七、非参数检验

合集下载

第7章SPSS的非参数检验 ppt课件

第7章SPSS的非参数检验  ppt课件

ppt课件
19
SPSS多独立样本非参数检验
(一)目的:
– 与样本在相同点的累计频率进行比较.如果相差 较小,则认为样本所代表的总体符合指定的总体 分布.
ppt课件
9
SPSS的单样本K-S检验
K-S检验
(4)基本步骤:
菜单选项:analyze->nonparametric tests->1-sample k-s 选择待检验的变量入test variable list 框 指定检验的分布名称(test distribution)
ppt课件
17
SPSS两独立样本非参数检验
4. 极端反应检验(Moses Extreme Reaction)
首先,将两样本混合并按升序排序。
然后,求出控制样本的最小秩和最大秩,并计算
出跨度=最大—最小+1。
为了消除样本数据中极端值对分析结果的影响,
在计算跨度之前可按比例去除控制样本中部分靠近两端
的样本值,然后再求跨度,得到截头跨度。
样本数据和分组标志 ppt课件
14
SPSS两独立样本非参数检验
(四)基本方法
1.曼-惠特尼U检验(Mann-Whitney U):平均秩检验
将两样本数据混合并按升序排序 求出其秩 对两样本的秩分别求平均 如果两样本的平均秩大致相同,则认为两总体分布无显著 差异
ppt课件
15
SPSS两独立样本非参数检验
如果跨度或截头跨度较大,则说明是由于两类样
本数据充分混合的结果,p即pt课:件认为两总体分布无显著差异18 .
SPSS两独立样本非参数检验
(五)基本操作步骤
菜单选项:analyze->nonparametric tests->2 independent sample 选择待检验的变量入test variable list框 选择一种或几种检验方法

第七章SPSS非参数检验

第七章SPSS非参数检验
•第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
(一)目的 由独立样本数据推断两总体的分布是否存在显著差异
(或两样本是否来自同一总体)。 (二)基本假设 H0:两总体分布无显著差异(两样本来自同一总体) (三)数据要求 样本数据和分组标志
•第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
– 与样本在相同点的累计频率进行比较。如果相差较小,则认为样
本所代表的总体符合指定的总体分布。
•第七章SPSS非参数检验
一、SPSS单样本非参数检验
(三)K-S检验 (4)基本步骤
菜单选项:analyze->nonparametric tests->1-sample k-s 选择待检验的变量入test variable list 框 指定检验的分布名称(test distribution)
将两样本混合并按升序排序 分别计算两个样本在相同点上的累计频数和累计频率 两个累计频率相减。 如果差距较小,则认为两总体分布无显著差异
应保证有较大的样本数
案例:7-5 p194使用寿命
•第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
3.游程?检验(Wald-Wolfowitz runs)
一、SPSS单样本非参数检验
(二)总体分布的二项分布检验 (1)目的
通过样本数据检验样本来自的总体是否服从指定的 概率p的二项分布根据 (2)原假设 样本来自的总体与指定的二项分布无显著差异。 (3)案例7-2 p187 产品合格率
•第七章SPSS非参数检验
一、SPSS单样本非参数检验
(三)K-S检验 (1)目的
•第七章SPSS非参数检验
五、SPSS多配对样本非参数检验

SPSS第讲非参数检验(共72张PPT)

SPSS第讲非参数检验(共72张PPT)

SPSS应用
Kendall协同系数检验中会计算Friedman检验方 法,得到friedman统计量和相伴概率。如果相伴概
率小于显著性水平,可以认为这10个节目之间没有 显著差异,那么可以认为这5个评委判定标准不一 致,也就是判定结果不一致。
SPSS应用
3.多配对样本的Cochran Q检验
多配对样本的Cochran Q检验也是对多个互 相匹配样本总体分布是否存在显著性差异的统计 检验。不同的是多配对样本的Cochran Q检验所能 处理的数据是二值的(0和1)。其零假设是:样 本来自的多配对总体分布无显著差异。
SPSS应用
单样本K-S检验可以将一个变量的实际频数分
布与正态分布(Normal)、均匀分布(Uniform)、
泊松分布(Poisson)、指数(Exponential)分 布进行比较。其零假设H0为样本来自的总体与指定
的理论分布无显著差异。
SPSS应用
6.2 两配对样本非参数检验
6.2.1 统计学上的定义和计算公式
SPSS应用
两配对样本非参数检验的前提要求两个样本 应是配对的。在应用领域中,主要的配对资料包 括:具有年龄、性别、体重、病况等非处理因素 相同或相似者。首先两个样本的观察数目相同, 其次两样本的观察值顺序不能随意改变。
SPSS应用
SPSS中有以下3种两配对样本非参数检验方 法。
SPSS应用
1验.两配对样本的McNemar变化显著性检
SPSS应用
2.两配对样本的符号(Sign)检验
当两配对样本的观察值不是二值数据时,无法 利用前面一种检验方法,这时可以采用两配对样本
的符号(Sign)检验方法。其零假设为:样本来
自的两配对样本总体的分布无显著差异。

假设检验——非参数检验

假设检验——非参数检验

假设检验(二)——非参数检验假设检验的统计方法,从其统计假设的角度可分为两类:参数检验与非参数检验。

上一节我们所介绍的Z 检验、t 检验,都是参数检验。

它们的共同特点是总体分布正态,并满足某些总体参数的假定条件。

参数检验就是要通过样本统计量去推断或估计总体参数。

然而,在实践中我们常常会遇到一些问题的总体分布并不明确,或者总体参数的假设条件不成立,不能使用参数检验。

这一类问题的检验应该采用统计学中的另一类方法,即非参数检验。

非参数检验是通过检验总体分布情况来实现对总体参数的推断。

非参数检验法与参数检验法相比,特点可以归纳如下:(1)非参数检验一般不需要严格的前提假设;(2)非参数检验特别适用于顺序资料;(3)非参数检验很适用于小样本,并且计算简单;(4)非参数检验法最大的不足是没能充分利用数据资料的全部信息;(5 )非参数检验法目前还不能用于处理因素间的交互作用。

非参数检验的方法很多,分别适用于各种特点的资料。

本节将介绍几种常用的非参数检验方法。

一.2检验2检验主要用于对按属性分类的计数资料的分析,对于数据资料本身的分布形态不作任何假设,所以从一定的意义上来讲,它是一种检验计数数据分布状态的最常用的非参数检验方法。

22检验的方法主要包括适合性检验和独立性检验。

(一)2检验概述2是实得数据与理论数据偏离程度的指标。

其基本公式为:2 ( f0 f e)(公式11—9)fe式中,f0 为实际观察次数,f e 为理论次数。

分析公式可知,把实际观测次数和依据某种假设所期望的次数(或理论次数)的差数平方,除以理论次数,求出比值,再将n 个比值相加,其和就是2。

观察公式可发现,如果实际观察次数与理论次数的差异越小, 2值也就越小。

当 f 0 与 f e 完全相同时,2值为零。

际次数与理论次数之差的大小而变化利用2值去检验实际观察次数与理论次数的差异是否显著的方法称为2检验有两个主要的作第一,可以用来检验各种实际次数与理论次数是否吻合的这类问题统称为适合性检验; 第二, 判断计数的两组或多组资料是否相互关联还是相互独立的问 题,这类问题统称为独立性检验。

SPSS软件应用-第七章非参数检验

SPSS软件应用-第七章非参数检验

病例号 照射前 照射后
1
1.0 0.0
2
1.0 18.0
3
0.0 6.7
4
1.2 0.0
5
1.0 29.0
6
1.0 17.0
7
1.0 5.0
8
1.0 6.0
9
1.0 10.0
10
4.0
7.0
Questions &
Answers
饲料
肝脏内铁含量(μg)
A 2.23 1.14 2.63 1.00 1.35
B 5.59 0.96 6.96 1.23 1.61
C 4.50 3.92 10.33 8.23 2.07
练习2
10例食管癌病人在某种药物保护下,做 6000γ的放射照射,观察血中淋巴细胞 畸变百分数,结果如下表。问照射前后 血中淋巴细胞畸变百分数有无差别。
7.1 拟合优度检验(1-Sample K-S Test)
以例7-1数据(数据文件名“diameter_sub.sav”)为例,试检验变量 “trueap_mean”(矢状面管径)是否服从正态分布。
7.1 拟合优度检验(1-Sample K-S Test)
7.1 拟合优度检验(1-Sample K-S Test)
第二步:Analyze Nonparametric Test Legacy Dialogs 2 Related Samples Test
7.5 两个相关样本的非参数检验
7.5 两个相关样本的非参数检验
7.5 两个相关样本的非参数检验
7.6 多个相关样本的非参数检验
牙齿 普通 RPI Y型 编号 卡环 卡环 卡环
7.2 样本率与总体率比较的二项分布检验(Binomial)

非参数检验卡方检验讲解

非参数检验卡方检验讲解

行总和 பைடு நூலகம்1=100 R2=80 T=180
C1=120
( f oij f eij )2 f eij
(58 66.7)2 (42 33.3)2 (62 53.3)2 (18 26.7)2 7.61 66.7 33.3 53.3 26.7
2 0.05 (1) 3.84
独立性检验
配合度检验
• 例1:某大学二年级的公共体育课是球类 课,根据自己的爱好,学生只需在篮球、 足球和排球三种课程中选择一种。据以 往的统计,选择这三种课程的学生人数 是相等的。今年开课前对90名学生进行 抽样调查,选择篮球的有39人,选择足 球的28人,选择排球的23人,那么,今 年学生对三种课程选择的人数比例与以 往不同?
df (行数-1) (列数-1) 1
2 2 0.05 (1)
拒绝零假设,即男女对公共场所禁烟的态度有显著差异。
四格表的简易算法
赞成 男 女 A 58 C 62 A+C=120 不赞成 B 42 D 18 B+D=60 A+B=100 C+D=80 N=A+B+C+D=180
N ( AD BC ) 7.61 ( A B)(C D)( A C )( B D)
• • •
类别数据的处理形态: 次数与百分比 类别数据的呈现: 次数分布表与列联表 类别数据的分析: 卡方检验与其它关联性 分析法
卡方检验的主要内容


配合度检验
– – – – 某一个变量是否与某个理论分布或总体分布相符合 检验的内容仅涉及一个变量,是一种单因子检验 同时检测两个类别变量﹙X与Y﹚之间的关系时,其 目的在于检测从样本得到的两个变量的观察值,是 否具有特殊的关联。 检测同一个样本的两个变量的关联情形

非正态总体参数的假设检验和非参数检验

非正态总体参数的假设检验和非参数检验

分布类型,此时F0可能含有未知参数,
上述方法不再适用。此时若要检验假

H0 : F (x) F0 (x;1,L ,,m由) 于
未于知 是pi0,可故以上用述估检计验量法(不极能大直似接然使估用计,)
来代替未知参数。
此时的统计量为
2 r (ni npˆi0 )2 .
i 1
npˆ i0
当n充分大时,上述统计量近似服
服从多项分布。
由大数定律知,当n充分大时,频 数ni与理论频数npi越来越小。故ni 与npi之间的差异可以反映出概率分 布 ( p1, p2,L , pr )是否为总体的真实分 布。令
2 r (ni npi )2
i1
npi
称上述统计量为皮尔逊统计量。
定理(皮尔逊定理)设总体的真实 分布为( p1, p2,L , pr ) ,则有
实际上,还可以用皮尔逊统计量检 验任意的一个总体是否具有某个指 定的分布函数 F0 (x)。
若我们要检验假设 H0 : F (x) F0 (x). 可选取r-1个不相等的实数 y1 L yr1 把实数轴分成r个区间,令
p1 F ( y1), pi F ( yi ) F ( yi1),i 2,L , r 1, pr 1 F ( yr1).
缺点:由于采用分组处理样本,实 际上检验的只是若干特殊点的值, 这就导致很可能犯第二类错误(取 伪错误)。
2. Kolmogorov检验法
出发点:考虑经验分布函数 Fn*(x) 和原假设H0 : F (x) F0 (x)成立时总 体分布函数之间偏差的最大值。
2 ~& 2 (r 1)
由上述定理,当样本容量较大时,
统计量 2近似服从自由度为r-1的卡
方分布。

非参数检验

非参数检验
非参数检验又称为任意分布检验 (distribution-free test),它不考虑 研究对象总体分布具体形式,也不对总体 参数进行统计推断,而是通过检验样本所 代表的总体分布形式是否一致来得出统计 结论。
非参数检验的优点:
①适用范围广,不论样本来自的 总体分布形式如何,都可适用;
②某些非参数检验方法计算简便, 研究者在急需获得初步统计结果时可 采用;
的总体分布不同。 α=0.05
2.混合编秩
依据两组数值由小到大编秩,结果 见上表。
3.求秩和并确定检验统计量T
把两组秩次分别相加求出两组的秩 和值,R1=315.5,R2=149.5。因乳 酸钙组样本含量较小,故 T=R2=149.5。
4.确定P值和作出推断结论 以较小样本含量为n1,n1=14, n2n1=2,查附表6,两样本比较秩和检验 用T界值表(双侧)。
当n1>20或(n2-n1)>10时,附表6 中查不到P值,则可采用正态近似法求u 值来确定P值,其公式如下:
u T n1(N 1) / 2 0.5 n1n2(N 1) 12
上式中T为检验统计量值,n1、n2 分别为两样本含量,N=n1+n2,0.5这 连续性校正数。上式为无相同秩次时使 用或作为相同秩次较少时的近似值。当 两样本相同秩次较多(超过总样本数的 25%)时,应按下式进行校正,u经校 正后可略增大,P值则相应减小。
式中,Ri为各组的秩和,ni为各组 样本含量,N为总样本含量。
当各组相同秩次较多时,可对H值进 行校正,按下式求值。
Hc H c
C 1
(t
3 j
t
j
)
(N3 N)
4.确定P值和作出推断结论
当组数K=3,每组样本含量ni≤5时, 可查附表7(H界值表)得到P值。若 k>3或ni>5时,H值的分布近似于自 由度为k-1的χ2分布,此时可查附表 4χ2界值表得到P值。最后按P值作出 推断结论。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
后等于治疗前的有1对。
配对样本的非参数检验 (2) 检统计量
分析结果
Wilcoxon符号秩检验的统计量Z值=-2.179,近似概率 (Asymp.sig.)P=0.029,按α=0.05的水准可以认为治 疗前后该指标值的差别具有统计学意义。
两独立样本的非参数检验
例2 在缺氧条件下,观察4只猫与12只兔的生存时间(分钟), 结果如下。试判断猫、兔在缺氧条件下生存时间的差异是否具 有统计学意义。数据见npb.sav:
分类情况
配对样本的非参数检验
Exact:用于计算确切概率
只给出近似概率 蒙特卡罗方法
给出精确概率值,并 可设定耗时限制
配对样本的非参数检验 (1) 秩次表
分析结果
共12对指标,指标值治疗后小于治疗前的有3对,其 平均秩次为2.83,总秩和为8.50;治疗后大于治疗前
的有8对,其平均秩次为7.19,总秩和为57.50;治疗
配对样本的非参数检验
配对样本的非参数检验
Wilcoxon符号检验 适用于连续变量
sign符号检验
适用于对无法用数字计量的情况进行比较,如两分类,对于 连续资料最好不要使用
McNemar
实际上就是常用的配对χ2检验,只适用于二分类资料 Marginal Homogeneity
是McNemar法向多分类情形下的扩展,适用于资料为有序
配对样本的非参数检验
例1 以下为治疗前后,病人某项指标的测量值,数据见npa.sav
治疗前(x):24.00 16.70 21.60 23.70 37.50 31.40 14.90 37.30 17.90 15.50 29.00 19.90
治疗后(Y):23.10 20.40 17.70 20.70 42.1 36.10 21.80 40.30 26.00 15.50 35.40 25.50
多个独立样本的非参数检验
多个独立样本的非参数检验
多个独立样本的非参数检验
设置组别变量的最小值1、最大值4
多个独立样本的非参数检验
多个独立样本的非参数检验
Kruskal-Wallis H检验:k>=3个独立随机连续分布样 本的比较,而正态性假设及等方差假设存在问题时,它 可以进行总体是否相同的检验。 Median:中位数检验,三种方法中检验效能最低, 但对于拖长尾的对称分布很有效 Jonckheere-Terpstra:对连续性资料或有序分类资料 都适用,并当分组变量为有序分类资料时,此法的检验效 能要高于Kruskal-Wallis法。
分析结果
Kruskal-Wallis H统计量的近似显著概率为0.023,按α= 0.05的水准拒绝原假设,可认为四个组中至少有两组出生体重 的总体分布不同。
多个相关样本的非参数检验
例4 三批甘蓝叶样本分别在甲、乙、丙、丁四种条件下测量核
黄素浓度,试验结果如下。问四种条件下的测量结果的差异是 否具有统计学意义?数据见npd.sav:
非参数检验
内容提要 非参数检验 两个配对样本的非参数检验 两个独立样本的非参数检验
多个独立样本的非参数检验
多个相关样本的非参数检验
非参数检验
参数统计方法往往假设统计总体的分布形态已知,但 是在更多的实际场合,常常由于缺乏足够信息,无法合
理地去假设一个总体具有某种分布形式,此时就不能使
用相应的参数方法了。因此,应该放弃对总体分布参数 的依赖,转而寻求更多的纯粹来自数据的信息,这就是 非参数统计方法。
多个相关样本的非参数检验
分析结果
(1) 秩次表
(2) 检验统计量
经Friedman Test,近似概率(Asymp.sig.)P=0.042, 小于0.05,故拒绝原假设,认为四种条件下测量结果的差别 具有统计学意义的。
生存时间(猫):25 34 44 46 46 生存时间(兔):15 15 16 17 19 21 21 23 25 27 28 28 30 35
两独立样本的非参数检验
两独立样本的非参数检验
两独立样本的非参数检验
两独立样本的非参数检验
默认的Mann-Whitney U检验最常用
两独立样本的非参数检验 (1) 秩次表
批次 1 2 3
测量条件 甲 27.2 23.2 24.8 乙 24.6 24.2 22.2 丙 39.5 43.1 45.2 丁 38.6 39.5 33.0
多个相关样本的非参数检验
多个相关样本的非参数检验
Friedman:常用的多个配伍样本的非参数检验
Kendall’s W:可进一步给出一致性程度 Cochran’s Q:是两配对样本McNemar方法的推广, 只适合二分类变量
多个独立样本的非参数检验 (1) 秩次表
分析结果
母亲每日吸烟多于20支组共4名新生儿,体重平均秩 次3.75;每日吸烟少于20支组共3名新生儿,体重平均 秩次5.00;过去吸烟现已戒烟组共4名新生儿,体重平均 秩次9.38;从不吸烟组共3名新生儿,平均秩次12.50。
多个独立样本的非参数检验 (2) 检验统计量
多个独立样本的非参数检验
例3 14名新生儿出生体重按其母亲的吸烟习惯分组(A组:
每日吸烟多于20支;B组:每日吸烟少于20支;C组:过去
吸烟而现已戒烟;D组:从不吸烟),具体如下。试问四个 吸烟组出生体重分布是否相同?数据见npc.sav: A组: 2.7 B组: 2.9 C组: 3.3 D组: 3.5 2.4 3.2 3.6 3.6 2.2 3.2 3.4 3.7 3.4 3.4
非参数检验
和参数方法相比, 非参数检验方法的优势如下 稳健性。 因为对总体分布的约束条件大大放宽,不至于因 为对统计中的假设过分理想化而无法切合实际情况,从而对个 别偏离较大的数据不至于太敏感。
对数据的测量尺度无约束,对数据的要求也不严格,什么数
据类型都可以做。 适合于小样本、无分布样本、数据污染样本、混杂样本等。
生存时间样本共19例,其中猫的生存时间5例, 其平均秩次为15.70,总秩和为78.50;兔的生存时 间14例,其平均秩次为7.96,总秩和为111.50。
两独立样本的非参数检验 (2) 检验统计量
分析结果
给 出 Mann-Whitney U 、 Wilcoxon W 统 计 量 和 Z 值 , 近 似 值 概 率 (Asymp.Sig)和精确概率值(Exact.sig)均小于0.05,结论一致,表明 猫、兔在缺氧条件下的生存时间的差异具有统计学意义,由平均秩次猫 (15.7)、兔(7.96)来看,可以认为缺氧条件下猫的生存时间长于兔。
相关文档
最新文档