关于不锈钢复合钢制压力容器的焊后热处理问题
钢制压力容器焊接工艺及焊后热处理方法分析

钢制压力容器焊接工艺及焊后热处理方法分析摘要:焊接是钢制压力容器制造和安装中重要的工序,焊接质量直接关系到钢制压力容器在使用过程中的安全性和稳定性,并且对压力容器的工作性能和使用寿命具有决定性的影响。
所以在焊接之前,应该对焊件的材质、化学成分、结构类型以及焊接性能等进行全面的分析,然后制定出科学合理的焊接工艺,并且做好焊后热处理工作,确保钢制压力容器的焊接质量。
文章主要对钢制压力容器焊接工艺以及焊后热处理方法进行分析,为进一步提升钢制压力容器的焊接质量提供参考。
关键词:钢制压力容器;焊接工艺;焊后热处理引言焊接工艺作为压力容器制造中的关键技术,在整个压力容器制造中占有很大比重。
焊接质量的好坏,对压力容器的质量、可靠性和安全性有着直接影响。
低温压力容器一般是指设计温度低于-20℃的压力容器,包括CO2吸收塔、H2S吸收塔、液化乙烯、液化天然气等存储和运输容器。
随着我国工业水平的进步和发展,钢制压力容器焊接工艺水平也有了一定程度的提高,其质量管理水平也有了明显改善,同时也促进了我国经济的提升。
因此,在进行钢制压力容器的生产和制造过程中,必须重视焊接工艺,满足国家规定的有关焊接标准和要求,从而确保钢制压力容器的质量。
1钢制压力容器焊接工艺1.1打底氩弧焊通常用于打底。
焊接顺序遵循自下而上的原则。
在点焊的起始位置和完成时,角磨机可用于锐化倾斜开口以匹配接头要求。
在焊接过程中必须保证底层的质量。
首先应通过测试板测试氩弧底部,以消除氩气中杂质的可能性。
在特定的焊接过程中,焊接操作的工作范围应该被周围的板块遮挡,主要目的是防止自然风焊接对成品质量产生不良影响。
底部焊接电极接头的位置用角磨机抛光,焊缝底部塌陷或顶部凹陷会影响整个成品的质量,严重的情况会导致成品存在裂缝。
为了避免裂缝,应严格按设计要求检查底部焊缝和二次焊缝的焊接质量。
1.2中层施焊底部焊接完成后,应去除工作范围内的氧化物等杂质,并进行全面的目视检查。
压力容器焊后消除应力热处理(2009年8月13日)

�
�
2.哪些压力容器及主要受压元件需焊 后消除应力热处理? 哪些压力容器及主要受压元件需焊 后消除应力热处理?笔者认为:应按 照GB150 10.4.1款和GB151 6.4、6.8 款(指拼接管板、管箱和浮头盖)判 定。凡符合GB150 10.4.1款和GB151 6.4、6.8款规定的压力容器及主要受 压元件均应进行焊后消除应力热处理。
果好,因此在条件具备的情况下,应 优先选用炉内整体热处理方法。
� 对于球形储罐和大型压力容器可 採
取使用现场整体消除应力热处理方法。 � 由于焊后局部消除应力热处理的效 果较炉内整体消除应力热处理差,因 而《容规》和标准对局部消除应力热 处理方法的应用作出了较为明确的限 制。目前局部消除应力热处理只限应 用于B、C、D类焊接接头以及球形封头 与园筒连接的A类焊接接头。
�
� GB/T9452-2003“热处理炉有效加热区
测定方法”等安全技术规范和标准之中。 因而在使用过程中出现了理解上的不 一致和偏差。为了满足钢制压力容器 焊后消除应力热处理的要求,保证钢 制压力容器的安全质量,本文将重点 讨论钢制压力容器焊后消除应力热处 理中常见的一些问题,并就此提出笔 者的认识和看法。
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵபைடு நூலகம்
≤2 ≤4 ≤5 ≤6 ≤8 ≤10
(1)允许用修改量程的方法提高分辨力。
�
�
JB/T10175规定:热处理炉的每个加热区至 少有两支热电偶,一支接记录仪表,另一 支接控温仪表,安放在有效加热区内,其 中一个仪表应具有报警功能。 每台热处理炉必须定期检测有效加热 区,检测周期见表3,检测方法按GB/T9452 的规定,其保温精度应符合表2要求。应在 明显位置悬挂带有有效加热区示意图的检 验合格证。热处理炉只能在有效加热区检 验合格证规定的有效期内使用。
压力容器制造中的热处理

压力容器制造中的热处理1.概述1)热处理对钢材性能的影响热处理是通过加热和冷却固态金属来改变其内部组织结构并获得所需性能的一种工艺。
对于碳素钢、低合金钢以及合金结构钢,常用的热处理工艺有退火、正火、淬火、回火以及它们的组合,如正火加回火、淬火加回火。
对于奥氏体不锈钢,常用的热处理工艺是固溶处理和稳定化热处理(见本节第5条)。
①退火退火是将钢件加热到适当温度,保温一定时间后缓慢冷却(例如随炉冷却)的热处理工艺。
根据钢材成分和热处理目的不同,退火又分为完全退火、不完全退火、等温退火、球化退火、去应力退火和再结晶退火等。
下面简要介绍完全退火、去应力退火和再结晶退火对钢材组织和性能的影响。
a)完全退火完全退火是把钢件加热到Ac3以上30~50"C,保温一定时间后在炉内缓慢冷却的热处理工艺,主要用于亚共析成分的碳钢和合金钢。
由于加热温度略高于Ac3,珠光体和铁素体全部转变为奥氏体,且奥氏体晶粒比较细小。
随炉冷却至Ar3以下时,奥氏体中首先析出铁素体,继续冷却至Ar1,以下时,剩余的奥氏体全部转变为珠光体。
经过这样的加热和冷却过程的相变,可细化晶粒并获得接近平衡状态的组织,以降低硬度,改善加工性能,消除钢件中的内应力。
b)去应力退火去应力退火是将钢件加热到Ac1以下100~200'C,保温一段时间(在压力容器制造中通常按1h/25mm计算)后,缓慢冷却的工艺方法,其目的是去除或降低冷成形、焊接等所产牛的砖全应力.稳宁结构尺寸。
去应力退火时,钢材并不发生相变,但可以消除焊接接头中的淬硬组织(马氏体),从而改善韧性。
钢件或焊接结构中残余应力的降低主要是在加热、保温及缓慢冷却过程中通过塑性变形所产生的应力松弛来实现的。
c)再结晶退火钢件的冷塑性变形(如封头的冷成形等)会导致冷加工硬化,使材料的强度、硬度提高,塑性、韧性降低,并产生较大的内应力。
再结晶退火是将钢件加热到不超过Ac1的温度,经适当保温后随炉缓慢冷却的工艺操作。
钢制压力容器焊后热处理保温时间上限控制

同时 NB / T 4 7 0 1 4 - 2 0 1 1 承压 设备焊 接 工艺 评定 标准中6 . 1 . 4 . 2 时 间的 上 限 。以本 文所 引用焊 接 工艺 评定 的热 处理保 温 时 间 1 0 0 a r i n 为例 , 容器 的实际热处理保 温时 间上 限应 为 1 2 5 mi n 。 规定 : “ 除 气焊 、 螺 柱 电弧焊 、 摩 擦 焊外 , 当规 定进 行 冲 击试 验 5 . 2 压 力 容 器热 处理 时应 该 严格 遵守 热处 理 工艺 纪律 , 不 时, 焊 后 热 处 理 的 温 度 和 时 间范 围 改 变 后 要 重 新 评 定 焊 接 得随 意 延长保 温 时 间 , 如实 际情 况需 要延 长热处 理保 温时 间 ,
满 足 承 压 设备焊 接 工艺 评定 的 6 . 1 . 4 . 2焊后 热处 理的评 定规 则中保温时 间要求 。
2 . 问 题 的提 出
一
台 卧式 液氨 储罐 ( 以下 简称 本容 器 ) , 其 详细 参数 见表 1
产 品技 术 条件 , 设 计 图样 要求进 行焊 后整体 消应 力热处 理 。在 制 造监 督检 验审 核热处 理见 证资料 时发 现 , 制造单 位编 制的热
头 的组织 和性 能 , 将焊 件均 匀加热 到金属 的相 变点 以下足够 高
4 . 采 取 的 措 施
按 实 际 的 热处 理 保 温时 间 1 5 0 m i n , 并且 考 虑 以后 生 产 应
的温 度 , 并保 持 一定 时 间 , 然后 均 匀冷 却 的过程 。本文 所说 焊 用 , 要 求补 做 一 块 焊 接 工 艺评 定 试板 , 热处 理 保 温 温度 6 2 0 + _ 后热处 理就是 指焊后消 除应 力退 火 。 2 0 ℃, 保温 时 间 1 8 0 mi n , 重新 进行焊接 工艺评 定并评 定合格 , 以
钢制压力容器焊接工艺及焊后热处理方法分析

钢制压力容器焊接工艺及焊后热处理方法分析【摘要】本文主要探讨了钢制压力容器焊接工艺及焊后热处理方法的分析。
首先分析了钢制压力容器的焊接工艺,包括焊接材料选择、焊接方法、焊接参数控制等内容,对焊接工艺进行了详细的解析。
接着对焊后热处理方法进行了分析,包括焊接残余应力的消除、组织结构的调整等方面的内容。
最后对钢制压力容器的焊接工艺及焊后热处理方法进行了综合分析,总结出了钢制压力容器在焊接过程中需要注意的问题和提出了相应的解决方法,为提高钢制压力容器的焊接质量提供了参考。
通过本文的研究可以更好地了解钢制压力容器的焊接工艺和焊后热处理方法,为实际工程应用提供重要的指导。
【关键词】钢制压力容器、焊接工艺、焊后热处理、分析、综合、方法、压力容器、焊接、钢制、热处理、工艺、结论、引言。
1. 引言1.1 钢制压力容器焊接工艺及焊后热处理方法分析钢制压力容器在工业领域中起着至关重要的作用,它承载着各种液体或气体的压力,因此其质量和安全性至关重要。
而钢制压力容器的焊接工艺及焊后热处理方法对其性能和寿命有着直接的影响。
钢制压力容器的焊接工艺分析是确保容器质量的重要一环。
在焊接过程中,应根据不同材料和厚度选择合适的焊接方法,控制好焊接参数,确保焊缝质量。
常见的焊接方法包括气体保护焊、焊丝焊接等,每种方法都有其适用的情况和注意事项。
焊后热处理方法也是影响钢制压力容器性能的重要因素。
热处理可以消除焊接过程中产生的残余应力,改善焊缝组织,提高容器的强度和韧性。
常见的热处理方法包括回火、正火等,需要根据具体情况选择合适的方法。
2. 正文2.1 钢制压力容器焊接工艺分析钢制压力容器是工业生产中常见的设备之一,其质量和安全性直接关系到生产工艺和人员生命财产安全。
钢制压力容器的焊接工艺至关重要。
钢制压力容器的焊接工艺主要包括选择合适的焊接方法、焊接电流、焊接电压、焊接速度等。
一般来说,常用的焊接方法包括氩弧焊、埋弧焊、气保护焊等,其中氩弧焊在焊接过程中能够提供良好的焊缝形态和焊接质量,广泛应用于钢制压力容器的焊接中。
压力容器如何进行热处理

1.松弛焊接参与应力
2.稳定结构的形状和尺寸,减少畸变。
3.改善母材、焊接区的性能,包括a.提高焊缝金属的塑性。b.降低热影响区硬度。c.提高断裂韧性。d.改善疲劳强度。e.恢复或提高冷成型中降低的屈服强度。
4.提高抗应力腐蚀的能力。
5.进一步释放焊缝金属中的有害气体,尤其是氢,防止延迟裂纹的发生。
对于焊缝中吸收的氢比较有效的消除方法就是进行焊后热处理它既可以达到松弛和缓和焊接残余应力改善因焊接而被硬化及脆化的焊接热影响区提高焊缝金属的延性和断裂韧性也可以使焊接区及附近的氢等有害气体扩散逸出
压力容器如何进行热处理
一、压力容器在制造过程中,将带来以下问题:由于过量的冷卷、冷矫形等冷加工引起的冷作硬化。由于焊接引起的焊缝区组织和性能的变化。由于焊接产生残余应力以及由此而导致的应力腐蚀裂纹的产生和发展。压力容器焊接时,当母材相邻区域产生一温差大于100度的急剧温度梯度时,在铁素体钢或相当的其他材料中引起不均匀的塑性应变,而在随后的冷却过程中,将产生一个峰值应力达到屈服点的残余应力场。另外,由于压力容器制造中的不均匀塑性应变导致在弹性-塑性材料中产生残余应变,而残余应变可以是来自机械的(主要是冷卷、冷矫形等冷加工)热力的(主要是焊接过程产生的),或者两者兼有的原因,也就是热机械的原因。因此,在压力容器加工完成的最终产品中将留下残余弹性应变场,并承受相应的弹性残余应力。残余应力的存在,将影响压力容器的使用性能。为了消除焊接区峰值应变,达到内应变均匀分布这一目的,可以采取多种方法,如机械震动法、焊后加热法等。然而,由于压力容器中许多潜在的问题主要来自焊缝区的冶金损伤,所以,采用机械方法以降低内应变的手段已经不足以预防日后运行过程中可能出现的诸多问题。另外,金属的氢脆现象已经比较为人们所关注。氢进入钢以后,机械性能会发生明显的变坏。强度和塑性明显降低,溶解于金属晶格中的氢,使钢在缓慢变形时发生脆性破坏。金属材料中的氢可以是在金属材料生产工艺过程中吸收的,如金属在焊接时液态金属吸收的氢保留在焊缝中,也可能是材料在氢环境中服役吸收的氢。对于焊缝中吸收的氢,比较有效的消除方法就是进行焊后热处理,它既可以达到松弛和缓和焊接残余应力,改善因焊接而被硬化及脆化的焊接热影响区,提高焊缝金属的延性和断裂韧性,也可以使焊接区及附近的氢等有害气体扩散逸出。
钢制压力容器焊接与热处理

钢制压力容器的焊接和热处理钢制压力容器制造中,焊接技术是极为关键的一项技术,文章综合理论与实际两大方面,对钢制压力容器(尤其是不锈钢复合钢板制压力容器)详细讨论了设计中的焊接工艺和热处理工艺,强调了焊接质量的重要性,对钢制压力容器的设计与制造,都有一定的指导意义。
<b> 焊接,是涉及、生产及安装压力容器中非常重要的一项技术,设计中焊接接头的正确选择和制造中焊接质量的优缺点,都会对压力容器的工作及使用寿命产生决定性影响,甚至还可能会危及人类的生命、财产安全。
从这点来看,压力容器的焊接质量,既是个安全性问题,同时也是个经济性问题。
1.不锈钢复合板的焊接工艺通过翻阅与焊接相关的资料,以及开展焊接性试验,根据NB/T 47015-2011《压力容器焊接规程》,SH/T 3527-2009《石油化工不锈复合钢板焊接规程》,GB/T 13148-2008《不锈钢复合钢板焊接技术要求》等标准来对焊接工艺进行评定,接焊缝焊后RT探伤、晶间腐蚀试验及力学性能试验等项目都应严格符合标准及需求。
焊接工艺的最终评估结果将作为制定产品焊接工艺的重要依据。
1.1.焊接方法不锈钢复合钢板有许多成熟的焊接方法,大体可分为焊条电弧焊、钨极氩弧焊、埋弧焊等。
有些换热器的管箱与浮头盖都是复合材料,没有很大的焊接空间,直焊缝不长,可进行双面焊,对于这类换热器产品,采用焊条电弧焊方法更为合适,这样不仅能提升焊接质量,同时还可压缩成本,其操作较为灵活,几乎不受工件形状与焊接位置的影响。
1.2.焊接材料的选择焊材的选择,应根据基层强度相等和保证复合层耐腐蚀性的原则进行。
1.3.焊接设备和环境通常可选择直流焊机,基层、复层及过渡层这3种焊缝均可选择焊条电弧焊。
所采用的钢丝刷、扁铲等工具都,都应是不锈钢材料。
焊接应在0 ℃以上的环境下进行,同时,现场应采取必要的防风措施。
1.4.焊接沟槽和接头装配1.4.1.沟槽选用沟槽形式时,应充分考虑焊接渡层的特点,焊接顺序应依次为焊基层、渡层到复层,,要尽可能不对复层进行焊接或进行少量焊接,同时还应避免复层焊缝被多次受热,从而逐步增强复层焊缝的耐腐蚀性能,该沟槽形式还能有效降低设备内部的铲磨工作量。
不锈钢复合板压力容器的热处理

不锈钢复合板压力容器的热处理摘要:不锈钢复合板有着十分优良的经济性,因此在当前的压力容器制造过程中得到日益广泛的应用,不锈钢耐腐蚀层呈现出特别良好的耐腐蚀性能,不锈钢基层可选择强度更高的钢质底板,使钢板厚度有效减少,进一步降低不锈钢制作过程中的制造难度和成本。
需要注意的是,在焊接之后,要着重做好热处理工作,这样才能使其性能进一步优化。
基于此,下文重点探讨和分析不锈钢复合板压力容器的热处理技术等相关内容。
关键词:不锈钢复合板;压力容器;热处理引言在不锈钢结构中复合板是两种材料的复合,两种材料所涉及的成分在物理和化学性质方面有一定的差异,所以复合压力容器制造过程中要着重做好每一个步骤,这是至关重要的。
其中,热处理技术应用是特别关键的内容,在实际的操作过程中,主要是应用相对应的介质,把压力容器的复合材料加热到冷却,通过这样的处理,进一步有效改变压力容器材料的化学成分和金相组织中的不稳定因素,以此使材料的金属性能进一步改进,使其最优化,进一步提升整体压力容器的安全性能。
1不锈钢复合板压力容器的热处理技术综述热处理主要指的是把固态金属及其合金(钢及其合金)结合相应的要求对其展开加热、保温和冷却,通过这样的方式,对其内部组织进行有针对性的改变,从而有效实现既定要求的性能的工艺过程,其中,在具体的操作中,对热处理造成影响的因素包括温度和时间等。
在温度的变化下,不锈钢在固体状态下能够发生相对应的相变。
针对此类压力容器进行处理的过程中,所涉及的热处理技术,主要包括三个阶段,分别是,加热,保温,冷却。
这三个阶段既是互相独立,又是互相配合,有效统一的。
2不锈钢复合板压力容器的热处理不同阶段具体来说,相关阶段主要体现在以下内容:2.1加热阶段在热处理技术中,这是特别重要的阶段,同时也是关键所在,和能否完成相对应的加热目标,有着至关重要的紧密联系。
在实际的操作过程中,要设置相对应的加温温度系数,在热处理技术的发展过程中,最开始是煤和木炭加热,然后用气体液体燃料或电进行加热当前有效应用熔融金属的加热处理,为了使热处理质量和效果得到更有效的加强,呈现出更加良好的加热效果,要针对加热温度进行有效控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于不锈钢复合钢板制容器的焊后热处理研究
王当杰
一、SH/T 3527-2009《石油化工不锈钢复合钢焊接规程》
1、6.6 焊后热处理解析中说明如下:
★★★据美日等相究氏体不后理效果分析,其安全性及晶格定国关研奥锈钢焊热处认为对稳
性,目前不一,因此在范中氏体不件的后理要求,在准范中不作还认识规对奥锈钢焊焊热处标规
强制性定。
规
★★★不合板的后理一般避免行,其主要原因是:
对锈钢复钢焊热处应进
①基系不一;
复层与层热胀数
②合界面因受高影生附加余力;
复温响产残应
③影削弱不合板的剪切强度;
响与锈钢复钢
化物,降低的耐性能;
④可能析出Cr碳复层蚀
⑤素体不合在理程中,易形成δ相,引起脆化,降低了合板的性。
铁锈钢复钢热处过复层组织复钢韧
如定需要行后理,重理,因此定了6.1.1条。
设计规认为进焊热处时应慎处规
6.6.1 焊后热处理应按设计文件要求进行。
6.6.2 用不锈钢复合钢板制造的设备、管道或部件,当其基层需要进行焊后热处理时,应按基层
要求选择热处理加热温度,其他参数按不锈钢复合钢板总厚度进行计算。
常用不锈钢复合钢焊后热处理参数见表8。
热处理的加热速度、恒温时间及冷却速度应符合下列要求:
a) 加热升温到400 ℃后,升温速度最大不得超过5000/δ ℃/h,且不得超过200℃/h;
最小不得低于50 ℃/h;
b) 恒温时间应按δ/25h,且不小于1/4h,在各恒温点的温度均应在热处理温度规定的范
围内,温间
各恒点的温度其差值不得大于65℃;
c) 降温时的冷却速度不得超过6500/δ ℃/h,其不得超过260 ℃/h,最小不得低于50 ℃
/h,温度降至400℃后可自然冷却;
d) 升温时,加热区内任意5000mm长范围内温差不得大于150℃。
注:δ为管子壁厚,mm。
6.6.3 当基层材料需要焊后热处理时,复层盖面焊缝的焊接可在热处理之后进行。
6.6.4 奥氏体不锈钢复合钢制造的设备、管道或部件进行焊后热处理时,应采取防止复层脱落和
碳化物析出的措施,控制a相形成。
6.6.5 复层为铁素体或马氏体不锈钢复合钢制造的设备、管道或部件,按复层材料要求进行焊后
热处理。
但采用奥氏体不锈钢焊接材料焊接过渡层和复层,且基层不要求焊后热处理时,可免做焊后热处理。
6.6.6 局部热处理时应对整个设备或管道焊接接头圆周同时进行加热,加热方法宜采用电加热,
加热范围应以焊缝中心为基准,两侧不应小于焊缝宽度的三倍,且不小于100 mm。
2、标准解释:
3、正文如下:
二、钢制化工容器制造技术要求(HG20584-1998)中规定如下:
三、《压力容器用爆炸焊接复合板》 NB/T 47002-2009 规定如下:
1、NB/T 47002.1-2009 《不锈钢-钢复合板》,NB/T 47002.2-2009 《镍-钢复合板》、NB/T 47002.4-2009 《铜-钢复合板》三个标准中交货状态规定如下:
2、NB/T 47002.3-2009 《钛-钢复合板》规定如下:
四:结论
1、焊后热处理的温度按《钢制化工容器制造技术要求》(HG20584-1998)的表6-1
2、保温时间
按HG20584-1998中第6.0.3条中第二款“
3、焊后热处理方法
基本可按GB150,并参考SH/T3527-2009:
焊后热处理应优先采用在炉内加热的方法,其操作应符合如下规定:
a)焊件进炉时炉内温度不得高于400℃;
b)焊件升温400℃后,加热区升温速度最大不得超过5000/δs(℃/h)(δs焊接接头处钢材厚
度mm),且不得超过200℃/h;最小不得低于50℃/h;
c) 升温时,加热区内任意5000mm 长范围内温差不得大于120℃;
d) 恒温时间应按δ/25h,且不小于1/4h,在各恒温点的温度均应在热处理温度规定的范围内,
温间各恒点的温度其差值不得大于65℃;
e) 升温和保温期间应控制加热区气氛,防止焊件表面氧化;
f) 焊件温度高于400℃时,加热区降温速度不得超过6500/δs
(℃/h),其不得超过260 ℃/h,最小不得低于50 ℃/h;
g) 焊件出炉时,炉温不得高于400℃,出炉后应在静止的空气中冷却。
注:δs ——焊接接头处基层加复层钢材厚度mm。
6.6.4
4、 当基层材料需要焊后热处理时,复层盖面焊缝的焊接可在热处理之后进行。
奥氏体不锈钢复合钢制造的设备、管道或部件进行焊后热处理时,应采取防止复层脱落和碳化物析出的措施,控制a 相形成。
5、 注意:应进可能避免不锈钢做热处理
国关研奥锈钢焊热处认为对稳★★★据美日等相究氏体不后理效果分析,其安全性及晶格定还认识规对奥锈钢焊焊热处标规性,目前不一,因此在范中氏体不件的后理要求,在准范中不作规强制性定。
对锈钢复钢焊热处应进★★★不合板的后理一般避免行,其主要原因是:
复层与层热胀数①基系不一;
复温响产残②合界面因受高影生附加应余力;
响与锈钢复钢③影削弱不合板的剪切强度;
④可能析出Cr 碳复层蚀化物,降低的耐性能;
铁锈钢复钢热处过复层组织复钢韧⑤素体不合在理程中,易形成δ相,引起脆化,降低了合板的性。
设计规认为进焊热处时应慎处如定需要行后理,重理。