ,点B 关于y 轴对称,点A 的坐标是(2,﹣8),则点B 的坐标是( ) A.(﹣2,﹣8)B.(2,8)C.(﹣2,8) D .(8,2) 7.下列运算正确的是( )A.x 3+x 5=x 8B.x 3+x 5=x 15C.(x+1)(x ﹣1)=x 2﹣1D.(2x )5=2x 5 8.下列事件中,是必然事件的是( )A.将油滴入水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.如果a 2=b 2,那么a=bD.掷一枚质地均匀的硬币,一定正面向上 9.在平面直角坐标系中,一次函数y=x ﹣1的图象是( )A.B. C.D.10.正六边形ABCDEF 内接于⊙O ,正六边形的周长是12,则⊙O 的半径是( )A. 3B.2C.2 2D.2 3二、填空题(本大题共6小题,每小题3分,共18分) 11.因式分解3a 2+a= .12.一组数2,3,5,5,6,7的中位数是 .13.x +1x •xx 2+2x +1= . 14.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是S 甲2=0.53,S 乙2=0.51,S 丙2=0.43,则三人中成绩最稳定的是 (填“甲”或“乙”或“丙”)15.某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是 元/时,才能在半月内获得最大利润. 16.如图,在矩形ABCD 中,AB=5,BC=3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .三、解答题(本大题共22分)17.(6分)计算| 2﹣1|+3﹣2﹣2sin45°+(3﹣π)0.18.(8分)如图,在菱形ABCD 中,过点D 作DE ⊥AB 于点E ,作DF ⊥BC 于点F ,连接EF. 求证:(1)△ADE ≌△CDF ; (2)∠BEF=∠BFE.19.(8分)把3,5,6三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字,放回后洗匀,再从中抽取一张卡片,记录下数字,请用列表法或树状图法求两次抽取的卡片上的数字都是奇数的概率. 四、解答题(每题8分,共16分)20.(8分)某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m 名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题: (1)m= ,n= ;(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是 度; (3)请根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校600名学生中有多少学生最喜欢科普类图书.21.(8分)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?五、解答题(共10分)22.(10分)如图,在△ABC 中,以BC 为直径的⊙O 交AC 于点E ,过点E 作EF ⊥AB 于点F ,延长EF 交CB 的延长线于点G ,且∠ABG=2∠C. (1)求证:EF 是⊙O 的切线;(2)若sin ∠EGC=35,⊙O 的半径是3,求AF 的长.六、解答题(共10分)23.(10分)如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 的坐标为(6,0),点B 的坐标为(0,8),点C 的坐标为(﹣2 5,4),点M ,N 分别为四边形OABC 边上的动点,动点M 从点O 开始,以每秒1个单位长度的速度沿O→A→B 路线向中点B 匀速运动,动点N 从O 点开始,以每秒两个单位长度的速度沿O→C→B→A 路线向终点A 匀速运动,点M ,N 同时从O 点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间t 秒(t >0),△OMN 的面积为S.(1)填空:AB 的长是 ,BC 的长是 ; (2)当t=3时,求S 的值;(3)当3<t <6时,设点N 的纵坐标为y ,求y 与t 的函数关系式;(4)若S=485,请直接写出此时t 的值.七、解答题(共12分)24.(12分)四边形ABCD 是边长为4的正方形,点E 在边AD 所在直线上,连接CE ,以CE 为边,作正方形CEFG (点D ,点F 在直线CE 的同侧),连接BF. (1)如图1,当点E 与点A 重合时,请直接写出BF 的长; (2)如图2,当点E 在线段AD 上时,AE=1; ①求点F 到AD 的距离; ②求BF 的长;(3)若BF=3 10AE 的长.八、解答题(共12分)25.(12分)如图1,在平面直角坐标系中,O 是坐标原点,抛物线y=﹣312x 2﹣ 33x+8 3与x 轴正半轴交于点A ,与y 轴交于点B ,连接AB ,点M ,N 分别是OA ,AB 的中点,Rt △CDE ≌Rt △ABO ,且△CDE 始终保持边ED 经过点M ,边CD 经过点N ,边DE 与y 轴交于点H ,边CD 与y 轴交于点G.(1)填空:OA 的长是 ,∠ABO 的度数是 度; (2)如图2,当DE ∥AB ,连接HN. ①求证:四边形AMHN 是平行四边形;②判断点D 是否在该抛物线的对称轴上,并说明理由; (3)如图3,当边CD 经过点O 时,(此时点O 与点G 重合),过点D 作DQ ∥OB ,交AB 延长线上于点Q ,延长ED 到点K ,使DK=DN ,过点K 作KI ∥OB ,在KI 上取一点P ,使得∠PDK=45°(点P ,Q 在直线ED 的同侧),连接PQ ,请直接写出PQ 的长.参考答案与解析(沈阳)一、选择题(本大题共10小题,每小题2分,共20分) 1.7的相反数是( ) A.﹣7B.﹣47C.17D.7【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可. 【解答】解:7的相反数是﹣7, 故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆. 2.如图所示的几何体的左视图( )A .B .C .D .【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是一个小正方形,第二层是一个小正方形, 故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.“弘扬雷锋精神,共建幸福沈阳”,幸福沈阳需要830万沈阳人共同缔造,将数据830万用科学记数法可以表示为( )万. A.83×10 B.8.3×102 C.8.3×103 D.0.83×103 【考点】科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,据此判断即可.【解答】解:830万=8.3×102万.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a 与n的值是解题的关键.4.如图,AB∥CD,∠1=50°,∠2的度数是()A.50°B.100°C.130°D.140°【考点】平行线的性质.【分析】先根据平行线的性质得∠3=∠1=50°,然后根据邻补角的定义,即可求得∠2的度数.【解答】解:∵AB∥CD,∴∠3=∠1=50°,∴∠2=180°﹣∠3=130°.故选C.【点评】本题考查了平行线性质,解题时注意:两直线平行,同位角相等.5.点A(﹣2,5)在反比例函数y=kx(k≠0)的图象上,则k的值是()A.10B.5C.﹣5D.﹣10【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数图象上点的坐标性质得出k的值.【解答】解:∵点A(﹣2,5)在反比例函数y=kx(k≠0)的图象上,∴k的值是:k=xy=﹣2×5=﹣10.故选:D.【点评】此题主要考查了反比例函数图象上点的坐标性质,得出xy=k是解题关键.6.在平面直角坐标系中,点A,点B关于y轴对称,点A的坐标是(2,﹣8),则点B的坐标是()A.(﹣2,﹣8)B.(2,8)C.(﹣2,8)D.(8,2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:∵点A,点B关于y轴对称,点A的坐标是(2,﹣8),∴点B的坐标是(﹣2,﹣8),故选:A.【点评】此题主要考查了关于y轴的对称点的坐标,关键是掌握点的坐标特点.7.下列运算正确的是()A.x3+x5=x8B.x3+x5=x15C.(x+1)(x﹣1)=x2﹣1D.(2x)5=2x5【考点】平方差公式;合并同类项;幂的乘方与积的乘方.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)x3与x5不是同类项,故不能合并,故A不正确;(B)x3与x5不是同类项,故不能合并,故B不正确;(D)原式=25x5=32x5,故D不正确;故选(C)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型8.下列事件中,是必然事件的是()A.将油滴入水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.如果a2=b2,那么a=bD.掷一枚质地均匀的硬币,一定正面向上【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、将油滴入水中,油会浮在水面上是必然事件,故A符合题意;B、车辆随机到达一个路口,遇到红灯是随机事件,故B不符合题意;C、如果a2=b2,那么a=b是随机事件,D、掷一枚质地均匀的硬币,一定正面向上是随机事件,故选:A.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.在平面直角坐标系中,一次函数y=x﹣1的图象是()A.B.C.D.【考点】一次函数的图象.【分析】观察一次函数解析式,确定出k与b的符号,利用一次函数图象及性质判断即可.【解答】解:一次函数y=x﹣1,其中k=1,b=﹣1,其图象为,故选B【点评】此题考查了一次函数的图象,熟练掌握一次函数的图象与性质是解本题的关键.10.正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()A. 3B.2C.2 2D.2 3 【考点】正多边形和圆.【分析】连接OA ,OB ,根据等边三角形的性质可得⊙O 的半径,进而可得出结论. 【解答】解:连接OB ,OC , ∵多边形ABCDEF 是正六边形, ∴∠BOC=60°, ∵OB=OC ,∴△OBC 是等边三角形, ∴OB=BC ,∵正六边形的周长是12, ∴BC=2,∴⊙O 的半径是2, 故选B.【点评】本题考查的是正多边形和圆,熟知正六边形的性质是解答此题的关键. 二、填空题(本大题共6小题,每小题3分,共18分) 11.因式分解3a 2+a= a (3a+1) . 【考点】因式分解﹣提公因式法. 【分析】直接提公因式a 即可. 【解答】解:3a 2+a=a (3a+1), 故答案为:a (3a+1).【点评】此题主要考查了提公因式法进行因式分解,关键是正确确定公因式.12.一组数2,3,5,5,6,7的中位数是 5 . 【考点】中位数.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:2,3,5,5,6,7, 则中位数为:5+52=5.故答案是:5.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.x +1x•x x 2+2x +1= 1x +1. 【考点】分式的乘除法.【分析】原式约分即可得到结果. 【解答】解:原式=x +1x•x(x +1)=1x +1,故答案为:1x +1【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.14.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是S 甲2=0.53,S 乙2=0.51,S 丙2=0.43,则三人中成绩最稳定的是 丙 (填“甲”或“乙”或“丙”) 【考点】方差;算术平均数.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案. 【解答】解:∵S 甲2=0.53,S 乙2=0.51,S 丙2=0.43, ∴S 甲2>S 乙2>S 丙2,∴三人中成绩最稳定的是丙; 故答案为:丙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是 35 元/时,才能在半月内获得最大利润. 【考点】二次函数的应用.【分析】设销售单价为x 元,销售利润为y 元,求得函数关系式,利用二次函数的性质即可解决问题.【解答】解:设销售单价为x 元,销售利润为y 元. 根据题意,得:y=(x ﹣20)[400﹣20(x ﹣30)] =(x ﹣20)(1000﹣20x ) =﹣20x 2+1400x ﹣20000 =﹣20(x ﹣35)2+4500, ∵﹣20<0,∴x=35时,y 有最大值, 故答案为35.【点评】本题考查了二次函数的应用,解题的关键是学会构建二次函数解决最值问题 16.如图,在矩形ABCD 中,AB=5,BC=3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是3 105.【考点】旋转的性质;矩形的性质.【分析】连接AG ,根据旋转变换的性质得到,∠ABG=∠CBE ,BA=BG ,根据勾股定理求出CG 、AD ,根据相似三角形的性质列出比例式,计算即可. 【解答】解:连接AG ,由旋转变换的性质可知,∠ABG=∠CBE ,BA=BG=5,BC=BE ,由勾股定理得,CG= BG 2−BC 2=4,∴DG=DC ﹣CG=1,则AG= AD 2+DG 2= 10,∵BA BC =BG BE,∠ABG=∠CBE ,∴△ABG ∽△CBE , ∴CE AG =BC AB =35,解得,CE=3 105,故答案为:3 105.【点评】本题考查的是翻转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键. 三、解答题(本大题共22分)17.(6分)(2017•沈阳)计算| 2﹣1|+3﹣2﹣2sin45°+(3﹣π)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:| 2﹣1|+3﹣2﹣2sin45°+(3﹣π)0= 2﹣1+19﹣2× 22+1 =19【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用. 18.(8分)(2017•沈阳)如图,在菱形ABCD 中,过点D 作DE ⊥AB 于点E ,作DF ⊥BC 于点F ,连接EF. 求证:(1)△ADE ≌△CDF ; (2)∠BEF=∠BFE.【考点】菱形的性质;全等三角形的判定与性质. 【分析】(1)利用菱形的性质得到AD=CD ,∠A=∠C ,进而利用AAS 证明两三角形全等; (2)根据△ADE ≌△CDF 得到AE=CF ,结合菱形的四条边相等即可得到结论. 【解答】证明:(1)∵四边形ABCD 是菱形, ∴AD=CD ,∠A=∠C , ∵DE ⊥BA ,DF ⊥CB , ∴∠AED=∠CFD=90°, 在△ADE 和△CDE ,∵ AD =CD∠A =∠C∠AED =∠CFD =90°, ∴△ADE ≌△CDE ;(2)∵四边形ABCD 是菱形, ∴AB=CB ,∵△ADE ≌△CDF , ∴AE=CF , ∴BE=BF ,∴∠BEF=∠BFE.【点评】本题主要考查了菱形的性质以及全等三角形的判定与性质,解题的关键是掌握菱形的性质以及AAS 证明两三角形全等,此题难度一般. 19.(8分)(2017•沈阳)把3,5,6三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字,放回后洗匀,再从中抽取一张卡片,记录下数字,请用列表法或树状图法求两次抽取的卡片上的数字都是奇数的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好都是奇数的情况,再利用概率公式即可求得答案. 【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次抽取的卡片上的数字都是奇数的有4种结果, ∴两次抽取的卡片上的数字都是奇数的概率为49.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率. 四、解答题(每题8分,共16分) 20.(8分)(2017•沈阳)某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m 名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题: (1)m= 50 ,n= 30 ;(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是 72 度; (3)请根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校600名学生中有多少学生最喜欢科普类图书. 【考点】条形统计图;用样本估计总体;扇形统计图. 【分析】(1)根据其他的人数和所占的百分比即可求得m 的值,从而可以求得n 的值; (2)根据扇形统计图中的数据可以求得“艺术”所对应的扇形的圆心角度数; (3)根据题意可以求得喜爱文学的人数,从而可以将条形统计图补充完整;(4)根据统计图中的数据可以估计该校600名学生中有多少学生最喜欢科普类图书. 【解答】解:(1)m=5÷10%=50,n%=15÷50=30%, 故答案为:50,30; (2)由题意可得,“艺术”所对应的扇形的圆心角度数是:360°×1050=72°,故答案为:72;(3)文学有:50﹣10﹣15﹣5=20, 补全的条形统计图如右图所示; (4)由题意可得, 600×1550=180,即该校600名学生中有180名学生最喜欢科普类图书.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 21.(8分)(2017•沈阳)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?【考点】一元一次不等式的应用.【分析】在这次竞赛中,小明获得优秀(90分以上),即小明的得分>90分,设小明答对了x ,就可以列出不等式,求出x 的值即可.【解答】解:设小明答对了x 题,根据题意可得: (25﹣x )×(﹣2)+6x >90, 解得:x >1712,∵x 为非负整数, ∴x 至少为18,答:小明至少答对18道题才能获得奖品.【点评】此题主要考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,正确利用代数式表示出小明的得分. 五、解答题(共10分) 22.(10分)(2017•沈阳)如图,在△ABC 中,以BC 为直径的⊙O 交AC 于点E ,过点E 作EF ⊥AB 于点F ,延长EF 交CB 的延长线于点G ,且∠ABG=2∠C. (1)求证:EF 是⊙O 的切线;(2)若sin ∠EGC=35,⊙O 的半径是3,求AF 的长.【考点】切线的判定与性质;解直角三角形. 【分析】(1)连接EO ,由∠EOG=2∠C 、∠ABG=2∠C 知∠EOG=∠ABG ,从而得AB ∥EO ,根据EF ⊥AB 得EF ⊥OE ,即可得证;(2)由∠ABG=2∠C 、∠ABG=∠C+∠A 知∠A=∠C ,即BA=BC=6,在Rt △OEG 中求得OG=OEsin ∠EGO=5、BG=OG ﹣OB=2,在Rt △FGB 中求得BF=BGsin ∠EGO ,根据AF=AB ﹣BF 可得答案.【解答】解:(1)如图,连接EO ,则OE=OC ,∴∠EOG=2∠C , ∵∠ABG=2∠C , ∴∠EOG=∠ABG , ∴AB ∥EO , ∵EF ⊥AB , ∴EF ⊥OE ,又∵OE 是⊙O 的半径, ∴EF 是⊙O 的切线;(2)∵∠ABG=2∠C ,∠ABG=∠C+∠A , ∴∠A=∠C , ∴BA=BC=6,在Rt △OEG 中,∵sin ∠EGO=OEOG,∴OG=OEsin ∠EGO=33=5,∴BG=OG ﹣OB=2,在Rt △FGB 中,∵sin ∠EGO=BFBG,∴BF=BGsin ∠EGO=2×35=65, 则AF=AB ﹣BF=6﹣65=245.【点评】本题主要考查切线的判定与性质及解直角三角形的应用,熟练掌握切线的判定与性质及三角函数的定义是解题的关键. 六、解答题(共10分) 23.(10分)(2017•沈阳)如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 的坐标为(6,0),点B 的坐标为(0,8),点C 的坐标为(﹣2 5,4),点M ,N 分别为四边形OABC 边上的动点,动点M 从点O 开始,以每秒1个单位长度的速度沿O→A→B 路线向中点B 匀速运动,动点N 从O 点开始,以每秒两个单位长度的速度沿O→C→B→A 路线向终点A 匀速运动,点M ,N 同时从O 点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间t秒(t >0),△OMN 的面积为S.(1)填空:AB 的长是 10 ,BC 的长是 6 ; (2)当t=3时,求S 的值;(3)当3<t <6时,设点N 的纵坐标为y ,求y 与t 的函数关系式; (4)若S=485,请直接写出此时t 的值.【考点】四边形综合题. 【分析】(1)利用勾股定理即可解决问题; (2)如图1中,作CE ⊥x 轴于E.连接CM.当t=3时,点N 与C 重合,OM=3,易求△OMN 的面积; (3)如图2中,当3<t <6时,点N 在线段BC 上,BN=12﹣2t ,作NG ⊥OB 于G ,CF ⊥OB 于F.则F (0,4).由GN ∥CF ,推出BN BC =BG BF,即12−2t 6=BG 4,可得BG=8﹣43t ,由此即可解决问题;(4)分三种情形①当点N 在边长上,点M 在OA 上时.②如图3中,当M 、N 在线段AB 上,相遇之前.作OE ⊥AB 于E ,则OE=OB⋅OA AB=245,列出方程即可解决问题.③同法当M 、N 在线段AB 上,相遇之后,列出方程即可; 【解答】解:(1)在Rt △AOB 中,∵∠AOB=90°,OA=6,OB=8,∴AB= OA 2+OB 2= 62+82=10. BC= (2 5)2+42=6,故答案为10,6.(2)如图1中,作CE ⊥x 轴于E.连接CM.∵C (﹣2 5,4), ∴CE=4OE=2 5,在Rt △COE 中,OC= OE 2+CE 2= (2 5)2+42=6,当t=3时,点N 与C 重合,OM=3,∴S △ONM =12•OM•CE=12×3×4=6,即S=6.(3)如图2中,当3<t <6时,点N 在线段BC 上,BN=12﹣2t ,作NG ⊥OB 于G ,CF ⊥OB 于F.则F (0,4).∵OF=4,OB=8, ∴BF=8﹣4=4, ∵GN ∥CF , ∴BN BC =BGBF,即12−2t 6=BG 4,∴BG=8﹣43t ,∴y=OB ﹣BG=8﹣(8﹣43t )=43t.(4)①当点N 在边长上,点M 在OA 上时,12•43t•t=485,解得t=6 105(负根已经舍弃).②如图3中,当M 、N 在线段AB 上,相遇之前.作OE ⊥AB 于E ,则OE=OB⋅OA AB=245, 由题意12[10﹣(2t ﹣12)﹣(t ﹣6)]•245=485,解得t=8,同法当M 、N 在线段AB 上,相遇之后. 由题意12•[(2t ﹣12)+(t ﹣6)﹣10]•245=485,解得t=323,综上所述,若S=485,此时t 的值8s 或323s 或6 105s.【点评】本题考查四边形综合题、平行线分线段吧成比例定理、勾股定理、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题. 七、解答题(共12分) 24.(12分)(2017•沈阳)四边形ABCD 是边长为4的正方形,点E 在边AD 所在直线上,连接CE ,以CE 为边,作正方形CEFG (点D ,点F 在直线CE 的同侧),连接BF. (1)如图1,当点E 与点A 重合时,请直接写出BF 的长; (2)如图2,当点E 在线段AD 上时,AE=1; ①求点F 到AD 的距离; ②求BF 的长;(3)若BF=3 10AE 的长.【考点】四边形综合题. 【分析】(1)作FH ⊥AB 于H ,由AAS 证明△EFH ≌△CED ,得出FH=CD=4,AH=AD=4,求出BH=AB+AH=8,由勾股定理即可得出答案;(2)过F 作FH ⊥AD 交AD 的延长线于点H ,作FM ⊥AB 于M ,则FM=AH ,AM=FH ,①同(1)得:△EFH ≌△CED ,得出FH=DE=3,EH=CD=4即可;②求出BM=AB+AM=7,FM=AE+EH=5,由勾股定理即可得出答案;(3)分两种情况:①当点E 在边AD 的左侧时,过F 作FH ⊥AD 交AD 的延长线于点H ,交BC 延长线于K ,同(1)得::△EFH ≌△CED ,得出FH=DE=4+AE ,EH=CD=4,得出FK=8+AE ,在Rt △BFK 中,BK=AH=EH ﹣AE=4﹣AE ,由勾股定理得出方程,解方程即可; ②当点E 在边AD 的右侧时,过F 作FH ⊥AD 交AD 的延长线于点H ,交BC 延长线于K ,同理得:AE=2+ 41. 【解答】解:(1)作FH ⊥AB 于H ,如图1所示: 则∠FHE=90°,∵四边形ABCD 和四边形CEFG 是正方形,∴AD=CD=4,EF=CE ,∠ADC=∠DAH=∠BAD=∠CEF=90°, ∴∠FEH=∠CED ,在△EFH 和△CED 中,{∠FHE =∠EDC =90°∠FEH =∠CEDEF =CE,∴△EFH ≌△CED (AAS ), ∴FH=CD=4,AH=AD=4, ∴BH=AB+AH=8,∴BF=BH2+FH2=82+42=45;(2)过F作FH⊥AD交AD的延长线于点H,作FM⊥AB于M,如图2所示:则FM=AH,AM=FH,①∵AD=4,AE=1,∴DE=3,同(1)得:△EFH≌△CED(AAS),∴FH=DE=3,EH=CD=4,即点F到AD的距离为3;②∴BM=AB+AM=4+3=7,FM=AE+EH=5,∴BF=BM2+FM2=72+52=74;(3)分两种情况:①当点E在边AD的左侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,如图3所示:同(1)得::△EFH≌△CED,∴FH=DE=4+AE,EH=CD=4,∴FK=8+AE,在Rt△BFK中,BK=AH=EH﹣AE=4﹣AE,由勾股定理得:(4﹣AE)2+(8+AE)2=(310)2,解得:AE=1或AE=﹣5(舍去),∴AE=1;②当点E在边AD的右侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,如图4所示:同理得:AE=2+41;综上所述:AE的长为1或2+41【点评】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.八、解答题(共12分)25.(12分)(2017•沈阳)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=﹣312x2﹣33x+83与x轴正半轴交于点A,与y轴交于点B,连接AB,点M,N分别是OA,AB的中点,Rt△CDE≌Rt△ABO,且△CDE始终保持边ED经过点M,边CD经过点N,边DE与y轴交于点H,边CD与y轴交于点G.(1)填空:OA的长是8,∠ABO的度数是30度;(2)如图2,当DE∥AB,连接HN.①求证:四边形AMHN是平行四边形;②判断点D是否在该抛物线的对称轴上,并说明理由;(3)如图3,当边CD经过点O时,(此时点O与点G重合),过点D作DQ∥OB,交AB延长线上于点Q,延长ED到点K,使DK=DN,过点K作KI∥OB,在KI上取一点P,使得∠PDK=45°(点P,Q在直线ED的同侧),连接PQ,请直接写出PQ的长.【考点】二次函数综合题.【分析】(1)先求抛物线与两坐标轴的交点坐标,表示OA和OB的长,利用正切值可得∠ABO=30°;(2)①根据三角形的中位线定理证明HN∥AM,由两组对边分别平行的四边形是平行四边形得结论;②如图1,作垂线段DR,根据直角三角形30度角的性质求DR=2,可知:点D的横坐标为﹣2,由抛物线的解析式可计算对称轴是直线:x=﹣b2a=﹣2,所以点D在该抛物线的对称轴上;(3)想办法求出P、Q的坐标即可解决问题;【解答】解:(1)当x=0时,y=83,∴B(0,83),∴OB=83,当y=0时,y=﹣312x2﹣33x+83=0,x2+4x﹣96=0,(x﹣8)(x+12)=0,x1=8,x2=﹣12,∴A(8,0),∴OA=8,在Rt△AOB中,tan∠ABO=OAOB=83=3 3,∴∠ABO=30°, 故答案为:8,30;(2)①证明:∵DE ∥AB , ∴OM AM=OH BH,∵OM=AM , ∴OH=BH , ∵BN=AN , ∴HN ∥AM ,∴四边形AMHN 是平行四边形; ②点D 在该抛物线的对称轴上,理由是:如图1,过点D 作DR ⊥y 轴于R ,∵HN ∥OA ,∴∠NHB=∠AOB=90°, ∵DE ∥AB ,∴∠DHB=∠OBA=30°, ∵Rt △CDE ≌Rt △ABO , ∴∠HDG=∠OBA=30°, ∴∠HGN=2∠HDG=60°, ∴∠HNG=90°﹣∠HGN=90°﹣60°=30°, ∴∠HDN=∠HND , ∴DH=HN=12OA=4,∴Rt △DHR 中,DR=12DH=12×4=2,∴点D 的横坐标为﹣2,∵抛物线的对称轴是直线:x=﹣b2a =﹣−332×(− 3)=﹣2,∴点D 在该抛物线的对称轴上;(3)如图3中,连接PQ ,作DR ⊥PK 于R ,在DR 上取一点T ,使得PT=DT.设PR=a.。

攀枝花2017中考数学模拟试题及答案

攀枝花2017中考数学模拟试题及答案

2017年攀枝花中考数学模拟试题一、选择题(共10小题,每题3分,共30分) 1.√64的平方根为()A. 2√2B. +2√2C. 8D. +8 2.下列的几何图形中,一定是轴对称图形的有()A. 5个B. 4个C. 3个D. 2个3.分式W ÷(2x 2−1+1x+1)=2则W 为()A.x+1B. 2x+1 C. 2x−1 D.x-1 4. 如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点,且∠EDC =30°,弦EF∥AB ,则EF 的长度为()A .2 B..第4题 第5题 第6题5.某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B 处,然后再沿水平方向行走6米至大树脚底点D 处,斜面B 的坡度(或坡比)i=1:2.4,那么大树CD 的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan 36°≈0.73)( )圆弧 角 扇形 菱形 等腰梯形A .25.5米B .19.7米C .17.2米D .8.1米6.如图,△ABC 与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC 与△A′B′C′的面积比为( ) A .25:9B .5:3C .√5:√3D .5:37.图(十六)表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,且当钟 面显示3点30分时,分针垂直于桌面,A 点距桌面的高度为10公分。

如图(十七), 若此钟面显示3点45分时,A 点距桌面的高度为16公分,则钟面显示3点50分时,A 点距桌面的高度为多少公分?A .3322-B . +16C .18D .19 8.已知2001年至2012年四川省小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图.由图得出如下四个结论:①学校数量2007年~2012年比2001~2006年更稳定; ②在校学生人数有两次连续下降,两次连续增长的变化过程; ③2009年的大于1000;④2009~2012年,相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年.其中,正确的结论是( )9. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀 速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点 同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面 积大小变化情况是 A. 一直增大 B. 一直减小C. 先减小后增大D. 先增大后减小10. 已知二次函数的图象如图所示,记,.则下列选项正确的是( )A .B .C .D .m 、n 的大小关系不能确定二、填空题(共6小题,每题4分,共24分)11.康师傅方便面2016年全年销售额为388000万美元,销售额用科学记数法表示为___________。

最新四川省攀枝花中考数学试卷(解析版)及答案.docx

最新四川省攀枝花中考数学试卷(解析版)及答案.docx

攀枝花市中考数学试题一、选择题:本大题共 10 小题,每小题 3 分,共 30 分,在每小题给出的四个选项中只有一项是符合题目要求的。

1、( 1)2等于()A 、1B 、1C、2D、2答案: B考点:乘方运算。

解析:(- 1)2=(-1)×(-1)= 12、在0 ,1, 2 , 3 这四个数中,绝对值最小的数是()A 、0B、1C、2D、3答案: A考点:实数的绝对值。

解析:| 0|= 0,|- 1|= 1,| 2|= 2,|- 3|= 3显然 0 最小,所以,选 A 。

3、用四舍五入法将130542精确到千位,正确的是()A 、131000B 、0.131106C、1.31105D、13.1104答案: C (A 答案是精确到个位,所以错误)考点:科学记数法。

解析:把一个数表示成 a 与 10 的 n 次幂相乘的形式(1≤a<10,n 为整数),这种记数法叫做科学记数法。

所以, 130542= 1.30542× 105,又精确到千位,所以,130542 = 1.30542×105≈ 1.31×1054、下列运算正确的是()A 、3a22a2a2B 、(2a)22a2C、(a b)2a2b2 D 、2(a 1)2a 1答案: A考点:整式的运算。

解析:合并同类项,可知, A 正确;B、错误,因为(2a) 24a2C 错误,因为(a b)2a22ab b2D 错误,因为2(a 1)2a25、如图 , AB∥CD , AD CD , 1 50 ,则 2 的度数是()A 、55B、60C、65D、70A2B1C D答案: C考点:两直线平行的性质。

解析:因为 AD = CD,所以,∠ DCA=1(18050 ) =65°,2又因为 AB ∥CD,,所以,∠ 2=∠ DCA= 65°,选 C。

6、下列说法错误的是()A 、平行四边形的对边相等B、对角线相等的四边形是矩形C、对角线互相垂直的平行四边形是菱形D、正方形既是轴对称图形、又是中心对称图形答案: B考点:特殊四边形的性质。

2017年攀枝花市中考数学试卷含答案解析(Word版)

2017年攀枝花市中考数学试卷含答案解析(Word版)

2017年四川省攀枝花市中考数学试卷一、选择题〔本大题共l0小题,每题3分,共30分.在每题给出的四个选项中,只有一项是符合题目要求的〕1.〔3分〕长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为〔〕×106×10﹣6×105×1072.〔3分〕以下计算正确的选项是〔〕A.33=9 B.〔a﹣b〕2=a2﹣b2 C.〔a3〕4=a12D.a2•a3=a63.〔3分〕如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为〔〕A.33°B.57°C.67°D.60°4.〔3分〕某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是〔〕年龄〔岁〕18192021人数24315.〔3分〕如图是每个面上都有一个汉字的正方体的一种外表展开图,那么在这个正方体的外表,与“我”相对的面上的汉字是〔〕A.花B.是C.攀D.家6.〔3分〕关于x的一元二次方程〔m﹣1〕x2﹣2x﹣1=0有两个实数根,则实数m的取值范围是〔〕A.m≥0 B.m>0 C.m≥0且m≠1 D.m>0且m≠17.〔3分〕以下说法正确的选项是〔〕A.真命题的逆命题都是真命题B.在同圆或等圆中,同弦或等弦所对的圆周角相等C.等腰三角形的高线、中线、角平分线互相重合D.对角线相等且互相平分的四边形是矩形8.〔3分〕如图,△ABC内接于⊙O,∠A=60°,BC=6,则的长为〔〕A.2πB.4πC.8πD.12π9.〔3分〕二次函数y=ax2+bx+c〔a≠0〕的图象如下图,则以下命题中正确的选项是〔〕A.a>b>cB.一次函数y=ax+c的图象不经第四象限C.m〔am+b〕+b<a〔m是任意实数〕D.3b+2c>010.〔3分〕如图,正方形ABCD中.点E,F分别在BC,CD上,△AEF是等边三角形.连接AC交EF于点G.过点G作GH⊥CE于点H,假设S△EGH =3,则S△ADF=〔〕A.6 B.4 C.3 D.2二、填空题〔本大题共6小题,每题4分,共24分,请把答案填在题中的横线上〕11.〔4分〕在函数y=中,自变量x的取值范围是.12.〔4分〕一个不透明的袋中装有除颜色外均相同的5个红球和n个黄球,从中随机摸出一个,摸到红球的概率是,则n.13.〔4分〕计算:〔3﹣π〕0﹣+〔〕﹣1+|1﹣|=.14.〔4分〕假设关于x的分式方程+3=无解,则实数m=.15.〔4分〕如图,D是等边△ABC边AB上的点,AD=2,DB=4.现将△ABC折叠,使得点C与点D重合,折痕为EF,且点E、F分别在边AC和BC上,则=.16.〔4分〕如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE ﹣ED﹣DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.假设点P、点Q同时开始运动,设运动时间为t〔s〕,△BPQ 的面积为y〔cm2〕,已知y与t之间的函数图象如图2所示.=48cm2;③当给出以下结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE14<t<22时,y=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是.三、解答题〔本大题共8小题,共66分,解答应写出必要的文字说明、证明过程或演算步骤〕17.〔6分〕先化简,再求值:〔1﹣〕÷,其中x=2.18.〔6分〕中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如下图的条形统计图和扇形统计图,但均不完整.请你根据统计图解答以下问题:〔1〕参加比赛的学生共有名;〔2〕在扇形统计图中,m的值为,表示“D等级”的扇形的圆心角为度;〔3〕组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.19.〔6分〕如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E,F,AE,CF分别与BD交于点G和H,且AB=2.〔1〕假设tan∠ABE=2,求CF的长;〔2〕求证:BG=DH.20.〔8分〕攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了1箱A品种芒果和2箱B品种芒果,共花费275元〔每次两种芒果的售价都不变〕.〔1〕问A品种芒果和B品种芒果的售价分别是每箱多少元?〔2〕现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.21.〔8分〕如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB与x轴平行,点B〔1,﹣2〕,反比例函数y=〔k≠0〕的图象经过A,C两点.〔1〕求点C的坐标及反比例函数的解析式.〔2〕直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积.22.〔8分〕如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC 交BC于点E,交CD于点F.且CE=CF.〔1〕求证:直线CA是⊙O的切线;〔2〕假设BD=DC,求的值.23.〔12分〕如图1,在平面直角坐标系中,直线MN分别与x轴、y轴交于点M〔6,0〕,N〔0,2〕,等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上,将等边△ABC从图l的位置沿x轴正方向以每秒l个单位长度的速度平移,边AB,AC分别与线段MN交于点E,F〔如图2所示〕,设△ABC平移的时间为t〔s〕.〔1〕等边△ABC的边长为;〔2〕在运动过程中,当t=时,MN垂直平分AB;〔3〕假设在△ABC开始平移的同时.点P从△ABC的顶点B出发.以每秒2个单位长度的速度沿折线BA﹣AC运动.当点P运动到C时即停止运动.△ABC也随之停止平移.①当点P在线段BA上运动时,假设△PEF与△MNO相似.求t的值;=S,求S与t的函数关系式,并求出S的②当点P在线段AC上运动时,设S△PEF最大值及此时点P的坐标.24.〔12分〕如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为〔3,0〕.与y轴交于点C〔0,3〕.〔1〕求抛物线的解析式;〔2〕点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;〔3〕点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②假设△BCD是锐角三角形,求点D的纵坐标的取值范围.2017年四川省攀枝花市中考数学试卷一、选择题〔本大题共l0小题,每题3分,共30分.在每题给出的四个选项中,只有一项是符合题目要求的〕1.〔3分〕长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为〔〕×106×10﹣6×105×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】×106,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.〔3分〕以下计算正确的选项是〔〕A.33=9 B.〔a﹣b〕2=a2﹣b2 C.〔a3〕4=a12D.a2•a3=a6【分析】直接利用完全平方公式以及幂的乘方运算法则和同底数幂的乘法运算法则计算得出答案.【解答】解:A、33=27,故此选项错误;B、〔a﹣b〕2=a2﹣2ab+b2,故此选项错误;C、〔a3〕4=a12,正确;D、a2•a3=a5,故此选项错误;故选:C.【点评】此题主要考查了完全平方公式以及幂的乘方运算和同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.3.〔3分〕如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为〔〕A.33°B.57°C.67°D.60°【分析】由题意可求得∠3的度数,然后由两直线平行,同位角相等,求得∠2的度数.【解答】解:如图,∵把一块直角三角板的直角顶点放在直尺的一边上,∴∠3=90°﹣∠1=90°﹣33°=57°,∵a∥b,∴∠2=∠3=57°.故选:B.【点评】此题考查了平行线的性质.注意运用:两直线平行,同位角相等.4.〔3分〕某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是〔〕年龄〔岁〕18192021人数2431【分析】由表格中的数据可以直接看出众数,然后将这十个数据按照从小到大的顺序排列即可得到中位数,此题得以解决.【解答】解:由表格可知,一共有2+4+3+1=10个数据,其中19出现的次数最多,故这组数据的众数是19,按从小到大的数据排列是:18、19、19、19、19、19、20、20、20、21,故中位数是19.故选A.【点评】此题考查众数和中位数,解题的关键是明确众数和中位数的定义.5.〔3分〕如图是每个面上都有一个汉字的正方体的一种外表展开图,那么在这个正方体的外表,与“我”相对的面上的汉字是〔〕A.花B.是C.攀D.家【分析】正方体的外表展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的外表展开图,相对的面之间一定相隔一个正方形,∴“我”与“家”相对,“攀”与“花”相对,“枝”与“是”相对,故选D.【点评】此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.〔3分〕关于x的一元二次方程〔m﹣1〕x2﹣2x﹣1=0有两个实数根,则实数m的取值范围是〔〕A.m≥0 B.m>0 C.m≥0且m≠1 D.m>0且m≠1【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x的一元二次方程〔m﹣1〕x2﹣2x﹣1=0有两个实数根,∴,解得:m≥0且m≠1.故选C.【点评】此题考查了根的判别式以及一元二次方程的定义,牢记“当△≥0时,方程有两个实数根”是解题的关键.7.〔3分〕以下说法正确的选项是〔〕A.真命题的逆命题都是真命题B.在同圆或等圆中,同弦或等弦所对的圆周角相等C.等腰三角形的高线、中线、角平分线互相重合D.对角线相等且互相平分的四边形是矩形【分析】根据真假命题的概念、圆周角定理、等腰三角形的性质、矩形的判定定理判断即可.【解答】解:真命题的逆命题不一定都是真命题,A错误;在同圆或等圆中,同弦所对的圆周角不一定相等,B错误;等边三角形的高线、中线、角平分线互相重合,C错误;对角线相等且互相平分的四边形是矩形,D正确,故选:D.【点评】此题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.〔3分〕如图,△ABC内接于⊙O,∠A=60°,BC=6,则的长为〔〕A.2πB.4πC.8πD.12π【分析】连接CO,并延长,与圆交于点D,连接BD,利用同弧所对的圆周角相等求出∠D的度数,在直角三角形BCD中,利用勾股定理求出CD的长,即为圆的直径,进而求出∠BOC的度数,利用弧长公式计算即可得到结果.【解答】解:连接CO,并延长,与圆交于点D,连接BD,∵CD为圆O的直径,∴∠DBC=90°,∵∠A与∠D都对,∴∠D=∠A=60°,在Rt△DCB中,∠BCD=30°,∴BD=CD,设BD=x,则有CD=2x,根据勾股定理得:x2+〔6〕2=〔2x〕2,解得:x=6,∴OB=OD=OC=6,且∠BOC=120°,则的长为=4π,故选B【点评】此题考查了三角形外接圆与外心,以及弧长的计算,熟练掌握公式及法则是解此题的关键.9.〔3分〕二次函数y=ax2+bx+c〔a≠0〕的图象如下图,则以下命题中正确的选项是〔〕A.a>b>cB.一次函数y=ax+c的图象不经第四象限C.m〔am+b〕+b<a〔m是任意实数〕D.3b+2c>0【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c 的值,然后根据抛物线与x轴交点的个数及x=﹣1时二次函数的值的情况进行推理,进而对所得结论进行判断.【解答】解:A、由二次函数的图象开口向上可得a>0,由抛物线与y轴交于x 轴下方可得c<0,由x=﹣1,得出﹣=﹣1,故b>0,b=2a,则b>a>c,故此选项错误;B、∵a>0,c<0,∴一次函数y=ax+c的图象经一、三、四象限,故此选项错误;C、当x=﹣1时,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m〔am+b〕+b>a,故此选项错误;D.由图象可知x=1,a+b+c>0①,∵对称轴x=﹣1,当x=1,y>0,∴当x=﹣3时,y>0,即9a﹣3b+c>0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故选项正确;故选:D.【点评】此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.10.〔3分〕如图,正方形ABCD中.点E,F分别在BC,CD上,△AEF是等边三角形.连接AC交EF于点G.过点G作GH⊥CE于点H,假设S△EGH =3,则S△ADF=〔〕A.6 B.4 C.3 D.2【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,得到EG=GF,根据相似三角形的性质得到S△EFC=12,设AD=x,则DF=x﹣2,根据勾股定理得到AD=+3,DF=3﹣,根据三角形的面积公式即可得到结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF〔HL〕,∴BE=DF,∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∴△CEF是等腰直角三角形,∵AE=AF,∴AC垂直平分EF,∴EG=GF,∵GH⊥CE,∴GH∥CF,∴△EGH∽△EFC,∵S=3,△EGH=12,∴S△EFC∴CF=2,EF=4,∴AF=4,设AD=x,则DF=x﹣2,∵AF2=AD2+DF2,∴〔4〕2=x2+〔x﹣2〕2,∴x=+3,∴AD=+3,DF=3﹣,∴S=AD•DF=6.△ADF故选A.【点评】此题考查了正方形的性质的运用,全等三角形的判定及性质的运用,相似三角形的判定和性质,勾股定理的运用,等边三角形的性质的运用,解答此题的关键是运用勾股定理的性质.二、填空题〔本大题共6小题,每题4分,共24分,请把答案填在题中的横线上〕11.〔4分〕在函数y=中,自变量x的取值范围是x≥.【分析】根据二次根式的性质,被开方数大于等于0可知:2x﹣1≥0,解得x的范围.【解答】解:根据题意得:2x﹣1≥0,解得,x≥.【点评】此题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式的分母不能为0;〔3〕当函数表达式是二次根式时,被开方数为非负数.12.〔4分〕一个不透明的袋中装有除颜色外均相同的5个红球和n个黄球,从中随机摸出一个,摸到红球的概率是,则n=3.【分析】用红球的个数除以总球的个数得出红球的概率,从而求出n的值.【解答】解:由题意得:=,解得:n=3;故答案为:=3.【点评】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.13.〔4分〕计算:〔3﹣π〕0﹣+〔〕﹣1+|1﹣|=2.【分析】此题涉及零次幂、负整数指数幂、二次根式的化简和绝对值,首先分别计算4个考点,然后再计算加减即可.【解答】解:原式=1﹣2+2+﹣1=2﹣,故答案为:2﹣.【点评】此题主要考查了实数运算,关键是掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.14.〔4分〕假设关于x的分式方程+3=无解,则实数m=3或7.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:7+3〔x﹣1〕=mx,整理,得〔m﹣3〕x=4,当整式方程无解时,m﹣3=0,m=3;当整式方程的解为分式方程的增根时,x=1,∴m﹣3=4,m=7,∴m的值为3或7.故答案为3或7.【点评】此题考查了分式方程无解的条件,是需要识记的内容.15.〔4分〕如图,D是等边△ABC边AB上的点,AD=2,DB=4.现将△ABC折叠,使得点C与点D重合,折痕为EF,且点E、F分别在边AC和BC上,则=.【分析】根据等边三角形的性质、相似三角形的性质得到∠AED=∠BDF,根据相似三角形的周长比等于相似比计算即可.【解答】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=AC=BC=6,由折叠的性质可知,∠EDF=∠C=60°,EC=ED,FC=FD,∴∠AED=∠BDF,∴△AED∽△BDF,∴===,∴==,故答案为:.【点评】此题考查的是翻转变换的性质、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、翻转变换的性质是解题的关键.16.〔4分〕如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE ﹣ED﹣DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.假设点P、点Q同时开始运动,设运动时间为t〔s〕,△BPQ 的面积为y〔cm2〕,已知y与t之间的函数图象如图2所示.=48cm2;③当给出以下结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE14<t<22时,y=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是①③⑤.【分析】由图2可知,在点〔10,40〕至点〔14,40〕区间,△BPQ的面积不变,因此可推论BC=BE,由此分析动点P的运动过程如下:〔1〕在BE段,BP=BQ;持续时间10s,则BE=BC=10;y是t的二次函数;〔2〕在ED段,y=40是定值,持续时间4s,则ED=4;〔3〕在DC段,y持续减小直至为0,y是t的一次函数.【解答】解:由图象可以判定:BE=BC=10 cm.DE=4 cm,当点P在ED上运动时,S=BC•AB=40cm2,△BPQ∴AB=8 cm,∴AE=6 cm,∴当0<t≤10时,点P在BE上运动,BP=BQ,∴△BPQ是等腰三角形,故①正确;S△ABE=AB•AE=24 cm2,故②错误;当14<t<22时,点P在CD上运动,该段函数图象经过〔14,40〕和〔22,0〕两点,解析式为y=110﹣5t,故③正确;△ABP为等腰直角三角形需要分类讨论:当AB=AP时,ED上存在一个符号题意的P点,当BA=BO时,BE上存在一个符合同意的P点,当PA=PB时,点P在AB 垂直平分线上,所以BE和CD上各存在一个符号题意的P点,共有4个点满足题意,故④错误;⑤△BPQ与△ABE相似时,只有;△BPQ∽△BEA这种情况,此时点Q与点C重合,即==,∴PC=7.5,即t=14.5.故⑤正确.综上所述,正确的结论的序号是①③⑤.故答案是:①③⑤.【点评】此题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=10cm.三、解答题〔本大题共8小题,共66分,解答应写出必要的文字说明、证明过程或演算步骤〕17.〔6分〕先化简,再求值:〔1﹣〕÷,其中x=2.【分析】首先化简〔1﹣〕÷,然后把x的值代入化简后的算式即可.【解答】解:〔1﹣〕÷=÷=当x=2时,原式==.【点评】此题主要考查了分式的化简求值问题,要熟练掌握,注意先把分式化简后,再把分式中未知数对应的值代入求出分式的值.18.〔6分〕中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如下图的条形统计图和扇形统计图,但均不完整.请你根据统计图解答以下问题:〔1〕参加比赛的学生共有20名;〔2〕在扇形统计图中,m的值为40,表示“D等级”的扇形的圆心角为72度;〔3〕组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.【分析】〔1〕根据等级为A的人数除以所占的百分比求出总人数;〔2〕根据D级的人数求得D等级扇形圆心角的度数和m的值;〔3〕列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【解答】解:〔1〕根据题意得:3÷15%=20〔人〕,故答案为:20;〔2〕C级所占的百分比为×100%=40%,表示“D等级”的扇形的圆心角为×360°=72°;故答案为:40、72.〔3〕列表如下:男女女男〔男,女〕〔男,女〕女〔男,女〕〔女,女〕女〔男,女〕〔女,女〕所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,==.则P恰好是一名男生和一名女生【点评】此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解此题的关键.19.〔6分〕如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E,F,AE,CF分别与BD交于点G和H,且AB=2.〔1〕假设tan∠ABE=2,求CF的长;〔2〕求证:BG=DH.【分析】〔1〕由平行四边形的性质,结合三角函数的定义,在Rt△CFD中,可求得CF=2DF,利用勾股定理可求得CF的长;〔2〕利用平行四边形的性质结合条件可证得△AGD≌△CHB,则可求得BH=DG,从而可证得BG=DH.【解答】〔1〕解:∵四边形ABCD是平行四边形,∴∠CDF=∠ABE,DC=AB=2,∵tan∠ABE=2,∴tan∠CDF=2,∵CF⊥AD,∴△CFD是直角三角形,∴=2,设DF=x,则CF=2x,在Rt△CFD中,由勾股定理可得〔2x〕2+x2=〔2〕2,解得x=2或x=﹣2〔舍去〕,∴CF=4;〔2〕证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠CBD,∵AE⊥BC,CF⊥AD,∴AE⊥AD,CF⊥BC,∴∠GAD=∠HCB=90°,∴△AGD≌△CHB,∴BH=DG,∴BG=DH.【点评】此题主要考查平行四边形的性质,掌握平行四边形的对边平行且相等是解题的关键,注意全等三角形的应用.20.〔8分〕攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了1箱A品种芒果和2箱B品种芒果,共花费275元〔每次两种芒果的售价都不变〕.〔1〕问A品种芒果和B品种芒果的售价分别是每箱多少元?〔2〕现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.【分析】〔1〕设A品种芒果箱x元,B品种芒果为箱y元,根据题意列出方程组即可解决问题.〔2〕设A品种芒果n箱,总费用为m元,则B品种芒果18﹣n箱,根据题意列不等式组即可得到结论.【解答】解:〔1〕设A品种芒果箱x元,B品种芒果为箱y元,根据题意得:,解得:答:A品种芒果售价为每箱75元,B品种芒果售价为每箱100元.〔2〕设A品种芒果n箱,总费用为m元,则B品种芒果18﹣n箱,∴18﹣n≥2n且18﹣n≤4n,∴≤n≤6,∵n非负整数,∴n=4,5,6,相应的18﹣n=14,13,12;∴购买方案有:A品种芒果4箱,B品种芒果14箱;A品种芒果5箱,B品种芒果13箱;A品种芒果6箱,B品种芒果12箱;∴所需费用m分别为:4×75+14×100=1700元;5×75+13×100=1675元;6×75+12×100=1650元,∴购进A品种芒果6箱,B品种芒果12箱总费用最少.【点评】此题考查一次函数的应用、二元一次方程组等知识,解题的关键是学会设未知数,列出解方程组解决问题,学会构建一次函数,利用一次函数的性质解决最值问题,属于中考常考题型.21.〔8分〕如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB与x轴平行,点B〔1,﹣2〕,反比例函数y=〔k≠0〕的图象经过A,C两点.〔1〕求点C的坐标及反比例函数的解析式.〔2〕直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积.【分析】〔1〕连结AC,BD,根据坐标原点O是菱形ABCD的对称中心,可得AC,BD相交于点O,且∠AOB=90°,根据B〔1,﹣2〕,且AB∥x轴,可设A〔a,﹣2〕,则AO2=a2+4,BO2=5,AB2=〔1﹣a〕2,在Rt△AOB中,由勾股定理可得A〔﹣4,﹣2〕,C〔4,2〕,再根据待定系数法可求反比例函数解析式为y=;〔2〕连结OE,则△OCE是以O,C,E为顶点的三角形,根据待定系数法可求直线BC的解析式为y=x﹣,设其与y轴交于点F〔0,﹣〕,解方程可求点E 的横坐标为﹣,再根据三角形面积公式即可求解.【解答】解:〔1〕连结AC,BD,∵坐标原点O是菱形ABCD的对称中心,∴AC,BD相交于点O,且∠AOB=90°,∵B〔1,﹣2〕,且AB∥x轴,∴设A〔a,﹣2〕,则AO2=a2+4,BO2=5,AB2=〔1﹣a〕2,在Rt△AOB中,由勾股定理得〔1﹣a〕2=a2+4+5,解得a=﹣4,∴A〔﹣4,﹣2〕,∴C〔4,2〕,∵反比例函数y=〔k≠0〕的图象经过A,C两点,∴反比例函数解析式为y=;〔2〕连结OE,则△OCE是以O,C,E为顶点的三角形,设直线BC的解析式为y=kx+b,∵点B〔1,﹣2〕,C〔4,2〕在该直线上,∴,解得.∴直线BC的解析式为y=x﹣,设其与y轴交于点F〔0,﹣〕,∵反比例函数为y=,∴=x﹣,解得x1=4,x2=﹣,∴点E的横坐标为﹣,∴以O,C,E为顶点的三角形的面积=××〔4+〕=.【点评】考查了反比例函数与一次函数的交点问题,对称中心的性质,勾股定理,待定系数法求反比例函数与一次函数解析式,三角形面积计算,关键是根据待定系数法求反比例函数与一次函数解析式.22.〔8分〕如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC 交BC于点E,交CD于点F.且CE=CF.〔1〕求证:直线CA是⊙O的切线;〔2〕假设BD=DC,求的值.【分析】〔1〕假设要证明直线CA是⊙O的切线,则只要证明∠ACB=90°即可;〔2〕易证△ADF∽△ACE,由相似三角形的性质以及结合已知条件即可求出的值.【解答】解:〔1〕证明:∵BC为直径,∴∠BDC=∠ADC=90°,∴∠1+∠3=90°∵AE平分∠BAC,CE=CF,∴∠1=∠2,∠4=∠5,∴∠2+∠3=90°,∵∠3=∠4,∴∠2+∠5=90°,∴∠ACB=90°,即AC⊥BC,∴直线CA是⊙O的切线;〔2〕由〔1〕可知,∠1=∠2,∠3=∠5,∴△ADF∽△ACE,∴,∵BD=DC,∴tan∠ABC=,∵∠ABC+∠BAC=90°,∠ACD+∠BAC=90°,∴∠ABC=∠ACD,∴tan∠ACD=,∴sin∠ACD=,∴.【点评】此题考查了切线的判断和性质、相似三角形的判断和性质、圆周角定理以及三角函数的性质,熟记切线的判断和性质是解题的关键.23.〔12分〕如图1,在平面直角坐标系中,直线MN分别与x轴、y轴交于点M〔6,0〕,N〔0,2〕,等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上,将等边△ABC从图l的位置沿x轴正方向以每秒l个单位长度的速度平移,边AB,AC分别与线段MN交于点E,F〔如图2所示〕,设△ABC平移的时间为t〔s〕.〔1〕等边△ABC的边长为3;〔2〕在运动过程中,当t=3时,MN垂直平分AB;〔3〕假设在△ABC开始平移的同时.点P从△ABC的顶点B出发.以每秒2个单位长度的速度沿折线BA﹣AC运动.当点P运动到C时即停止运动.△ABC也随之停止平移.①当点P在线段BA上运动时,假设△PEF与△MNO相似.求t的值;=S,求S与t的函数关系式,并求出S的②当点P在线段AC上运动时,设S△PEF最大值及此时点P的坐标.【分析】〔1〕根据,∠OMN=30°和△ABC为等边三角形,求证△OAM为直角三角形,然后即可得出答案.〔2〕易知当点C与M重合时直线MN平分线段AB,此时OB=3,由此即可解决问题;〔3〕①如图1中,由题意BP=2t,BM=6﹣t,由△PEF与△MNO相似,可得=或=,即=或=,解方程即可解决问题;②当P点在EF上方时,过P作PH⊥MN于H,如图2中,构建二次函数利用二次函数的性质即可解决问题;〔1〕∵直线MN分别与x轴正半轴、y轴正半轴交于点M、N,OM=6cm,【解答】解:ON=2∴tan∠OMN==,∴∠OMN=30°,∴∠ONM=60°,∵△ABC为等边三角形∴∠AOC=60°,∠NOA=30°∴OA⊥MN,即△OAM为直角三角形,∴OA=OM=×6=3.故答案为3.〔2〕易知当点C与M重合时直线MN平分线段AB,此时OB=3,所以t=3.故答案为3.〔3〕①如图1中,由题意BP=2t,BM=6﹣t,∵∠BEM=90°,∠BME=30°,∴BE=3﹣,AE=AB﹣BE=,∵∠BAC=60°,∴EF=AE=t,当点P在EF下方时,PE=BE﹣BP=3﹣t,由,解得0≤t<,∵△PEF与△MNO相似,∴=或=,∴=或=,解得t=或3.∵0≤t≤,且,即<t≤,∴t=,综上所述,t=1或或.②当P点在EF上方时,过P作PH⊥MN于H,如图2中,由题意,EF=t,FC=MC=3﹣t,∠PFH=30°,∴PF=PC﹣CF=〔6﹣2t〕﹣〔3﹣t〕=3﹣t,∴PH=PF=,∴S=•EF•PH=×t×=﹣t2+t=﹣〔t﹣〕2+,∵≤t≤3,∴当t=时,△PEF的面积最大,最大值为,此时P〔3,〕,当t=3时,点P与F重合,故P点在EF下方不成立.【点评】此题考查相似形综合题,等边三角形的性质、平移变换、解直角三角形、相似三角形、二次函数等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.24.〔12分〕如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为〔3,0〕.与。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年省市中考数学试卷一、选择题(本大题共l0小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.6.7×106 B.6.7×10﹣6C.6.7×105 D.0.67×1072.(3分)下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2 C.(a3)4=a12D.a2•a3=a63.(3分)如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33° B.57° C.67° D.60°4.(3分)某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是()年龄(岁) 18 19 20 21人数 2 4 3 1 A.19,19 B.19,19.5 C.20,19 D.20,19.55.(3分)如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是()A.花B.是C.攀D.家6.(3分)关于x的一元二次方程(m﹣1)x2﹣2x﹣1=0有两个实数根,则实数m 的取值围是()A.m≥0 B.m>0 C.m≥0且m≠1 D.m>0且m≠17.(3分)下列说确的是()A.真命题的逆命题都是真命题B.在同圆或等圆中,同弦或等弦所对的圆周角相等C.等腰三角形的高线、中线、角平分线互相重合D.对角线相等且互相平分的四边形是矩形8.(3分)如图,△ABC接于⊙O,∠A=60°,BC=6,则的长为()A.2π B.4π C.8π D.12π9.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列命题中正确的是()A.a>b>cB.一次函数y=ax+c的图象不经第四象限C.m(am+b)+b<a(m是任意实数)D.3b+2c>010.(3分)如图,正方形ABCD中.点E,F分别在BC,CD上,△AEF是等边三角形.连接AC交EF于点G.过点G作GH⊥CE于点H,若S△EGH=3,则S△ADF=()A.6 B.4 C.3 D.2二、填空题(本大题共6小题,每小题4分,共24分,请把答案填在题中的横线上)11.(4分)在函数y=中,自变量x的取值围是.12.(4分)一个不透明的袋中装有除颜色外均相同的5个红球和n个黄球,从中随机摸出一个,摸到红球的概率是,则n .13.(4分)计算:(3﹣π)0﹣+()﹣1+|1﹣|= .14.(4分)若关于x的分式方程+3=无解,则实数m= .15.(4分)如图,D是等边△ABC边AB上的点,AD=2,DB=4.现将△ABC折叠,使得点C与点D重合,折痕为EF,且点E、F分别在边AC和BC上,则= .16.(4分)如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE ﹣ED﹣DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③当14<t<22时,y=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是.三、解答题(本大题共8小题,共66分,解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)先化简,再求值:(1﹣)÷,其中x=2.18.(6分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有名;(2)在扇形统计图中,m的值为,表示“D等级”的扇形的圆心角为度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.19.(6分)如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E,F,AE,CF分别与BD交于点G和H,且AB=2.(1)若tan∠ABE=2,求CF的长;(2)求证:BG=DH.20.(8分)芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了1箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.21.(8分)如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB与x轴平行,点B(1,﹣2),反比例函数y=(k≠0)的图象经过A,C两点.(1)求点C的坐标及反比例函数的解析式.(2)直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积.22.(8分)如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC于点E,交CD于点F.且CE=CF.(1)求证:直线CA是⊙O的切线;(2)若BD=DC,求的值.23.(12分)如图1,在平面直角坐标系中,直线MN分别与x轴、y轴交于点M (6,0),N(0,2),等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上,将等边△ABC从图l的位置沿x轴正方向以每秒l个单位长度的速度平移,边AB,AC分别与线段MN交于点E,F(如图2所示),设△ABC平移的时间为t(s).(1)等边△ABC的边长为;(2)在运动过程中,当t= 时,MN垂直平分AB;(3)若在△ABC开始平移的同时.点P从△ABC的顶点B出发.以每秒2个单位长度的速度沿折线BA﹣AC运动.当点P运动到C时即停止运动.△ABC也随之停止平移.①当点P在线段BA上运动时,若△PEF与△MNO相似.求t的值;②当点P在线段AC上运动时,设S△PEF=S,求S与t的函数关系式,并求出S的最大值及此时点P的坐标.24.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0).与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值围.2017年省市中考数学试卷一、选择题(本大题共l0小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.6.7×106 B.6.7×10﹣6C.6.7×105 D.0.67×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:6 700 000=6.7×106,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2 C.(a3)4=a12D.a2•a3=a6【分析】直接利用完全平方公式以及幂的乘方运算法则和同底数幂的乘法运算法则计算得出答案.【解答】解:A、33=27,故此选项错误;B、(a﹣b)2=a2﹣2ab+b2,故此选项错误;C、(a3)4=a12,正确;D、a2•a3=a5,故此选项错误;故选:C.【点评】此题主要考查了完全平方公式以及幂的乘方运算和同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.3.(3分)如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33° B.57° C.67° D.60°【分析】由题意可求得∠3的度数,然后由两直线平行,同位角相等,求得∠2的度数.【解答】解:如图,∵把一块直角三角板的直角顶点放在直尺的一边上,∴∠3=90°﹣∠1=90°﹣33°=57°,∵a∥b,∴∠2=∠3=57°.故选:B.【点评】此题考查了平行线的性质.注意运用:两直线平行,同位角相等.4.(3分)某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是()年龄(岁) 18 19 20 21人数 2 4 3 1 A.19,19 B.19,19.5 C.20,19 D.20,19.5【分析】由表格中的数据可以直接看出众数,然后将这十个数据按照从小到大的顺序排列即可得到中位数,本题得以解决.【解答】解:由表格可知,一共有2+4+3+1=10个数据,其中19出现的次数最多,故这组数据的众数是19,按从小到大的数据排列是:18、19、19、19、19、19、20、20、20、21,故中位数是19.故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义.5.(3分)如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是()A.花B.是C.攀D.家【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“我”与“家”相对,“攀”与“花”相对,“枝”与“是”相对,故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.(3分)关于x的一元二次方程(m﹣1)x2﹣2x﹣1=0有两个实数根,则实数m 的取值围是()A.m≥0 B.m>0 C.m≥0且m≠1 D.m>0且m≠1【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x的一元二次方程(m﹣1)x2﹣2x﹣1=0有两个实数根,∴,解得:m≥0且m≠1.故选C.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△≥0时,方程有两个实数根”是解题的关键.7.(3分)下列说确的是()A.真命题的逆命题都是真命题B.在同圆或等圆中,同弦或等弦所对的圆周角相等C.等腰三角形的高线、中线、角平分线互相重合D.对角线相等且互相平分的四边形是矩形【分析】根据真假命题的概念、圆周角定理、等腰三角形的性质、矩形的判定定理判断即可.【解答】解:真命题的逆命题不一定都是真命题,A错误;在同圆或等圆中,同弦所对的圆周角不一定相等,B错误;等边三角形的高线、中线、角平分线互相重合,C错误;对角线相等且互相平分的四边形是矩形,D正确,故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(3分)如图,△ABC接于⊙O,∠A=60°,BC=6,则的长为()A.2π B.4π C.8π D.12π【分析】连接CO,并延长,与圆交于点D,连接BD,利用同弧所对的圆周角相等求出∠D的度数,在直角三角形BCD中,利用勾股定理求出CD的长,即为圆的直径,进而求出∠BOC的度数,利用弧长公式计算即可得到结果.【解答】解:连接CO,并延长,与圆交于点D,连接BD,∵CD为圆O的直径,∴∠DBC=90°,∵∠A与∠D都对,∴∠D=∠A=60°,在Rt△DCB中,∠BCD=30°,∴BD=CD,设BD=x,则有CD=2x,根据勾股定理得:x2+(6)2=(2x)2,解得:x=6,∴OB=OD=OC=6,且∠BOC=120°,则的长为=4π,故选B【点评】此题考查了三角形外接圆与外心,以及弧长的计算,熟练掌握公式及法则是解本题的关键.9.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列命题中正确的是()A.a>b>cB.一次函数y=ax+c的图象不经第四象限C.m(am+b)+b<a(m是任意实数)D.3b+2c>0【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c 的值,然后根据抛物线与x轴交点的个数及x=﹣1时二次函数的值的情况进行推理,进而对所得结论进行判断.【解答】解:A、由二次函数的图象开口向上可得a>0,由抛物线与y轴交于x 轴下方可得c<0,由x=﹣1,得出﹣=﹣1,故b>0,b=2a,则b>a>c,故此选项错误;B、∵a>0,c<0,∴一次函数y=ax+c的图象经一、三、四象限,故此选项错误;C、当x=﹣1时,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此选项错误;D.由图象可知x=1,a+b+c>0①,∵对称轴x=﹣1,当x=1,y>0,∴当x=﹣3时,y>0,即9a﹣3b+c>0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故选项正确;故选:D.【点评】此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.10.(3分)如图,正方形ABCD中.点E,F分别在BC,CD上,△AEF是等边三角形.连接AC交EF于点G.过点G作GH⊥CE于点H,若S△EGH=3,则S△ADF=()A.6 B.4 C.3 D.2【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,得到EG=GF,根据相似三角形的性质得到S△EFC=12,设AD=x,则DF=x﹣2,根据勾股定理得到AD=+3,DF=3﹣,根据三角形的面积公式即可得到结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∴△CEF是等腰直角三角形,∵AE=AF,∴AC垂直平分EF,∴EG=GF,∵GH⊥CE,∴GH∥CF,∴△EGH∽△EFC,∵S△EGH=3,∴S△EFC=12,∴CF=2,EF=4,∴AF=4,设AD=x,则DF=x﹣2,∵AF2=AD2+DF2,∴(4)2=x2+(x﹣2)2,∴x=+3,∴AD=+3,DF=3﹣,∴S△ADF=AD•DF=6.故选A.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,相似三角形的判定和性质,勾股定理的运用,等边三角形的性质的运用,解答本题的关键是运用勾股定理的性质.二、填空题(本大题共6小题,每小题4分,共24分,请把答案填在题中的横线上)11.(4分)在函数y=中,自变量x的取值围是x≥.【分析】根据二次根式的性质,被开方数大于等于0可知:2x﹣1≥0,解得x 的围.【解答】解:根据题意得:2x﹣1≥0,解得,x≥.【点评】本题考查的是函数自变量取值围的求法.函数自变量的围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.(4分)一个不透明的袋中装有除颜色外均相同的5个红球和n个黄球,从中随机摸出一个,摸到红球的概率是,则n =3 .【分析】用红球的个数除以总球的个数得出红球的概率,从而求出n的值.【解答】解:由题意得:=,解得:n=3;故答案为:=3.【点评】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)计算:(3﹣π)0﹣+()﹣1+|1﹣|= 2.【分析】此题涉及零次幂、负整数指数幂、二次根式的化简和绝对值,首先分别计算4个考点,然后再计算加减即可.【解答】解:原式=1﹣2+2+﹣1=2﹣,故答案为:2﹣.【点评】此题主要考查了实数运算,关键是掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.14.(4分)若关于x的分式方程+3=无解,则实数m= 3或7 .【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:7+3(x﹣1)=mx,整理,得(m﹣3)x=4,当整式方程无解时,m﹣3=0,m=3;当整式方程的解为分式方程的增根时,x=1,∴m﹣3=4,m=7,∴m的值为3或7.故答案为3或7.【点评】本题考查了分式方程无解的条件,是需要识记的容.15.(4分)如图,D是等边△ABC边AB上的点,AD=2,DB=4.现将△ABC折叠,使得点C与点D重合,折痕为EF,且点E、F分别在边AC和BC上,则= .【分析】根据等边三角形的性质、相似三角形的性质得到∠AED=∠BDF,根据相似三角形的周长比等于相似比计算即可.【解答】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=AC=BC=6,由折叠的性质可知,∠EDF=∠C=60°,EC=ED,FC=FD,∴∠AED=∠BDF,∴△AED∽△BDF,∴===,∴==,故答案为:.【点评】本题考查的是翻转变换的性质、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、翻转变换的性质是解题的关键.16.(4分)如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE ﹣ED﹣DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③当14<t<22时,y=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是①③⑤.【分析】由图2可知,在点(10,40)至点(14,40)区间,△BPQ的面积不变,因此可推论BC=BE,由此分析动点P的运动过程如下:(1)在BE段,BP=BQ;持续时间10s,则BE=BC=10;y是t的二次函数;(2)在ED段,y=40是定值,持续时间4s,则ED=4;(3)在DC段,y持续减小直至为0,y是t的一次函数.【解答】解:由图象可以判定:BE=BC=10 cm.DE=4 cm,当点P在ED上运动时,S△BPQ=BC•AB=40cm2,∴AB=8 cm,∴AE=6 cm,∴当0<t≤10时,点P在BE上运动,BP=BQ,∴△BPQ是等腰三角形,故①正确;S△ABE=AB•AE=24 cm2,故②错误;当14<t<22时,点P在CD上运动,该段函数图象经过(14,40)和(22,0)两点,解析式为y=110﹣5t,故③正确;△ABP为等腰直角三角形需要分类讨论:当AB=AP时,ED上存在一个符号题意的P点,当BA=BO时,BE上存在一个符合同意的P点,当PA=PB时,点P在AB垂直平分线上,所以BE和CD上各存在一个符号题意的P点,共有4个点满足题意,故④错误;⑤△BPQ与△ABE相似时,只有;△BPQ∽△BEA这种情况,此时点Q与点C重合,即==,∴PC=7.5,即t=14.5.故⑤正确.综上所述,正确的结论的序号是①③⑤.故答案是:①③⑤.【点评】本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=10cm.三、解答题(本大题共8小题,共66分,解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)先化简,再求值:(1﹣)÷,其中x=2.【分析】首先化简(1﹣)÷,然后把x的值代入化简后的算式即可.【解答】解:(1﹣)÷=÷=当x=2时,原式==.【点评】此题主要考查了分式的化简求值问题,要熟练掌握,注意先把分式化简后,再把分式中未知数对应的值代入求出分式的值.18.(6分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有20 名;(2)在扇形统计图中,m的值为40 ,表示“D等级”的扇形的圆心角为72 度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.【分析】(1)根据等级为A的人数除以所占的百分比求出总人数;(2)根据D级的人数求得D等级扇形圆心角的度数和m的值;(3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:3÷15%=20(人),故答案为:20;(2)C级所占的百分比为×100%=40%,表示“D等级”的扇形的圆心角为×360°=72°;故答案为:40、72.(3)列表如下:男女女男(男,女)(男,女)女(男,女)(女,女)女(男,女)(女,女)所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P恰好是一名男生和一名女生==.【点评】此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.19.(6分)如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E,F,AE,CF分别与BD交于点G和H,且AB=2.(1)若tan∠ABE=2,求CF的长;(2)求证:BG=DH.【分析】(1)由平行四边形的性质,结合三角函数的定义,在Rt△CFD中,可求得CF=2DF,利用勾股定理可求得CF的长;(2)利用平行四边形的性质结合条件可证得△AGD≌△CHB,则可求得BH=DG,从而可证得BG=DH.【解答】(1)解:∵四边形ABCD是平行四边形,∴∠CDF=∠ABE,DC=AB=2,∵tan∠ABE=2,∴tan∠CDF=2,∵CF⊥AD,∴△CFD是直角三角形,∴=2,设DF=x,则CF=2x,在Rt△CFD中,由勾股定理可得(2x)2+x2=(2)2,解得x=2或x=﹣2(舍去),∴CF=4;(2)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠CBD,∵AE⊥BC,CF⊥AD,∴AE⊥AD,CF⊥BC,∴∠GAD=∠HCB=90°,∴△AGD≌△CHB,∴BH=DG,∴BG=DH.【点评】本题主要考查平行四边形的性质,掌握平行四边形的对边平行且相等是解题的关键,注意全等三角形的应用.20.(8分)芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了1箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.【分析】(1)设A品种芒果箱x元,B品种芒果为箱y元,根据题意列出方程组即可解决问题.(2)设A品种芒果n箱,总费用为m元,则B品种芒果18﹣n箱,根据题意列不等式组即可得到结论.【解答】解:(1)设A品种芒果箱x元,B品种芒果为箱y元,根据题意得:,解得:答:A品种芒果售价为每箱75元,B品种芒果售价为每箱100元.(2)设A品种芒果n箱,总费用为m元,则B品种芒果18﹣n箱,∴18﹣n≥2n且18﹣n≤4n,∴≤n≤6,∵n非负整数,∴n=4,5,6,相应的18﹣n=14,13,12;∴购买方案有:A品种芒果4箱,B品种芒果14箱;A品种芒果5箱,B品种芒果13箱;A品种芒果6箱,B品种芒果12箱;∴所需费用m分别为:4×75+14×100=1700元;5×75+13×100=1675元;6×75+12×100=1650元,∴购进A品种芒果6箱,B品种芒果12箱总费用最少.【点评】本题考查一次函数的应用、二元一次方程组等知识,解题的关键是学会设未知数,列出解方程组解决问题,学会构建一次函数,利用一次函数的性质解决最值问题,属于中考常考题型.21.(8分)如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB与x轴平行,点B(1,﹣2),反比例函数y=(k≠0)的图象经过A,C两点.(1)求点C的坐标及反比例函数的解析式.(2)直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积.【分析】(1)连结AC,BD,根据坐标原点O是菱形ABCD的对称中心,可得AC,BD相交于点O,且∠AOB=90°,根据B(1,﹣2),且AB∥x轴,可设A(a,﹣2),则AO2=a2+4,BO2=5,AB2=(1﹣a)2,在Rt△AOB中,由勾股定理可得A(﹣4,﹣2),C(4,2),再根据待定系数法可求反比例函数解析式为y=;(2)连结OE,则△OCE是以O,C,E为顶点的三角形,根据待定系数法可求直线BC的解析式为y=x﹣,设其与y轴交于点F(0,﹣),解方程可求点E的横坐标为﹣,再根据三角形面积公式即可求解.【解答】解:(1)连结AC,BD,∵坐标原点O是菱形ABCD的对称中心,∴AC,BD相交于点O,且∠AOB=90°,∵B(1,﹣2),且AB∥x轴,∴设A(a,﹣2),则AO2=a2+4,BO2=5,AB2=(1﹣a)2,在Rt△AOB中,由勾股定理得(1﹣a)2=a2+4+5,解得a=﹣4,∴A(﹣4,﹣2),∴C(4,2),∵反比例函数y=(k≠0)的图象经过A,C两点,∴反比例函数解析式为y=;(2)连结OE,则△OCE是以O,C,E为顶点的三角形,设直线BC的解析式为y=kx+b,∵点B(1,﹣2),C(4,2)在该直线上,∴,解得.∴直线BC的解析式为y=x﹣,设其与y轴交于点F(0,﹣),∵反比例函数为y=,∴=x﹣,解得x1=4,x2=﹣,∴点E的横坐标为﹣,∴以O,C,E为顶点的三角形的面积=××(4+)=.【点评】考查了反比例函数与一次函数的交点问题,对称中心的性质,勾股定理,待定系数法求反比例函数与一次函数解析式,三角形面积计算,关键是根据待定系数法求反比例函数与一次函数解析式.22.(8分)如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC于点E,交CD于点F.且CE=CF.(1)求证:直线CA是⊙O的切线;(2)若BD=DC,求的值.【分析】(1)若要证明直线CA是⊙O的切线,则只要证明∠ACB=90°即可;(2)易证△ADF∽△ACE,由相似三角形的性质以及结合已知条件即可求出的值.【解答】解:(1)证明:∵BC为直径,∴∠BDC=∠ADC=90°,∴∠1+∠3=90°∵AE平分∠BAC,CE=CF,∴∠1=∠2,∠4=∠5,∴∠2+∠3=90°,∵∠3=∠4,∴∠2+∠5=90°,∴∠ACB=90°,即AC⊥BC,∴直线CA是⊙O的切线;(2)由(1)可知,∠1=∠2,∠3=∠5,∴△ADF∽△ACE,∴,∵BD=DC,∴tan∠ABC=,∵∠ABC+∠BAC=90°,∠ACD+∠BAC=90°,∴∠ABC=∠ACD,∴tan∠ACD=,∴sin∠ACD=,∴.【点评】本题考查了切线的判断和性质、相似三角形的判断和性质、圆周角定理以及三角函数的性质,熟记切线的判断和性质是解题的关键.23.(12分)如图1,在平面直角坐标系中,直线MN分别与x轴、y轴交于点M (6,0),N(0,2),等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上,将等边△ABC从图l的位置沿x轴正方向以每秒l个单位长度的速度平移,边AB,AC分别与线段MN交于点E,F(如图2所示),设△ABC平移的时间为t(s).(1)等边△ABC的边长为 3 ;(2)在运动过程中,当t= 3 时,MN垂直平分AB;(3)若在△ABC开始平移的同时.点P从△ABC的顶点B出发.以每秒2个单位长度的速度沿折线BA﹣AC运动.当点P运动到C时即停止运动.△ABC也随之停止平移.①当点P在线段BA上运动时,若△PEF与△MNO相似.求t的值;②当点P在线段AC上运动时,设S△PEF=S,求S与t的函数关系式,并求出S的最大值及此时点P的坐标.【分析】(1)根据,∠OMN=30°和△ABC为等边三角形,求证△OAM为直角三角形,然后即可得出答案.(2)易知当点C与M重合时直线MN平分线段AB,此时OB=3,由此即可解决问题;(3)①如图1中,由题意BP=2t,BM=6﹣t,由△PEF与△MNO相似,可得=或=,即=或=,解方程即可解决问题;②当P点在EF上方时,过P作PH⊥MN于H,如图2中,构建二次函数利用二次函数的性质即可解决问题;【解答】解:(1)∵直线MN分别与x轴正半轴、y轴正半轴交于点M、N,OM=6cm,ON=2∴tan∠OMN==,∴∠OMN=30°,∴∠ONM=60°,∵△ABC为等边三角形∴∠AOC=60°,∠NOA=30°∴OA⊥MN,即△OAM为直角三角形,∴OA=OM=×6=3.故答案为3.(2)易知当点C与M重合时直线MN平分线段AB,此时OB=3,所以t=3.故答案为3.(3)①如图1中,由题意BP=2t,BM=6﹣t,∵∠BEM=90°,∠BME=30°,∴BE=3﹣,AE=AB﹣BE=,∵∠BAC=60°,∴EF=AE=t,当点P在EF下方时,PE=BE﹣BP=3﹣t,由,解得0≤t<,∵△PEF与△MNO相似,∴=或=,∴=或=,解得t=或3.∵0≤t≤,且,即<t≤,∴t=,综上所述,t=1或或.②当P点在EF上方时,过P作PH⊥MN于H,如图2中,由题意,EF=t,FC=MC=3﹣t,∠PFH=30°,∴PF=PC﹣CF=(6﹣2t)﹣(3﹣t)=3﹣t,∴PH=PF=,∴S=•EF•PH=×t×=﹣t2+t=﹣(t﹣)2+,∵≤t≤3,∴当t=时,△PEF的面积最大,最大值为,此时P(3,),当t=3时,点P与F重合,故P点在EF下方不成立.【点评】本题考查相似形综合题,等边三角形的性质、平移变换、解直角三角形、相似三角形、二次函数等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.24.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0).与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值围.【分析】(1)利用待定系数法求抛物线的解析式;(2)易得BC的解析式为y=﹣x+3,先证明△ECF为等腰直角三角形,作PH⊥y 轴于H,PG∥y轴交BC于G,如图1,则△EPG为等腰直角三角形,PE=PG,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),接着利用t表示PF、PE,所以PE+EF=2PE+PF=﹣t2+3t+,然后利用二次函数的性质解决问题;。

相关文档
最新文档