天体表面的重力加速度
重力加速度的计算

重力加速度的计算$$g = \frac{G \cdot M}{R^2}$$其中,$g$ 代表重力加速度,$G$ 是普遍引力常数,取值为$6.674 \times 10^{-11} \, \text{Nm}^2/\text{kg}^2$,$M$ 代表地球的质量,可以取 $5.972 \times 10^{24} \, \text{kg}$,$R$ 代表地球的半径,可以取 $6.371 \times 10^{6} \, \text{m}$。
根据上述公式,我们可以进行以下步骤来计算重力加速度:1. 将上述数值代入公式中,我们可以得到$$g = \frac{6.674 \times 10^{-11} \, \text{Nm}^2/\text{kg}^2 \times5.972 \times 10^{24} \, \text{kg}}{(6.371 \times 10^{6} \, \text{m})^2}$$2. 将上述数值进行计算,可以得到重力加速度的数值。
通过上述计算,我们可以得到地球表面上物体所受到的重力加速度。
这个数值在地球表面大致为 $9.8 \, \text{m/s}^2$,我们可以用这个数值来进行相关物理计算和实验设计。
重力加速度的计算是基于地球的质量和半径的公式,对于其他天体,我们也可以采用类似的方式来计算其重力加速度。
这样,我们可以更好地理解和研究物体在不同天体上的物理性质和运动规律。
参考资料:- Young, H. D., & Freedman, R. A. (2012). University Physics with Modern Physics. Pearson Education.。
高中天体物理公式总结

高中天体物理公式总结高中天体物理公式1. 开普勒第三定律:T2/R3=K(=4π2/GM){R: 轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2. 万有引力定律:F=Gm1m2/r2 (G=6.67×10-11Nm2/kg2 ,方向在它们的连线上)3. 天体上的重力和重力加速度:GMm/R2=mg;g=GM/R{2R: 天体半径(m) , M 天体质量(kg) }4. 卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}5. 第一(二、三)宇宙速度V仁(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s6. 地球同步卫星GMm/(r地+h)2=m4π2(r 地+h)/T2{h≈36000km ,h: 距地球表面的高度,r 地: 地球的半径}强调:(1) 天体运动所需的向心力由万有引力提供,F 向=F 万; (2) 应用万有引力定律可估算天体的质量密度等;(3) 地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4) 卫星轨道半径变小时, 势能变小、动能变大、速度变大、周期变小;(5) 地球卫星的最大环绕速度和最小发射速度均为7.9km/s 。
高中物理易错知识点1. 受力分析,往往漏“力”百出对物体受力分析,是物理学中最重要、最基本的知识,分析方法有“整体法”与“隔离法”两种。
对物体的受力分析可以说贯穿着整个高中物理始终,如力学中的重力、弹力(推、拉、提、压)与摩擦力(静摩擦力与滑动摩擦力),电场中的电场力(库仑力)、磁场中的洛伦兹力(安培力)等。
在受力分析中,最难的是受力方向的判别,最容易错的是受力分析往往漏掉某一个力。
在受力分析过程中,特别是在“力、电、磁”综合问题中,第一步就是受力分析,虽然解题思路正确,但考生往往就是因为分析漏掉一个力(甚至重力),就少了一个力做功,从而得出的答案与正确结果大相径庭,痛失整题分数。
高中物理天体运动知识

“万有引力定律”习题归类例析.一、求天体的质量(或密度)1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量由mg=G 得 .(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.)[例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ.[解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度.根据平抛运动的特点得抛出物体竖直方向上的位移为设初始平抛小球的初速度为v,则水平位移为x=vt.有○1当以2v的速度平抛小球时,水平位移为x'= 2vt.所以有②在星球表面上物体的重力近似等于万有引力,有mg=G ③联立以上三个方程解得而天体的体积为,由密度公式得天体的密度为。
2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得若已知卫星的轨道半径r和卫星的运行周期T、角速度或线速度v,可求得中心天体的质量为[例2]下列几组数据中能算出地球质量的是(万有引力常量G是已知的)()A.地球绕太阳运行的周期T和地球中心离太阳中心的距离rB.月球绕地球运行的周期T和地球的半径rC.月球绕地球运动的角速度和月球中心离地球中心的距离rD.月球绕地球运动的周期T和轨道半径r[解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B 项不对.已知月球绕地球运动的角速度和轨道半径,由可以求出中心天体地球的质量,所以C项正确.由求得地球质量为,所以D项正确.二、人造地球卫星的运动参量与轨道半径的关系问题根据人造卫星的动力学关系可得由此可得线速度v与轨道半径的平方根成反比;角速度与轨道半径的立方的平方根成反比,周期T与轨道半径的立方的平方根成正比;加速度a与轨道半径的平方成反比.[例3两颗人造卫星A、B绕地球做圆周运动,周期之比为,则轨道半径之比和运动速率之比分别为()A.B.C.D.[解析]由可得卫星的运动周期与轨道半径的立方的平方根成正比,由可得轨道半径,然后再由得线速度。
天体运动中的向心加速度与重力加速度知识讲解

天体运动中的向心加速度与重力加速度天体运动中的向心加速度与重力加速度钦州市第二中学吴展红在学习了天体运动之后,很多同学认为重力加速度就与向心加速度是一回事,即向心加速度就等于重力加速度,重力就等于向心力,从而出错。
其实不然,下我们从力与运动的关系来分析这个问题。
万有引力定律:是物体间相互作用的一条定律,1687年为牛顿所发现。
任何物体之间都有相互吸引力,这个力的大小与各个物体的质量成正比例,而与它们之间的距离的平方成反比。
如果用M、m表示两个物体的质量,r表示它们间的距离,则物体间相互吸引力为F= GMm/r2,G称为万有引力常数,其值约为6.67×10-11单位N·㎡ /kg2。
为英国物理学家、化学家亨利·卡文迪许通过扭秤实验测得。
万有引力定律的发现和提出,使我们认识到自然界中存在的一种基本作用,更重要的是把其应用于天体的运动以及航天技术的研究当中,从而开创了人类探索宇宙奥妙的新纪元。
万有引力与航天这章内容比较晦涩难懂,公式比较多学生容易混淆,万有引力公式与圆周运动公式相结合,得出一系列的公式。
如何能在繁杂的公式中找出其中的奥秘,关键还是要搞清楚万有引力与航天的规律。
欲解决此类问题,现归纳以下几条依据:在地球上的物体:(1)考虑地球的自转:重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力。
重力实际上是万有引力的一个分力,另一个分力就是物体随地球自转时需要的向心力。
如图所示,由于纬度的变化,物体做圆周运动的向心力F也不断变化,因而地球表面物体的重力随纬度的变化而变化,即重力加速度g随纬度变化而变化。
其中G为万有引力常量,M为地球的质量,m为地面物体的质量,R为地球半径,r为随着纬度的变化物体距离轴线的长度。
(万有引力向量=重力向量+向心力向量)GMm/R2 =mg+ mw2r因为同一个物体的W相等,随着纬度的增加r越来越小,但是万有引力GMm/R2不变,mg越来越大即:随着纬度的增加,重力加速度g越来越大。
天体的圆周运动

天体的圆周运动一、天体(卫星)绕中心天体做圆周运动(中心天体质量M , 天体半径R, 天体表面重力加速度g )1、两个基本关系:(1).万有引力=向心力 ()m h MmG =+2R ()()()h Tm h m h V +=+=+R 4R R 2222πω (2).万有引力=重力 地表面物体的重力加速度:mg = G 2R Mm (黄金替换)高空物体的重力加速度:mg 0 = G 2)(h R Mm +2、考点: (1)基本计算(2)卫星间的对比,例如:半径、线速度、角速度、周期、向心加速度大小、向心力大小(3)卫星的变轨问题3、解题思路:(1)建立物理模型,画出草图(2)找出题目给出物理量,如相同量和不同量,一般从轨道半径r 入手(3)灵活选用公式进行分析二、两种特殊的地球卫星:1、近地卫星:指的是贴着地球表面运行的卫星。
特点: 轨道半径最小(等于地球半径),运行线速度最大(等于第一宇宙速度)、角速度最大、周期最小。
2、地球同步卫星 :指的是运行情况与地球自转同步,即地球自转一圈,卫星也转一圈。
特点: 同步卫星的轨道在赤道正上方,且运行周期T=24h 、角速度W 是固定的。
由公式可得,距离地面高度h 、线速度V 大小、向心加速度a 大小都固定。
因此卫星的运行轨道是唯一的。
但向心力大小是没固定的,因为每颗卫星的质量是不同的。
三、三种宇宙速度1、第一宇宙速度: 卫星贴近地球表面飞行所具有的速度。
大小:由 R v m R Mm G 22= , mg RMm G =2 代入数据可得:V=7.9 km/s 特点:既是最大环绕速度,也是最小发射速度 (??)2、第二宇宙速度:脱离地球而飞到其他行星所具有的速度。
V=11.2 km/s3、第三宇宙速度:逃逸出太阳系所具有的速度。
V=16.7 km/s课前练习1、人造卫星进入轨道作匀速圆周运动时,卫星内物体()A.处于完全失重状态,所受重力为零B.处于完全失重状态,但仍受重力作用C.所受重力就是它作匀速圆周运动所需的向心力D.处于平衡状态,即所受合外力为零2、绕地球运行的人造地球卫星的质量、速度、卫星与地面间距离三者之间的关系是()A.质量越大,离地面越远,速度越小B.质量越大,离地面越远,速度越大C.与质量无关,离地面越近,速度越大D.与质量无关,离地面越近,速度越小3、关于地球的第一宇宙速度,下列说法中正确的是( )A它是人造地球卫星环绕地球运转的最小速度B它是近地圆行轨道上人造卫星的运行速度C 它是能使卫星进入近地轨道最小发射速度D它是能使卫星进入轨道的最大发射速度巩固练习1、同步卫星相对地面静止,犹如悬在高空中,下列说法中不正确的是:()A.同步卫星处于平衡状态B.同步卫星的速率是唯一的C.同步卫星加速度大小是唯一的D.各国的同步卫星都在同一圆周上运行2、关于地球同步通迅卫星,下列说法正确的是:A.所有的地球同步卫星的质量都相等B.各国发射的这种卫星轨道半径都一样C.它运行的线速度一定小于第一宇宙速度D.它运行的线速度介于第一和第二宇宙速度之间3、如图三颗人造地球卫星A、B、C在地球的大气层外沿如图所示的轨道做匀速圆周运动,已知m A = m B> m C,则A.线速度大小的关系是v A>v B=v C B.周期关系是T A<T B=T CC.向心力大小的关系是F A>F B>F C D.向心加速度大小的关系是a A>a B>a C4、2009年2月11日,俄罗斯的“宇宙—2251”卫星和美国的“铱—33”卫星在西伯利亚上空约805 km 处发生碰撞,假定有甲、乙两块碎片绕地球运动的轨道都是圆,甲的运行速率比乙的大,则下列正确的A.甲的运行周期一定比乙的长B.甲距地面的高度一定比乙的高C.甲的向心力一定比乙的小D.甲的加速度一定比乙的大5、火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆。
2020高考备考物理重难点《天体运动与人造航天器》(附答案解析版)

重难点05 天体运动与人造航天器【知识梳理】考点一 天体质量和密度的计算1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即ma r mv r T m r m rMm G ====2222)2(πω(2)在中心天体表面或附近运动时,万有引力近似等于重力,即2R MmG mg =(g 表示天体表面的重力加速度).(2)利用此关系可求行星表面重力加速度、轨道处重力加速度: 在行星表面重力加速度:2R Mm Gmg =,所以2R MG g = 在离地面高为h 的轨道处重力加速度:2)(h R Mm G g m +=',得2)(h R MG g +=' 2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于2R Mm G mg =,故天体质量GgR M 2=天体密度:GRgV M πρ43==(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即r T m rMm G 22)2(π=,得出中心天体质量2324GT r M π=;②若已知天体半径R ,则天体的平均密度3233RGT r V M πρ== ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度23GTV M πρ==.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度. 【重点归纳】 1.黄金代换公式(1)在研究卫星的问题中,若已知中心天体表面的重力加速度g 时,常运用GM =gR 2作为桥梁,可以把“地上”和“天上”联系起来.由于这种代换的作用很大,此式通常称为黄金代换公式. 2. 估算天体问题应注意三点(1)天体质量估算中常有隐含条件,如地球的自转周期为24 h ,公转周期为365天等. (2)注意黄金代换式GM =gR 2的应用. (3)注意密度公式23GTπρ=的理解和应用. 考点二 卫星运行参量的比较与运算 1.卫星的动力学规律由万有引力提供向心力,ma r mv r T m r m rMm G ====2222)2(πω2.卫星的各物理量随轨道半径变化的规律r GM v =;3r GM =ω;GMr T 32π=;2r GM a = (1)卫星的a 、v 、ω、T 是相互联系的,如果一个量发生变化,其它量也随之发生变化;这些量与卫星的质量无关,它们由轨道半径和中心天体的质量共同决定.(2)卫星的能量与轨道半径的关系:同一颗卫星,轨道半径越大,动能越小,势能越大,机械能越大.3.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)两种卫星的轨道平面一定通过地球的球心. 【重点归纳】1.利用万有引力定律解决卫星运动的一般思路 (1)一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. (2)两组公式卫星运动的向心力来源于万有引力:ma r mv r T m r m rMm G ====2222)2(πω在中心天体表面或附近运动时,万有引力近似等于重力,即:2R MmGmg = (g 为星体表面处的重2.卫星的线速度、角速度、周期与轨道半径的关系⎪⎪⎩⎪⎪⎨⎧⇒⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫====减小增大减小减小增大时当半径a T v r r GM a GM r T r GM r GM v ωπω2332 考点三 宇宙速度 卫星变轨问题的分析1.第一宇宙速度v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的两种求法:(1)r mv r Mm G 212=,所以r GMv =1 (2)rmv mg 21=,所以gR v =1.3.第二、第三宇宙速度也都是指发射速度.4.当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行:(1)当卫星的速度突然增加时,r mv rMm G 22<,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由rGMv =可知其运行速度比原轨道时减小.(2)当卫星的速度突然减小时,r mv rMm G 22>,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由rGMv =可知其运行速度比原轨道时增大.卫星的发射和回收就是利用这一原理.1.处理卫星变轨问题的思路和方法(1)要增大卫星的轨道半径,必须加速;(2)当轨道半径增大时,卫星的机械能随之增大.2.卫星变轨问题的判断:(1)卫星的速度变大时,做离心运动,重新稳定时,轨道半径变大.(2)卫星的速度变小时,做近心运动,重新稳定时,轨道半径变小.(3)圆轨道与椭圆轨道相切时,切点处外面的轨道上的速度大,向心加速度相同.3.特别提醒:“三个不同”(1)两种周期——自转周期和公转周期的不同(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度(3)两个半径——天体半径R和卫星轨道半径r的不同【限时检测】(建议用时:30分钟)1.(2019·新课标全国Ⅰ卷)在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。
航天中重力加速度计算方法

面重力加速度计算: = ・ ÷仃 ( R — d ) : g ( R — d )
( 3 ) 得出: g =c , p÷仃( R— d ) ( 4 ) .
收 稿 日期 : 2 0 1 7— 0 6— 0 1
作者简介 : 马小 乐( 1 9 8 3 . 0 4一) , 女, 吉林省 长春 市九 台区, 本科 , 中学一级从事物理教 学
参考文献 :
[ 1 ] 胡俊 良. 浅谈 万有 引力与航 天之 向心加速 度与重 力加速度[ J ] . 科技 致富向导 , 2 0 1 1 ( 1 1 ) : 0 5 . [ 2 ] 魏 东. 天体 问题 中重 力加速 度与 向心加速 度一定 相等吗?[ J ] . 中学生数理化 ( 高中版 ) , 2 0 0 3 ( 1 0 ) : 0 1 . [ 责任编辑 : 闫久毅 ]
比 l  ̄ 0 : g ' - 或靴 = g= .
2 . 距天体表面 高 h 处 重力加 速度计算 可利用 高空万
有 引 力 与 重 力 相 等 计 算, 得 出
式, 两式连立 得 : g
_= l m g 公 式 中 为
中心 天体质 量 , R为中心天体体半径 , G为万 有引力 常量 , h为距 中心天体表 面 的位置. 再 由: 天体 表 面的黄金 代换
的重要物理量 , 其值在不 同的位置有 不同的变化 规律 , 而且重 力加 速度是 连接天 体运动 和 实体运 动桥 梁即地 球上的抛体运动 、 自由落体运动 、 竖直上抛运动等 同样适 用于其 它天体 , 只是重力加速度不 同而 已. 关键词 : 重力加速度 ; 黄金代换 ; 万有 引力; 重力 中图分类号 : G 6 3 2 文献标识码 : B 文章编 号 : 1 0 0 8— 0 3 3 3 ( 2 0 1 7 ) 1 9— 0 0 8 8— 0 1
物理天体运动的基本公式

物理天体运动的基本公式
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11Nm2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:
V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r
地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
强调:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小;
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1:万有引力定律的内容是什么 自然界中任何两个物体都是相互吸引的,引力的大小 跟物体质量的乘积成正比,跟它们的距离的二次方成 反比。
2:万有引力定律的适用条件是什么
①:定律适用于两质点之间; ②:“距离R”是指两质点中心之间的距离,当质点是
两均质球体时,R是指两球体球心之间的距离。
为F ,乘宇宙飞船靠近该星球表面空间飞行,测得其
环绕周期是T ,根据上述各量,试求该星球的质量。
答案
T 4F3
M 16 4Gm3
返回
作业布置
1:p110----------------------1 2:针对训练p102 1--------10 3:复习 第一节------------第四节 4:预习--------------------第五节
3 4 R3 b
3
3
返回
应用之三:发现未知天体-------- 万有引力定律的贡献
背景:1781年由英国物理学家威廉.赫歇尔发现了天王 星,但人们观测到的天王星的运行轨迹与万有引 力定律推测的结果有一些误差,于是人们就推测 在天王星外面轨道上还应有其它星体……
1:1845年英国人亚当斯和法国天文学家勒威耶据计算 发现了“海王星”(第8个行星)。
G
M中m卫 r2
m卫
4 2
T2
r
V中
4 3
R3
M V
3r 3
GT 2R3
返回
M gR2 G
V中
4 3
R3
M 3g V 4GR
g 为中心天体表面的重力加速度;R 为中心天体的半径
返回
例2:一物体在某行星表面受到的吸引力为地球表面吸引力 的a倍,该行星半径是地球半径的b倍,若该行星和地 的质量分布都是均匀的,试求该星球密度和地球密度 之比。
万
之一:计算天体的质量
练习一
有
引
力
定 律 在
作 业
天 之二:计算天体的密度 文 学
练习二
布
置
上
的
应
用 之三:发现未知天体
练习三
二:万有引力定律在天文学上的应用
应用之一:计算天体的质量
原理: 对于有卫星的天体,可以认为卫星绕天体中心 做匀速圆周运动,天体对卫星的万有引力提供卫星做匀 速圆周运动的向心力。
g----------------天体表面的重力加速度
返回
黄金代换:GM=gR 2
应用之二:计算天体的密度
原理:1 利用F引=F向,先计算天体的质量M 2 再计算天体的体积 V
3 最后利用密度公式 M中 计算天体的密度
V中
情形之一:卫星在天体上空
情形之二:物体在天体表面
例2
返回
注:m为环绕星体质量;r 为环绕星体的轨道半径;T为环绕周期。
O
m2
G
m1m2 R2
m1 2 R1
G
m1m2 R2
m2 2 R2
M总 m1 m2 2R3 / G
返回
例4:宇航员站在一星球表面上的某高处,沿水平方向抛出一 小球,经过时间t ,小球落到星球表面,测得抛出点与 落地点之间的距离为L 。若抛出时的初速度为原来的2 倍,则抛出点与落地点之间的距离为 3L ,已知两落 地点在同一水平面上,该星球的半径为R ,引力常数为 G ,求该星球的质量。
分析
分别应用重力等于万有引力列式求m ,再运用题目 中的比例关系对密度比例化简求解。
解答
解答 设地球质量为m1 ,地球半径为R,某星球质量为m2
物体的质量为m 。
∵
F
G
m2m (bR)2
aG
m1m R2
∴ m2 ab2m1
则:某星球与地球的密度之比
1 / 2
m2
4 (bR)
/ m1 a
返回
分析与解答
返回
解:在该星球表面,小球做平抛运动,则:
当初速度为v0时 X1= v0 t
①
h = 1/2 g t2
②
L2
X
2 1
h2
③
当初速度为2v0时 X2=2v0 t
④
(
3L)2
X
2 2
h2
⑤
又据万有引力定律 g
2 3LR 2 M 3Gt 2
GM
=
R2
⑥ 返回
练习1:两颗靠得很近的恒星称为双星,这两颗星必须各以一 定速率绕某一中心转动才不至于因万有引力作用而吸 引在一起。已知双星的质量分别为m1和m2 ,相距为 L ,求:(1)双星转动的半径。 (2)双星转动的周期。
定律
G
M中m卫 r2
m卫
2
T
v
G
M中m卫 r2
m卫
v2 r
v3T
M中 2G
4:对于没有卫星的天体(或虽有卫星,但不知道有关卫
星运动的参量),可忽略天体自转的影响,根据万有
引力等于重力的关系来计算天体的质量
mg G Mm R2
R----------------为天体的半径
M gR2 G
2:1930年3月14日人们发现了太阳系第9个行星— 冥王星
例3
例4
返回
双星问题
例3:两个星球组成双星,它们在相互之间的万有引力作用下 绕连线上的某点作匀速圆周运动,现测得两星中心间距 为R,其运动的角速度为ω,求两星的总质量。 分析与解答
解:设两星球质量分别为m1和m2,
都绕连线上O点作同周期转动 又令其半径分别为R1和R2,则m1
返回
解:登月密封舱相当于月球
的卫星,对密封舱有:
mM G r2
m( 2 )2
T
①
②
r = R +h
4 2 (R h)3
得: M GT 2
2:若已知卫星绕中心天体做圆周运动的轨道半径为r,卫星
运动的线速度为v,据牛顿第二定律
G
M中m卫 r2
m卫
v2 r
M中
rv 2 G
3:若已知卫星运动的线速度v和运行周期T,则据牛顿第二
答案
其中一颗星的半径为 另一颗星的半径为
双星的转动周期为 返回
R1
பைடு நூலகம்
m2 L m1 m2
R2
m1L m1 m2
T
L3
G(m1 m2 )
练习2:月球表面的重力加速度是地球表面重力加速度的1/6, 月球半径是地球半径的1/4,试求月球与地球的密度 之比。
答案
2 :3
练习3:在某星球上,宇航员用弹簧秤称得质量为m的砝码重
1:若已知卫星绕天体做匀速圆周运动的轨道半径为r,卫
星运动的周期为T,据牛顿第二定律
G
M中m卫 r2
m卫
4 2
T2
r
M中
4 2r3
GT 2
例1
继续
例1:登月密封舱在离月球表面h处的空中沿圆形轨道运行, 周期是T,已知月球的半径是R,万有引力常数是G, 据此试计算月球的质量。 分析与解答
r R