不锈钢腐蚀的分析

不锈钢腐蚀的分析
不锈钢腐蚀的分析

电化学腐蚀

电化学腐蚀就是金属和电解质组成两个电极,组成腐蚀原电池。例如铁和氧,因为铁的电极电位总比氧的电极电位低,所以铁是阳极,遭到腐蚀。特征是在发生氧腐蚀的表面会形成许多直径不等的小鼓包,次层是黑色粉末

状溃疡腐蚀坑陷。

一、基本介绍:

不纯的金属跟电解质溶液接触时,会发生原电池反应,比较活泼的金属失去电子而被氧化,这种腐蚀叫做电化学腐蚀。钢铁在潮湿的空气中所发生的腐蚀是电化学腐蚀最突出的例子。

我们知道,钢铁在干燥的空气里长时间不易腐蚀,但潮湿的空气中却很快就会腐蚀。原来,在潮湿的空气里,钢铁的表面吸附了一层薄薄的水膜,这层水膜里含有少量的氢离子与氢氧根离子,还溶解了氧气等气体,结果在钢铁表面形成了一层电解质溶液,它跟钢铁里的铁和少量的碳恰好形成无数微小的原电池。在这些原电池里,铁是负极,碳是正极。铁失去电子而被氧化.电化学腐蚀是造成钢铁腐蚀的主要原因。

金属材料与电解质溶液接触,通过电极反应产生的腐蚀。电化学腐蚀反应是一种氧化还原反应。在反应中,金属失去电子而被氧化,其反应过程称为阳极反应过程,反应产物是进入介质中的金属离子或覆盖在金属表面上的金属氧化物(或金属难溶盐);介质中的物质从金属表面获得电子而被还原,其反应过程称为阴极反应过程。在阴极反应过程中,获得电子而被还原的物质习惯上称为去极化剂。

在均匀腐蚀时,金属表面上各处进行阳极反应和阴极反应的概率没有显著差别,进行两种反应的表面位置不断地随机变动。如果金属表面有某些区域主

要进行阳极反应,其余表面区域主要进行阴极反应,则称前者为阳极区,后者为阴极区,阳极区和阴极区组成了腐蚀电池。直接造成金属材料破坏的是阳极反应,故常采用外接电源或用导线将被保护金属与另一块电极电位较低的金属相联接,以使腐蚀发生在电位较低的金属上。

二、相关原理:

金属的腐蚀原理有多种,其中电化学腐蚀是最为广泛的一种。当金属被放置在水溶液中或潮湿的大气中,金属表面会形成一种微电池,也称腐蚀电池(其电极习惯上称阴、阳极,不叫正、负极)。阳极上发生氧化反应,使阳极发生溶解,阴极上发生还原反应,一般只起传递电子的作用。腐蚀电池的形成原因主要是由于金属表面吸附了空气中的水分,形成一层水膜,因而使空气中N5等溶解在这层水膜中,形成电解质溶液,而浸泡在这层溶液中的金属又总是不纯的,如工业用的钢铁,实际上是合金,即除铁之外,还含有石墨、渗碳体(F勺C)以及其它金属和杂质,它们大多数没有铁活泼。这样形成的腐蚀电池的阳极为铁,而阴极为杂质,又由于铁与杂质紧密接触,使得腐蚀不断进行。

三、方程式:

(1)析氢腐蚀(钢铁表面吸附水膜酸性较强时)

负极(Fe):

蠱-2L fF严

F^+2H2O-^Fe(OH)2 + 2H+

+ 2e J H2

正极(杂质):

电池反应:

Fe+2H3O = Fe(OH}2 + H3T

由于有氢气放出,所以称之为析氢腐蚀。

(2)吸氧腐蚀(钢铁表面吸附水膜酸性较弱时)

负极(Fe):

正极:

O2-F2H2O+4f->4OH~

2Fe-kO? + 2H3O = 2Fe(OH}2

总反应:

由于吸收氧气,所以也叫吸氧腐蚀。

F^OH)3

Fe(OH)2

析氢腐蚀与吸氧腐蚀生成的被氧所氧化,生成脱水生成铁锈。

4Fe(OH)2 + 6 + 2H3O =4Fe(OH)3

钢铁制品在大气中的腐蚀主要是吸氧腐蚀。

斤+ 2出0二FKOHb + H汀

O2 + 2H2O+4f-*4OJf~

2Fe+O3 + 2H7O = 2Fe(OH}2

2fF + 2e~ r H2

析氢腐蚀主要发生在强酸性环境中,而吸氧腐蚀发生在弱酸性或中性环境中。

四、现象危害:

由于金属表面与铁垢之间的电位差异,从而引起金属的局部腐蚀,而且这种腐蚀一般是坑蚀,主要发生在

水冷壁管有沉积物的下面,热负荷较高的位置。如喷燃器附近,炉管的向火侧等处,所以非常容易造成金属穿孔或超温爆管。尽管铜铁的高价氧化物对钢铁会产生腐蚀,但腐蚀作用是有限的,但有氧补充时,该腐蚀将会继续进行并加重。

危害性是非常大的,一方面,它会在短期内使停用设备金属表面逍到大面积腐蚀。另一方面,由于停用腐蚀使金属表面产生沉积物及造成金属表面粗糙状态,使机组启动和运行时,给水铁含量增大。不但加剧了炉管内铁垢的形成,也加剧了热力设备运行时的腐蚀。

电解质溶液

一、定义

化合物导电的前提:其内部存在着自由移动的阴阳离子。

离子化合物在水溶液中或熔化状态下能导电;共价化合物,某些也能在

水溶液中导电。

导电的性质与溶解度无关,强电解质一般有:强酸强碱,大多数盐;弱电解质一般有:(水中只能部分电离的化合物)弱酸,弱碱。另外,水是极弱电解质。

电解质不一定能导电,而只有在溶于水或熔融状态是电离出自由移动的离子后才能导电。

能导电的不一定是电解质判断某化合物是否是电解质,不能只凭它在水

溶液中导电与否,还需要进一步考察其晶体结构和化学键的性质等因素。例如,判断硫酸钡、碳酸钙和氢氧化铁是否为电解质。硫酸钡难溶于水(20 C 时在水中的溶解度为2.4 x i0-4g),溶液中离子浓度很小,其水溶液不导电,似乎为非电解质。但溶于水的那小部分硫酸钡却几乎完全电离(20 C时硫酸钡饱和溶液的电离度为97.5%)。因此,硫酸钡是电解质。碳酸钙和硫酸钡具有相类似的情况,也是电解质。从结构看,对其他难溶盐,只要是离子型化合物或强极性共价型化合物,尽管难溶,也是电解质。

氢氧化铁的情况则比较复杂,Fe3+与OH-之间的化学键带有共价性质,它的溶解度比硫酸钡还要小(20 C时在水中的溶解度为9.8 X10-5 g);而落于水的部分,其中少部分又有可能形成胶体,其余亦能电离成离子。但氢氧化铁也是电解质。

判断氧化物是否为电解质,也要作具体分析。非金属氧化物,如S02、

S03、P2O5、CO2等,它们是共价型化合物,液态时不导电,所以不是电解质。有些氧化物在水溶液中即便能导电,但也不是电解质。因为这些氧化物与水反应生成了新的能导电的物质,溶液中导电的不是原氧化物,如SO2 本身不能电离,而它和水反应,生成亚硫酸,亚硫酸为电解质。金属氧化物,如Na20 , MgO,CaO, A12O3等是离子化合物,它们在熔化状态下能够导电,因此是电解质。

可见,电解质包括离子型或强极性共价型化合物;非电解质包括弱极性或非极性共价型化合物。电解质水溶液能够导电,是因电解质可以离解成离子。至于物质在水中能否电离,是由其结构决定的。因此,由物质结构识别电解质与非电解质是问题的本质。

另外,有些能导电的物质,如铜、铝等不是电解质。因它们并不是能导电的化合物,而是单质,不符合电解质的定义。

电解质溶液的导电机理与金属的导电机理不同。金属是依靠自由电子的定向运动而导电,因而称为电子导体,除金属外,石墨和某些金属氧化物也属于电子导体。这类导体的特点是当电流通过时,导体本身不发生任何化学变化。电解质溶液的导电则依靠离子的定向运动,故称为离子导体。但这类导体在导电的同时必然伴随着电极与溶液界面上发生的得失电子反应:一般而言,阴离子在阳极上失去电子发生氧化反应,失去的电子经外线路流向电源正极;阳离子在阴极上得到外电源负极提供的电子发生还原反应。只有这样整个电路才有电流通过。并且回路中的任一截面,无论是金属导线、电解质溶液,还是电极与溶液之间的界面,在相同时间内,必然有相同的电量通过。

二、基本特性

电解质溶液是指溶质溶解于溶剂后完全或部分解离为离子的溶液?相应

溶质即为电解质?某物质是否为电解质并不是绝对的?同一物质在不同的溶剂中,可以表现出完全不同的性质?例如HCI在水中是电解质,但在苯中则为非电解质;葡萄糖在水中是非电解质,而在液态HF中却是电解质.因此在谈到电解质时决不能离开溶剂?一般把完全解离的电解质称为强电解质,部分解离的电解质称为弱电解质.这种分类方法只是为了讨论问题的方便,并没有反映出电解质的本质?原因是电解质的强弱随环境而变?例如乙酸在水中为弱电解质,而在液氨中则为强电解质.LiCI和KI都是离子晶体,在水中为强电解质,而在醋酸或丙酮中都变成了弱电解质.在电化学中应用最广泛的电解质溶液是电解质水溶液,本节主要讨论电解质水溶液的基本特性.

三、正负离子

电解质溶液中的离子之间,除了具有像中性分子之间的那种相互作用之外,根据库仑定律,还存在着静电相互作用,即同性离子相互排斥,异性离子相互吸引?由分子运动论,两个中性分子之间的相互吸引力近似地与两粒子间距离的7次方成反比,而两个异性离子之间的静电吸引力却与两离子间距离的2次方成反比.这说明中性分子间的力为短程力,而带电离子间的静电引力为长程力?当电解质溶液较稀时,离子之间的距离较远,各种近程力的作用可以略去不计,而长程力却不可忽略.正是由于异性离子之间长程静电引力的存在

使得电解质溶液即使在很稀时仍表现出对理想溶液的热力学性质有较大的偏差.离子的静电相互作用的强弱除与离子间的距离(溶液的浓度)有关外,还与溶剂的介电常数,离子的结构,大小,电荷,溶剂化程度等因素有关.

正负离子之间的库仑引力,有可能使它们产生缔合作用?当电荷相反的离

子接近到一定距离时,若它们之间的静电吸引势能会远远大于热运动动能,则在溶液中形成离子缔合体,这种离子缔合体可以是由两个电荷相同的异性离子组成的离子对,也可以是由三个离子或更多个离子缔合而成的离子簇团.由于离子在溶液中不停地运动,一些离子缔合体存在的时间可能是短暂的?在溶液中每一个瞬间都有许多离子缔合,同时又有许多缔合体分解.从统计的观点来看,溶液中总是有一定数量的离子缔合体存在?缔合体是靠库仑力形成,它和靠化学键形成的分子是不同的?显然电荷数大的离子在相对介电常数小的溶剂中,离子间库仑引力较大,因而离子缔合的可能性也就大些?由于缔合体作为一个整体在溶液中存在和运动,所以,在一定浓度的电解质溶液中,并非每个离子都能独立运动?对于强电解质而言,在溶液中虽然完全离子化,但并非完全解离?离子的这种缔合作用显然会影响与离子数量有关的电解质溶液的性质.

四、离子水化

在电解质水溶液中,除了离子之间的相互作用外,离子和水分子之间也会

发生相互作用,这种作用称为离子的水化作用,如果是泛指一般的溶剂,则称为溶剂化作用.如图7-1所示,离子发生水化作用时,一些极性水分子在离子周围取向,与离子紧密结合,形成水化离子?水分子被束缚在离子周围的溶剂化层内,不能独立移动,只能与离子一起移动,使游离的水分子数量减少,相当于离子实际浓度增大.当溶液很稀时,由于水分子数量远远大于离子数,几乎所有水分子都是自由的,故水化作用对浓度的影响较小?但随着浓度的增大,自由水分子所占比率越来越少,其影响也越来越大.

离子与水分子间的作用力在两者之间的距离超过几纳米时,已可忽略不计,因此离子周围存在着一个对水分子有明显电场作用的空间.在这个空间内含有的水分子数称为离子水化数?紧靠着离子的第一层水分子与离子结合得比较牢固?它们

基本上能与离子一起移动,不受温度的影响,这部分水化作用称为原水化或化学

水化?它所包含的水分子数目称为原水化数?第一层以外的部分水分子也受到离子的吸引作用,使这部分水分子之间原有的结构状态发生改变?与离子的联系比较松散的这部分水化作用,叫做二级水化或物理水化.温度对它的影响很大,这部分水分子不与离子一起移动.测定原水化数的方法有多种,但所得结果很不一致例如,Na+的水化数可由2到7?这是因为各种方法测出的水化数,实际上都是原水化数加上部分二级水化数,而每种方法中所包括进去的多少又各有不同?不过,在充分考虑了离子与水分子的各种相互作用能之后,可以通过统计力学方法,比较可靠地计算出离子水化数.实际上,离子水化数只代表与离子相结合的水分子的有效数目?离子水化的一般规律是:离子半径越小,或所带的电荷越大,则离子表面的静电势能就越高,离子的水化作用也就越强,水化数也就越大.

五、离子电迁移

电解质溶液中的离子,在没有外力作用时,时刻都在进行着杂乱无章的热运动.在一定时间间隔内,粒子在各方向上的总位移为零?但是在外力作用下,离子沿着某一方向移动的距离将比其它方向大些,遂产生了一定的净位移.如果离子是在外电场力作用下发生的定向移动,我们称为电迁移.离子的电迁移不但是物质的迁移,而且也是电荷的迁移,所以离子的电迁移可以在溶液中形成电流.由于正负离子沿着相反的方向迁移,所以它们的导电效果是相同的,也就是说正负离子沿着同一方向导电.

离子的电迁移速率除了与离子的本性(离子半径,所带电荷),溶液的浓度, 粘度及温度等有关外,还与电场的电势梯度有关?在其它条件一定时,离子电迁移

的速率v与电势梯度成正比,即

v=U (7.1-1)

式中U为比例系数,称为离子的电迁移率,其物理意义是离子在单位电势梯度下的电迁移速率,单位是m2.V-1.s-1.离子的电迁移率是表征离子在电场中迁移的基本参数,是离子的特性.表7-1是一些离子在298.2K时无限稀释水溶液中的电迁移率U R,它表示的是在离子之间无相互作用时的电迁移率.从表中可见离子电迁移率很小,数量级为10-8m2.s-1.V-1,所以电解时离子的移动通常很缓慢.当电解质溶液中的电势梯度为1000V.m-1时,离子迁移速率的数量级仅为10-5m.s-1,这比室温下离子热运动的速率100m.s-1要小得多.

表7-1 298.2K时无限稀释水溶液中一些离子的电迁移率

六、导电过程

电解质溶液的导电过程

能导电的物体称为导体.导体分为两类:一类是电子导体,如金属,石墨,某些金属氧化物(如PbO2,Fe3O4),金属碳化物(如WC)等,它们是靠自由电子在电场作用下的定向移动而导电的.当电流通过这类导体时,除了可能产生热量外,不发生任何化学变化.电子导体(例如金属导线)能够独立地完成导电任务;另一类是离子导体,如熔融的电解质,固体电解质和以水或其它有机物为溶剂而形成的电解质溶液,它们是靠离子在电场作用下的定向移动而导电的.离子导体(例如CuS04溶液)不能独立完成导电任务,欲使离子导体导电,必须有电子导体与之相连接.例如,为了使电流在电解质溶液中通过,需要在溶液的两端分别插入金属导体,才能构成通路,于是就形成了金属-溶液-金属串联的系统(构成这种系统的装置就是电化学装置),其中的金属就是两个电极.当电流通过离子导体时,除了可能产生热量外,在两个电极与溶液的接触面上必然伴随有化学反应发生和化学能与电能间的相互转化.

下面分别讨论在电池和电解池中电解质溶液的导电过程.

图7-3(a)为一电解池,当插在HCI水溶液中的Pt片A和B,分别用导线与外电源的负极和正极接通后,在电源电场力的作用下,电源负极的电子通过导线迁移到铂电极A上,同时铂电极B上的电子通过导线迁移到电源正极.要想维持金属导体电子的流动,铂电极A必须不断地失去电子,铂电极B必须不断地得到电子.由于电子不能从电极A直接进入溶液到达电极B,因此在电极A和溶液的界面处就发生了消耗电子的还原反应过程

2H++2e-=H2

在电极B和溶液的界面处就发生了产生电子的氧化反应过程

2CI-=CI2+2e-

同时,由于铂电极A,B上分别带有负电荷和正电荷,使两电极间的溶液中存在有电场,所以两电极间电解质溶液中的H+,CI-就会在电场力作用下定向移动,从而形成了溶液中的电流.

图7-1(b)为一原电池.当H2和CI2分别冲击插在HCI水溶液中的Pt电极A,B时,在电极A与溶液界面处,H2发生氧化反应

HP2H++2e -

电子留在电极A上,使该电极带上负电,H+进入溶液,使电极A附近的溶液

带上正电?同样在电极B与溶液的界面处,CI2发生还原反应

CI2+2e- —2CI-

电极B失去电子,带上正电,CI-进入溶液,使电极B附近的溶液带上负电. 这样,当两电极上的反应分别达到平衡时,两电极间就有一定的电势差?当外电路断开

时,两电极上所带电荷产生的电场(电场强度的方向由A指向B)与两电极附近溶液所带电荷产生的电场(电场强度的方向由B指向A)大小相等,

方向相反?所以,在溶液内部,电场强度处处为零,电势处处相等,因此离子不产生电迁移,没有电流通过.当外电路接通时,电极B上的电子在电场的作用下,通过导线流向电极A,也就是形成了自电极A流向电极B的电流,从而使两电极上的电荷减少,破坏了原来的平衡,导致了下面两种现象的同时发生:一是电极与溶液之间的电场变弱,于是,H2和CI2又在化学力作用下进行反应,来补充两电极减少的电荷;二是两电极上的电荷在两极间溶液中产生的电场变弱,小于了两电极附近溶液中的电荷在两电极间溶液中产生的电场,因此在溶液中的电场强度不再处处为零,电势不再处处相等,而是电极A附近的溶液中

的电势高于电极B附近溶液中的电势,于是溶液中的H+,CI-在电场的作用下,分别向电极B和A迁移,形成了溶液中的电流.

可见电解质溶液的导电过程,必须既有电解质溶液中离子的定向迁移过程,又有电极上物质发生化学反应的过程,两者缺一不可,否则就不可能形成持续的电流.

为了讨论问题的方便,习惯上把电化学装置中的两个电极按下列两种方法命名:(1)发生氧化反应的电极叫阳极,发生还原反应的电极叫阴极;(2)电势较高的电极称为正极,电势较低的电极称为负极.在讨论电解池时常使用第(1)种命名法,在讨论原电池时常使用第(2)种命名法.但有时不论对电解池还是原电池,两种命名法都用,此时要注意两者的对应关系.

七、法拉第定律

1833年,法拉第在研究电解作用时,从实验结果中归纳出一条规律:电流

通过电解质溶液时,电极上发生化学反应的物质的量与通过溶液的电量成正比.

后来人们称之为法拉第定律.

根据电化学原理,很容易得到在电极上发生反应的物质的量与通过溶液

的电量之间

C ; I J

M I INK t

r A.

电解质溶液保持静止不动,称静止电极技术

的关系式.

设电极反应计量方程式可表示为:

0=^v BB+v e&7.2-1)

式中B表示电极反应中的反应物或产物的化学式(分子式或离子式等),e- 表示电极反应中的电子,vB和v少别是两者的计量系数?当B为反应物时旧取负值,当B为产物时vB取正值;对于氧化反应ve取正值,对于还原反应,ve 取负值.例如,对于氧化反应H26O2+H++4e -, v e=4对于还原反应Cr2O72-

+14H++6e- —2Cr3++7H2O,v e=-6.

当电极反应的反应进度为E时,通过电极的元电荷的物质的量为

ne=| v e| E (-22

1 mol电子所带电量的绝对值是个常数,称为法拉第常数,用符号F表示,

定义为阿佛加德罗常数L与元电荷e-的乘积,即

F二Le=6.0221367 X l023mol-1 X1.60217733 x i0-19C=96485.309Cmol-

在一般计算中可以近似取F=96500Cmol-1.显然通过溶液的电量Q与ne 的关系为:

Q=neF=| v e| E F (7-3a)

在应用时常用z代替| v B并称之为反应的电荷数(即转移电子数),这时

Q=z E F (723b)

所以,在电极上发生反应的物质的量和质量分别为:

(7.2-4)

(7.2-5)

式(7.2-3)和式(7.2-5)均可称为法拉第定律的数学表达式.

法拉第定律是一个从电解过程中总结出来的准确定律,但它对原电池也同样适用.该定律不受温度,压力,电解质溶液的组成和浓度,电极的材料和形状等任何因素的影响,在水溶液中,非水溶液中或熔融盐中均可使用.

必须注意,在实际电解时,得到的所需产物的量往往比根据电量消耗按法拉第定律计算出来的量要少.为了便于说明这个问题,提出了电流效率的概念定义如下:

电流效率=(根据法拉第定律计算所需要的电量/实际消耗的电量)XI00% 或电流效率=(实际获得所需产物质量/根据法拉第定律计算应得所需产物质量)>100%

实际电解过程的电流效率一般都小于100%.如工业上电解精炼铜时,电

流效率通常在95?97%之间,电解制铝的电流效率约90%.引起电流效率小于100%的原因一般有以下两种:(1)电极上有副反应发生,消耗了部分电量.例如镀锌时,阴极上除了有Zn2+发生还原的主反应外,还有H+发生还原的副反应.(2)所需要的产物因一部分发生次级反应(如分解,氧化,与电极物质或溶液中的物质反应等)而被消耗.例如,电解食盐水溶液时,阳极上产生的CI2又部分溶解在电解液中,形成次氯酸盐和氯酸盐.

根据法拉第定律,用电极上发生反应的物质的量可以精确计算出通过电

路的电量?利用这个原理设计的测量电量的装置称为电量计或库仑计?这种仪器是由电解质溶液和置于其中的两个电极所构成.使用时,将其串联到电路中

通电一段时间后,称量电极上产生的物质的量,用法拉第定律求出所通过的电量?显然在电量计中所选用的电极反应的电流效率应为100%或者是十分接

近100%.最常用的是银电量计,其次是铜电量计,气体电量计等.

八、电导和电导率

1.电导和电导率

金属的导电能力常用电阻来衡量?电阻越小,导电能力越强?电解质溶液的导电能力虽然也可以用电阻来衡量,但更习惯采用的是电导?电导即电阻的倒数.用符号G表示,

(7.4-1)

电导的SI单位是"西门子"(Siemens),简称哂",用S表示.显然,导体的电导越大,导电能力越强.

因为

所以

令K = (7.42)

贝卩G=K (7.4-3)

其中K称为电导率,即电阻率的倒数.SI单位是"西每米"(Sm-1).对于电解质溶液而言,式中A表示两个相同电极中一个电极的面积,1表示两平行电极间的距离?电导率则表示面积为1m2,相距1m的两平行电极板之间包含的溶液的电导?电解质溶液的电导率与电解质的种类,溶液的浓度及温度等因素有关?图7-7是几种电解质溶液的电导率随浓度的变化曲线?可以看出:

(1) 同温同浓度下强酸和强碱因能解离出H+和0H-,电导率最大,盐类次之.弱电解质因为在溶液中不完全解离,电导率最小;

(2) 不管是弱电解质还是强电解质,其电导率随浓度的变化都是先增大,越过极值后又减小?这是因为浓度增大时参与导电的离子数目增多,使导电能力增强,随着浓度的增大,离子间的相互作用逐渐增强,反而又使导电能力减小减弱?弱电解质的电导率随浓度的变化不明显,是因为浓度增大时,虽然电解质分子数增加了,但解离度却随之减小,溶液中离子数目变化并不大.

了解这些情况对于生产及科学研究中合适地选用电化学装置中的电解质是有帮助的.

2?摩尔电导率

金属导体只靠电子导电,而且导体中电子浓度很高,所以只要把导体的几何形状固定了,就完全能够显示出各种导体导电能力的大小,电导率就足以反映出不同导体在导电能力上的差别?电解质溶液则不然,它们的电荷载体是离子,各种离子的电荷数可能不同,单位体积中离子的数量(浓度)也可以不一样, 情况比较复杂.因此为了对不同电解质溶液的导电能力进行比较,除了应规定出它们的几何

形状之外,还要对导体中离子的数量作出规定,于是提出了摩尔电导率的概念.定义如下:

把含有1mol电解质的溶液置于相距1m的两平行电极板之间时所具有的电导,叫摩尔电导率,用符号A m表示.若电解质溶液的物质的量浓度为c(单位为molm-3),则含有1mol电解质溶液的

体积Vm为1/c,单位为m3mol-1,由图7-8可以得到

A m=Vm = (7.4 -4)

A m的单位为Sm2mol-1.据式(7.4-4),又可把摩尔电导率定义为单位浓度溶液的电导率.

由于摩尔电导率涉及物质的量浓度,所以在表示电解质溶液的摩尔电导率时,应注明"摩尔"的基本单元.通常用元素符号或化学式表示.如298.15K时,

A m(CuSO4)=14.34< 10-3Sm2mol-1

A m(CuSO4)=7.17X 10-3Sm2mol-1

显然,A m(CuSO4)=2 A m(CuSO4)

在用摩尔电导率比较不同电解质溶液的导电能力时,除了要求溶液的温度和浓度相同外,应使其基本单元所带的电荷相等.例如,要比较氯化钾和硫酸铜溶液的导电能力时,应比较同温同浓度时A m(KCl)和A m(CuSO4)的大小.

图7-9是25 C时一些电解质在水溶液中的A m随的变化曲线.可以看出, 无论是强电解质还是弱电解质,A m均随浓度的减少而增大,但两者的变化程度差别很大.

对于强电解质,因其在溶液中完全解离,所以在其物质的量固定为1mol的前提下,浓度的改变对离子的数量没有影响,但却影响离子之间的作用力.当浓

度降低时,离子间引力减弱,离子运动速率增加,致使A m随浓度的减小而缓慢增加.德国化学家科尔劳施(kohlrausch)由大量实验结果发现,浓度极稀(通

常c<0.001moldm-3)的强电解质溶液的摩尔电导率与浓度的平方根有线性关系(见图7-9中的虚线),用式子表示为:

A m=-A (7.4-5)

式中A在一定温度下,对给定的电解质和溶剂而言是一个常数,是直线的截距,由直线外推至与纵轴相交处得到.可见表示的是电解质溶液在无限稀释(c -0时的摩尔电导率,故称为无限稀释摩尔电导率(又称为极限摩尔电导率). 是电解质的一个特性参数,反映了电解质在离子之间没有作用力时所具有的最大导电能力.

对于弱电解质,因其在溶液中部分解离,且解离度受浓度的影响,所以当浓度降低时,虽然溶液中电解质的数量未变,仍为1mol,但解离度却增大了,离子的数量增多了,致使A m随浓度的减少而增加.当溶液很稀时,由于解离度随浓度的减小而迅速增大,致使A m急剧增加,A m与c之间不存在如式(7.4-5)的简单关系.因此弱电解质的无法用外推法求得,科尔劳施的离子独立运动定律解决了这个问题.

3.离子独立运动定律和离子摩尔电导率

1875年,科尔劳施在研究极稀电解质溶液时,根据大量实验数据发现一个规律,即在无限稀释的溶液中,所有的电解质全部解离,而且离子间一切相互作用均可忽略,每一种离子都是独立运动的,不受其它共存离子的影响.因此电解质溶液的可以认为是正负离子摩尔电导率入2之和,即对于任意电解质M Y +X V都有下列关系式

(7.4-6)

此式称为离子独立运动定律,式中,分别表示正,负离子的无限稀释摩尔电导率?显然,如果知道了各种离子的,则无论是强电解质还是弱电解质,均可直接用此式计算.

离子的摩尔电导率可由实验测定?下表列出了298K时无限稀释的水溶液中一些常见离子的摩尔电导率.

九、常见的电解质

强电解质

强酸:HCI,HBr,HI,H2SO4,HNO3,HCIO3,HCIO4 等.

强碱:NaOH,KOH,Ba(OH)2,Ca(OH)2 等.

绝大多数盐:如NaCI,(NH4)2SO4,Fe(NO3)3,BaSO4 等

弱电解质

弱酸:HF,HCIO,H2S,H2SO3,H3PO4,H2CO3,

弱碱:NH3 ?H2O,Fe(OH)3,AI(OH)3,Cu(OH)2 等.

少数盐:HgCI2,醋酸铅等

水(极弱的电解质)

工业冷却水对不锈钢换热器腐蚀的研究及对策

编号:AQ-JS-03383 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 工业冷却水对不锈钢换热器腐 蚀的研究及对策 Study on Corrosion of stainless steel heat exchanger by industrial cooling water and Countermeasures

工业冷却水对不锈钢换热器腐蚀的 研究及对策 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 摘要:不锈钢换热器在石化、电力工业的生产中有着广泛的应用。但是,不锈钢管局部腐蚀(主要是孔蚀和应力腐蚀破裂)的发展速度和所造成的破坏也是惊人的。本文简要介绍了不锈钢的腐蚀类型;针对火电厂运行、基建机组凝汽器不锈钢管的防腐蚀工作,阐述了相应的化学处理措施和成功的工作实例。 关键词:不锈钢;凝汽器;孔蚀;应力腐蚀破裂;防腐;化学处理 1不锈钢换热器的应用情况 不锈钢是铁、铬和镍的合金,最早出现在20世纪初。铬镍钢,特别是18Cr-8Ni型奥氏体不锈钢,由于它在许多化学介质中具有高度的稳定性,并且能耐高温气体腐蚀,所以在化学工业中得到最

广泛的应用,在许多有机产品和聚合物的生产过程中(如尿素、醋酸、聚丙烯、聚乙烯醇等),大多数设备都是由铬镍合金钢和奥氏体不锈钢制造的。其中大量与各种工业水接触的列管换热器、冷凝器和夹套反应器多用奥氏体不锈钢(主要类型为AISI304、304L、316、316L)制造。 在电力工业中,不锈钢的应用范围也越来越广泛。在发电厂,不锈钢主要用来制造凝汽器的冷却管。 凝汽器是汽轮发电机组的重要辅机之一,它的性能好坏直接影响机组的运行。而它的主要传热组件—冷却管,是凝汽器的最重要部分,价格占其总价的一半以上。因此,冷却管的选材和选型是凝汽器的设计关键。 早在20世纪90年代初,我国就开始应用螺旋槽管传热理论,研制新型凝汽器。经过反复论证和试验,研制出理想的冷却管凝汽器—高效不锈钢波螺焊管凝汽器。 不锈钢波螺焊管比铜管的总体传热系数提高25~30%,在几家热电厂的实际运行当中,当保持真空度不变的情况下,循环水量比

不锈钢耐腐蚀性

最佳答案- 由投票者2008-09-06 17:12:11选出 纯碱(Na2CO3):分子量105.99,易溶于水,密度(25℃)2.532g/m3水溶液呈弱碱性,遇酸会发生剧烈反应,生成CO2.若向溶液中加入石灰水,会生成CaCO3沉淀并生成氢氧化钠. 烧碱(NaOH):分子量39.997,密度(25℃)2.13g/m3,由钠与足量水作用生成,易溶于水并放热,在空气中易潮解变质.与酸接触能发生剧烈反应,放出大量的热,有强腐蚀性,能腐蚀金属,浸蚀某些塑料\橡胶\和涂料.向溶液 中加入少量石灰可除去杂质碳酸钠. 一、药剂名称 中文名称:氢氧化钠(俗语:苛性钠)。 英文名称:sodium hydroxide or caustic soda。 二、分子式:naoh。 三、物理性质:纯净的氢氧化钠是白色的固体,极易溶解于水,它的水溶液有涩味和滑腻感。氢氧化钠暴露在空气中时容易吸收水分,表面潮湿而逐步溶解,这种现象叫做潮解。 四、制造:氧化钠是由电解食盐溶液产生,同时也生成了另一产物…氯,此种生产工业又叫氯咸工业,一座电解槽所消耗的电力和一个三十万人的城市相差不多,电解过程中会形成氯化钠和氢氧化钠的混合液,氢氧化钠和氯反应产生次氯酸钠,为避免此反应发生以多孔膜隔出阳极和阴极两个区域。 五、用途:氢氧化钠又名苛性钠,在许多物质如:肥皂、纸、清洁剂等的制造过程中都会用到,对不少复杂的化学物质如:染料、药品等的制造也占有重要的地位。 -------------------------------------------------------------------------------- 理性质①白色固体 ②易潮解 ③溶于水时放出大量的热 ④有腐蚀性 化学性质①跟指示剂作用:使紫色石蕊试液变蓝,使无色酚酞试液变红 ②跟酸性氧化物反应 2NaOH+CO2===Na2CO3+H2O ③跟酸反应 2NaOH+H2SO4===Na2SO4+2H2O ④跟某些盐反应

氯离子对不锈钢的腐蚀

氯离子对不锈钢的腐蚀 问题描述:对于奥氏体不锈钢在氯离子环境下的腐蚀,各种权威的书籍均有严格的要求,氯离子含量要小于25ppm,否则就会发生应力腐蚀、孔蚀、晶间腐蚀。但是事实上在工程应用中我们有很多高浓度的氯离子含量的情况下在使用奥氏体不锈钢,因些分析氯离子对不锈钢的腐蚀,采取预防措施,延长使用寿命,或合理选材。 不锈钢的腐蚀失效分析: 1、应力腐蚀失:不锈钢在含有氧的氯离子的腐蚀介质环境产生应力腐蚀。应力腐蚀失效所占的比例高达45 %左右。常用的防护措施:合理选材,选用耐应力腐蚀材料主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素体—奥氏体双相钢。其中,以铁素体—奥氏体双相钢的抗应力腐蚀能力最好。控制应力:装配时,尽量减少应力集中,并使其与介质接触部分具有最小的残余应力,防止磕碰划伤,严格遵守焊接工艺规范。严格遵守操作规程:严格控制原料成分、流速、介质温度、压力、pH 值等工艺指标。在工艺条件允许的范围内添加缓蚀剂。铬镍不锈钢在溶解有氧的氯化物中使用时,应把氧的质量分数降低到1. 0 ×10 - 6 以下。实践证明,在含有氯离子质量分数为500. 0 ×10 - 6的水中,只需加入质量分数为150. 0 ×10 - 6的硝酸盐和质量分数为0. 5 ×10 - 6亚硫酸钠混合物,就可以得到良好的效果。 2、孔蚀失效及预防措施 小孔腐蚀一般在静止的介质中容易发生。蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,即向深处自动加速。,不锈钢表面的氧化膜在含有氯离子的水溶液中便产生了溶解,结果在基底金属上生成孔径为20μm~30μm小蚀坑这些小蚀坑便是孔蚀核。只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。常见预防措施:在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量。降低氯离子在介质中的含量。加入缓蚀剂,增加钝化膜的稳定性或有利于受损钝化膜得以再钝化。采用外加阴极电流保护,抑制孔蚀。 3、点腐蚀:由于任何金属材料都不同程度的存在非金属夹杂物,这些非金属化合物,在Cl 离子的腐蚀作用下将很快形成坑点腐蚀,在闭塞电池的作用,坑外的Cl离子将向坑内迁移,而带正电荷的坑内金属离子将向坑外迁移。在不锈钢材料中,加Mo的材料比不加Mo的材料在耐点腐蚀性能方面要好,Mo含量添加的越多,耐坑点腐蚀的性能越好。 4.缝隙腐蚀 缝隙腐蚀与坑点腐蚀机理一样,是由于缝隙中存在闭塞电池的作用,导致Cl离子富集而出现的腐蚀现象。这类腐蚀一般发生在法兰垫片、搭接缝、螺栓螺帽的缝隙,以及换热管与管板孔的缝隙部位,缝隙腐蚀与缝隙中静止溶液的浓缩有很大关系,一旦有了缝隙腐蚀环境,其诱导应力腐蚀的几率是很高的。 总结 1:几种不锈钢在含氯(Cl—)水溶液中的适用条件 一、板片材料的选用 (1)注:不含气体、PH值为7(即中性)、流动的含氯水溶液。 (2)奥氏体不锈钢对硫化物(SO2 、SO3)腐蚀有一定的抗力。但是,Ni含量越高,耐蚀性将降低(因生成低熔点NiS),可能引起硫化物应力腐蚀开裂。硫化物应力腐蚀开 裂同材料的硬度有关,奥氏体不锈钢的硬度应≤HB228;Ni-Mo或Ni–Mo–Cr合金的 硬度不限;碳素钢的硬度应≤HB225; 3)必须注意板片材料与垫片或胶粘剂的相容性。例如,应避免将含氯的垫片或胶粘剂(如氯丁橡胶或以其为溶质的胶粘剂)与不锈钢板片组配,或者将氟橡胶、聚四氟乙烯(PTFE)垫片与钛板板片组配;

各种不锈钢的耐腐蚀性能1

各种不锈钢的耐腐蚀性能? 答:304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 304L 是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 304N 是一种含氮的不锈钢,加氮是为了提高钢的强度。305和384 不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。 308 不锈钢用于制作焊条。

309、310、314及330 不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S 乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性. 316和317 型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N 以及合硫量较高的易切削不锈钢316F。 是分别以钛,铌加钽、铌稳定化的不锈348 及347、321.钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。 不锈钢与不锈铁的区别 不锈钢一般是不锈钢和耐酸钢的总称。不锈钢是指耐大气、蒸汽和水等弱介质腐蚀的钢,而耐酸钢则是指耐酸、碱、盐等化学浸蚀性介质腐蚀的钢。不锈钢自本世纪初问世,到现在已有90多年的历史。不锈钢的发明是世界冶金史上的重大成就,不锈钢的发展为现代工业的发展和科技进步奠定了重要的物质技术基础。不锈钢钢种很多,性能各异,它在发展过程中逐步形成了几大类。按组织结构分,分为马氏不锈钢(包括沉淀硬化不锈钢)、铁素体不锈钢、奥氏体不锈

外文文献304不锈钢晶间腐蚀研究

晶间腐蚀在石油石化行业的危害及防护 帕德·马纳班 每一个石油化工企业年度改革、更新和超过6/809的维修费用,都是由于腐蚀和废弃设备、管道及金属非金属结构更新维护造成的,腐蚀易引起恶性破坏事故,不仅会带来巨大的经济损失,而且经常会引起火灾和爆炸、伤害和灾难性的环境污染等的罪恶,并导致严重的社会后果。腐蚀损坏,必须尽力设法避免。因为消除腐蚀是不可能的,成功的方法是控制腐蚀,或进入是为了防止腐蚀。因此,这些腐蚀问题已引起人们的关注来控制。本文主要针对表面产生晶间腐蚀的危害的石油工业,并介绍了如何防止和减缓腐蚀采取 的措施。 1晶间腐蚀的定义 晶间腐蚀是局部腐蚀的一种,是沿着金属晶粒间的分界面向内部扩展的沿着或紧挨着金属的晶粒边界发生的腐蚀。晶间腐蚀(Intergranular corrosion),又叫晶界腐蚀。现在对晶间腐蚀的科技名词定义如下: 沿着或挨着晶粒边界发生的腐蚀。:海洋工程(1级主题);船舶腐蚀与防护(要求等级2的主题)。 由于金属部件中这一媒介溶解率远远高于粮食本体的速度从局部腐蚀溶解。是金属强度、塑性和韧性大大降低危险的大量的腐蚀类型。所属主题:电力(一级学科);核能(要求等级2的话题)。 沿着或挨着金属颗粒边界腐蚀。所属属主题:机械工程(1级主题);腐蚀与防护(二级学科);腐蚀类型(三级学科)。 晶间腐蚀由微电池作用而引起局部破坏,这种局部破坏是从表面开始,沿晶界向内发展,直至整个金属由于晶界破坏而完全丧失强度,这是一种危害很大的局部腐蚀。 2晶间腐蚀发生的条件

金属及其结构在其所处的环境中,许多因素往往和环境化学因素及电化学因素一起, 参与和影响金属腐蚀过程。除化学因素及金属的冶金因素(成分、金相组织和结构等)外,影响金属腐蚀的环境因素还包括:应力、振动、冲刷、摩擦与磨损等力学、机械学因素;生物学因素等。这些因素与化学因素对腐蚀的影响,往往不是各个因素单独作用时所发生影响的简单加和,在多数情况下起着彼此相张的作用,因而,常常使腐蚀加速,造成更大的破坏性后果。 而晶间腐蚀的发生因素主要有内因和外因,如下: ⑴内因:即金属或合金本身晶粒与晶界化学成分差异、晶界结构、元素的固溶特点、 沉淀析出过程、固态扩散等金属学问题,导致电化学不均匀性,使金属具有品间腐蚀倾向。 ⑵外因:在腐蚀介质中能显示晶粒与晶界的电化学不均匀性。 3晶间腐蚀的机理 20世纪30年代以来,对晶间腐蚀进行了大量研究,所提出的贫化理论,特别是对奥 氏体不锈钢的贫铬理论已得到证实,并将贫化理论应用到铝铜合金的贫铜及镍钼合金的贫钼等方面。前者在晶界上析出了CuAl 2,后者在晶界上析出了Mo 2C 。 ⑴ 贫铬理论 不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于10~12%。当温度升高 时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。因为室温时碳在奥氏体中的溶解度很小,约为0.02%~0.03%,而一般奥氏体不锈钢中 的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如(CrFe )23C6等。数据表明,铬沿晶界扩 散的活化能力162~252KJ/mol ,而铬由晶粒内扩散活化能约540KJ/mol ,即:铬由晶粒内扩散速度比铬沿晶界扩散速度小,内部的铬来不及向 晶界扩散,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自晶界附近,结果就使晶界附近的含铬量大为减少,当晶界的铬的质量分数

各种不锈钢的耐腐蚀性能

各种不锈钢的耐腐蚀性能 304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。 301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 304L 是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 304N 是一种含氮的不锈钢,加氮是为了提高钢的强度。 305和384 不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。 308 不锈钢用于制作焊条。 309、310、314及330 不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性. 316和317 型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N以及合硫量较高的易切削不锈钢316F。 321、347及348 是分别以钛,铌加钽、铌稳定化的不锈钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。 镍与不锈钢基础知识—镍在不锈钢中的作用 镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式: 奥氏体形成能力=Ni%+30C%+30N%+0.5Mn%+0.25Cu% 从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐腐蚀的不锈钢中,因为在焊接后它会造成敏化腐蚀和随后的晶间腐蚀问题。氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔性的问题,只能在不锈钢中添加数量有限的氮。添加锰和铜会造成炼钢过程中耐火生命减少和焊接的问题。 从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的氮溶解到不锈钢中,而氮正是一种非常强的奥氏体形成元素。在200系列的不锈钢中,正是用足够的锰和氮来代替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数量就越高。例如在201型不锈钢中,只含有4.5%的镍,同时含有0.25%的氮。由镍等式可知这些氮在形成奥氏体的能力上相当于7.5%的镍,所以同样可以形成100%奥氏体结构。这也是200系列不锈钢的形成原理。在有些不符合标准的200系列不锈钢中,由于不能加入足够数量的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这必然导致了不锈钢抗腐蚀能力的下降。 在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。最终的晶体结构取决于两类添加元素的相对数量。铬是一种铁素体形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。因为铁和铬都是铁素体形成元素,所以400系列不锈钢是完全铁素体不锈钢,具有磁性。在把奥氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。如果仅添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。 400系列不锈钢是一种铁、碳合铬的合金。这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。大多数400系列不锈钢都可以进行热处理。

不锈钢在各种环境中的耐腐蚀性能

不锈钢在各种环境中的耐腐蚀性能 来源:电源谷作者: 发布时间:2007-09-29 18:04:12 https://www.360docs.net/doc/119259917.html,/jiaocheng/jingti/2007-09-29/2590.html 不锈钢的耐腐蚀性能一般随铬含量的增加而提高,其基本原理是,当钢中有足够的铬时,在钢的表面形成非常薄的致密的氧化膜,它可以防止进一步的氧化或腐蚀。氧化性的环境可以强化这种膜,而还原性环境则必然破坏这种膜,造成钢的腐蚀。 在各种环境中的耐腐蚀性能 ①大气腐蚀 不锈钢耐大气腐蚀基本上是随着大气中的氯化物的含量而变化的。因此,靠近海洋或其他氯化物污染源对不锈钢的腐蚀是极为重要的。一定量的雨水,只有对钢表面的氯化物浓度起作用时才是重要的。 农村环境1Cr13 、1 Cr 17 和奥氏体型不锈钢可以适应各种用途,其外观上不会有显著的改变。因此,在农村暴露使用的不锈钢可以根据价格,市场供应情况,力学性能、制作加工性能和外观来选择。 工业环境在没有氯化物污染的工业环境中,1Cr17 和奥氏体型不锈钢能长期工作,基本上保持无锈蚀,可能在表面形成污膜,但当将污膜清除后,还保持着原有的光亮外观。在有氯化物的工业环境中,将造成不锈钢锈蚀。 海洋环境1Cr13 和1 Cr 17 不锈钢在短时期就会形成薄的锈膜,但不会造成明显的尺寸上的改变。奥氏体型不锈钢如1 Cr 17Ni7 、 1 Cr 18Ni9 和0 Cr 18Ni9 ,当暴露于海洋环境时,可能出现一些锈蚀。锈蚀通常是浅薄的,可以很容易地清除。0 Cr 17 Ni 12M 02 含钼不锈钢在海洋环境中基本上是耐腐蚀的。 除了大气条件外,还有另外两个影响不锈钢耐大气腐蚀性能的因素,即表面状态和制作工艺。精加工级别影响不锈钢在有氯化物的环境中的耐腐蚀性能。无光表面(毛面)对腐蚀非常敏感,即正常的工业精加工表面对锈蚀的敏感性较小。表面精加工级别还影响污物和锈蚀的清除。从高精加工的表面上清除污物和锈蚀物很容易,但从无光的表面上清除则很困难。对于无光表面,如果要保持原有的表面状态则需要更经常的清理。 ②淡水 淡水可定义为不分酸性、盐性或微咸,来源于江河、湖泊、池塘或井中的水。 淡水的腐蚀性受水的pH 值、氧含量和成垢倾向性的影响。结垢(硬)水,其腐蚀性主要由在金属表面形成垢的数量和类型来决定。这种垢的形成是存在其中的矿物质和温度的作

304,316不锈钢耐腐蚀性

不锈钢的耐腐蚀性能一般随铬含量的增加而提高,其基本原理是,当钢中有足够的铬时,在钢的表面形成非常薄的致密的氧化膜,它可以防止进一步的氧化或腐蚀。氧化性的环境可以强化这种膜,而还原性环境则必然破坏这种膜,造成钢的腐蚀。 1、在各种环境中的耐腐蚀性能 ①大气腐蚀 不锈钢耐大气腐蚀基本上是随着大气中的氯化物的含量而变化的。因此,靠近海洋或其他氯化物污染源对不锈钢的腐蚀是极为重要的。一定量的雨水,只有对钢表面的氯化物浓度起作用时才是重要的。 农村环境1Cr13、1 Cr 17和奥氏体型不锈钢可以适应各种用途,其外观上不会有显著的改变。因此,在农村暴露使用的不锈钢可以根据价格,市场供应情况,力学性能、制作加工性能和外观来选择。 工业环境在没有氯化物污染的工业环境中,1Cr17和奥氏体型不锈钢能长期工作,基本上保持无锈蚀,可能在表面形成污膜,但当将污膜清除后,还保持着原有的光亮外观。在有氯化物的工业环境中,将造成不锈钢锈蚀。 海洋环境1Cr13和1 Cr 17不锈钢在短时期就会形成薄的锈膜,但不会造成明显的尺寸上的改变。奥氏体型不锈钢如1 Cr 17Ni7、1 Cr 18Ni9和0 Cr 18Ni9,当暴露于海洋环境时,可能出现一些锈蚀。锈蚀通常是浅薄的,可以很容易地清除。0 Cr 17 Ni 12M 02含钼不锈钢在海洋环境中基本上是耐腐蚀的。 除了大气条件外,还有另外两个影响不锈钢耐大气腐蚀性能的因素,即表面状态和制作工艺。 精加工级别影响不锈钢在有氯化物的环境中的耐腐蚀性能。无光表面(毛面)对腐蚀非常敏感,即正常的工业精加工表面对锈蚀的敏感性较小。表面精加工级别还影响污物和锈蚀的清除。从高精加工的表面上清除污物和锈蚀物很容易,但从无光的表面上清除则很困难。对于无光表面,如果要保持原有的表面状态则需要更经常的清理。

不锈钢腐蚀的机理

不锈钢腐蚀的机理 1 氯离子对不锈钢腐蚀的机理 在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高[1 ] 。 氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为 2 穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合 ,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子,与金属形成氯化物,氯化物与 法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。 2 应力腐蚀失效及防护措施 2. 1 应力腐蚀失效机理[2 ] 在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断裂。应力腐蚀一般都是在特定条件下产生: ①只有在拉应力的作用下。②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4 、H2S 溶液中才容易发生应力腐蚀。③一般在合金、碳钢中易发生应力腐蚀。研究表明,应

不锈钢腐蚀的分析

电化学腐蚀 电化学腐蚀就是金属和电解质组成两个电极,组成腐蚀原电池。例如铁和氧,因为铁的电极电位总比氧的电极电位低,所以铁是阳极,遭到腐蚀。特征是在发生氧腐蚀的表面会形成许多直径不等的小鼓包,次层是黑色粉末 状溃疡腐蚀坑陷。 一、基本介绍: 不纯的金属跟电解质溶液接触时,会发生原电池反应,比较活泼的金属失去电子而被氧化,这种腐蚀叫做电化学腐蚀。钢铁在潮湿的空气中所发生的腐蚀是电化学腐蚀最突出的例子。 我们知道,钢铁在干燥的空气里长时间不易腐蚀,但潮湿的空气中却很快就会腐蚀。原来,在潮湿的空气里,钢铁的表面吸附了一层薄薄的水膜,这层水膜里含有少量的氢离子与氢氧根离子,还溶解了氧气等气体,结果在钢铁表面形成了一层电解质溶液,它跟钢铁里的铁和少量的碳恰好形成无数微小的原电池。在这些原电池里,铁是负极,碳是正极。铁失去电子而被氧化.电化学腐蚀是造成钢铁腐蚀的主要原因。 金属材料与电解质溶液接触,通过电极反应产生的腐蚀。电化学腐蚀反应是一种氧化还原反应。在反应中,金属失去电子而被氧化,其反应过程称为阳极反应过程,反应产物是进入介质中的金属离子或覆盖在金属表面上的金属氧化物(或金属难溶盐);介质中的物质从金属表面获得电子而被还原,其反应过程称为阴极反应过程。在阴极反应过程中,获得电子而被还原的物质习惯上称为去极化剂。 在均匀腐蚀时,金属表面上各处进行阳极反应和阴极反应的概率没有显著差别,进行两种反应的表面位置不断地随机变动。如果金属表面有某些区域主

要进行阳极反应,其余表面区域主要进行阴极反应,则称前者为阳极区,后者为阴极区,阳极区和阴极区组成了腐蚀电池。直接造成金属材料破坏的是阳极反应,故常采用外接电源或用导线将被保护金属与另一块电极电位较低的金属相联接,以使腐蚀发生在电位较低的金属上。 二、相关原理: 金属的腐蚀原理有多种,其中电化学腐蚀是最为广泛的一种。当金属被放置在水溶液中或潮湿的大气中,金属表面会形成一种微电池,也称腐蚀电池(其电极习惯上称阴、阳极,不叫正、负极)。阳极上发生氧化反应,使阳极发生溶解,阴极上发生还原反应,一般只起传递电子的作用。腐蚀电池的形成原因主要是由于金属表面吸附了空气中的水分,形成一层水膜,因而使空气中N5等溶解在这层水膜中,形成电解质溶液,而浸泡在这层溶液中的金属又总是不纯的,如工业用的钢铁,实际上是合金,即除铁之外,还含有石墨、渗碳体(F勺C)以及其它金属和杂质,它们大多数没有铁活泼。这样形成的腐蚀电池的阳极为铁,而阴极为杂质,又由于铁与杂质紧密接触,使得腐蚀不断进行。 三、方程式: (1)析氢腐蚀(钢铁表面吸附水膜酸性较强时) 负极(Fe): 蠱-2L fF严 F^+2H2O-^Fe(OH)2 + 2H+ + 2e J H2 正极(杂质): 电池反应: Fe+2H3O = Fe(OH}2 + H3T 由于有氢气放出,所以称之为析氢腐蚀。

各种不锈钢的耐腐蚀性能

各种不锈钢的耐腐蚀性能 在工业控制中经常用到不锈钢管件作为仪器仪表附材,来构成完整的工业控制系统。有必要对各种不锈钢的耐腐蚀性能作一个全面的了解,总结如下: 304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。 301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 304L 是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 304N 是一种含氮的不锈钢,加氮是为了提高钢的强度。 305和384 不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。308 不锈钢用于制作焊条。 309、310、314及330 不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性. 316和317 型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N以及合硫量较高的易切削不锈钢316F。 321、347及348 是分别以钛,铌加钽、铌稳定化的不锈钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。 3Cr13是马氏体不锈钢,用于食品机械及医疗器械等;42CrMo是合金钢,它比45#钢优异,用于条件苛刻的轴类及结构件等。 比较3Cr13钢与40钢、45钢等碳素结构钢的机械性能可知,3Cr13钢的强度比40钢和45钢高,它是一种强度高、塑性好的中碳马氏体不锈钢。马氏体不锈钢在热处理后的不同硬度,对车削加工的影响很大。表1是用YW2材料的车刀对热处理后不同硬度的3Cr13钢的车削情况。可见,退火状0.10.10.1态的马氏体不锈钢虽然硬度低,但车削性能差,这是因为材料塑性和韧性大,组织不均匀,粘附,熔着性强,切削过程易产生刀瘤,不易获得较好的表面质量。而调质处理后硬度在HRC30以下的3Cr13材料,车削加工性较好,易达到较好的表面质量。用硬度在HRC30以上的材料加工出的零件,表面质量虽然较好,但刀具易磨损。所以,在条件允许的情况下,可以在材料进厂后,先进行调质处理,硬度达到 HRC25~HRC30,然后再进行切削加工。

不锈钢的腐蚀研究

无机酸对316L不锈钢的腐蚀 1.前言 不锈钢是含铬11%以上或同时含镍的钢种的统称。它在常温氧化性环境(如大气、水、强氧化性酸等)中容易钝化,使表面产生一层氧化铬为主,保护性很强的薄膜,其腐蚀速率极低。但当温度增高或环境的氧化能力减小时,将由钝态变为活态,腐蚀显著增大。各类不锈钢对有机酸、有机化合物、碱、中性溶液和多种气体都有良好耐蚀性。在非氧化性酸(硫酸、盐酸等)中腐蚀严重。不锈钢设备的腐蚀常常为局部腐蚀,当处于钝态和活态边缘,在含有卤素离子的盐溶液中,可能产生孔蚀。在含有对应力腐蚀敏感离子(如Cl-、OH-等)的溶液中,受应力的部分(如焊缝附近)则可能产生危险的应力腐蚀破裂。焊缝两侧的敏化区还易产生晶间腐蚀。 铬镍钢的耐蚀性和机械性能都超过单纯铬钢。镍的加入促进奥氏体结构的生成,可以得到更好的机械性能,特别是使韧性提高,同时又增大了钝化范围,使它更容易钝化。 316L不锈钢和一般的铬镍不锈钢相似,但由于加入了2%的钼,所以在许多方面比铬镍不锈钢更为优越,特别是在非氧化性酸和热的有机酸、氯化物中的耐蚀性要比铬镍不锈钢好得多,抗孔蚀的能力也较好。 2.不锈钢成分牌号对照表 各种不锈钢的成分表 中外不锈钢牌号对照表

3.无机酸对316L 不锈钢的腐蚀 铬镍钢对一切浓度和温度的盐酸都不适用,316L 在盐酸中的溶解度少许降低一些,但也只能用于极稀的酸。如某些氯化物的溶液中,由于水解作用可能产生极微量的盐酸,可使用316L 不锈钢,但一般容易发生孔蚀。 铬镍不锈钢可使用于常温下5%以下的稀硫酸和90%以上的浓硫酸,316L 的耐蚀性比较好,但使用温度也不宜超过50~70 ℃。对于中等浓度的硫酸和发烟酸,所有的铬镍钢腐蚀都很大,不适用。所有的铬钢对一般浓度的不充气的硫酸都不适用。硫酸中如含有其它物质,如铬酸、重铬酸钠、硝酸钠和大多数硫酸盐类,对不锈钢具有缓蚀效果。 各种牌号的铬和铬镍不锈钢对硝酸都有良好的耐蚀性。对70%以下的稀硝酸,适用温度可到沸点上下。 浓度更高的硝酸,常温下还是适用,但超过50℃则腐蚀很快,特别是90~99%的高浓酸。一般不锈钢只用于常温的浓硝酸。 无机酸对304不锈钢的腐蚀

不锈钢腐蚀实验报告

不锈钢腐蚀行为及影响因素的综合评价 洪宇浩 实验一、钝化曲线法评价不同种不锈钢在同一介质中的腐蚀能力 1.实验目的 ●掌握金属腐蚀原理和金属钝化原理 ●掌握不锈钢阳极钝化曲线的测量 ●掌握恒电位仪软件的操作 2.实验原理 3.实验步骤 本实验测试430不锈钢(黑)和304不锈钢(黄)在0.25mol/L H2SO4和含1.0% NaCl 的0.25mol/L H2SO4中钝化曲线. 电位:-0.60 →1.20 V,50 mV/s 4.注意事项 ●电极的处理 ●灵敏度的选择 5.实验结果 1、304钢在0.25mol/L H2SO4的钝化曲线

-800 -600-400-20002004006008001000 -8-6 -4 -2 2 电流(m A ) 电位(mV) -293,1.841 -139,0.635410,0.235 904,0.708 2、304钢在含1.0% NaCl 的0.25mol/L H 2SO 4中的钝化曲线. -800 -600-400-20002004006008001000 -7-6-5-4-3-2-1 01电流(m A ) 电位(mV) (-267, 0.59829) (-69, 0.38967) (398, 0.20901) (799, 0.38485) 3、430钢在0.25mol/L H 2SO 4中的钝化曲线.

-800 -600-400-200020040060080010001200 -4-202468 1012电流( m A ) 电位(mV) (-287, 11.133) (930, 1.7327) (174, 1.1011) (-21, 1.5724) 4、430钢在含1.0% NaCl 的0.25mol/L H 2SO 4中的钝化曲线. -600 -400 -200 200 400 -10 -5 5 10 15 20 电流(m A ) 电位(mV) (-221, 15.914) (180, 1.1999) (328, 1.9463) (-84, 4.9479)

不锈钢腐蚀牌制作方法

不锈钢腐蚀牌制作方法 金属腐蚀标牌大体分为凹字标牌.凸字标牌和凸凹字结合标牌这三种。腐蚀标牌的基本要求:图案美观.线条清晰.深度合适.底面平整.色彩饱满.拉丝均匀.表面色泽一致。腐蚀标牌的特点:耐候.耐溶剂性较强;即使油漆脱落仍然具有铭牌的功能。金属标牌怎样才能达到审美要求和客户的要求哪?我们必须抛弃八九十年代甚至六七十年代的落后技术和盆盆罐罐的陈旧设备。学习先进的生产技术,使用便捷的耗材和腐蚀液,更换专用设备。 我们青岛睿智达(标牌)表面装饰研究所是研究标牌生产工艺.设备和耗材的专业单位, 积累了较丰富的经验和技巧。就以上问题谈几点看法供大家参考。 一. 学习先进的生产技术。要想学习先进的技术必须做到以下几点: 1.打破陈旧的生产模式。许多标牌厂家有的已有几十年的历史,但至今仍沿用着建厂时的生产模式和技术,如自己熬骨胶.摔胶.太阳晒版.盆盆罐罐腐蚀.手工注漆等,有些技术在当时是先进的,可现在哪?耗费大量的人力物力,成本高.效率低.质量差.做不出理想的标牌。当然,有些老的技术手段至今还有使用价值,甚至还离不开它。但是,时代在发展,技术在进步,我们有些厂家固守陈规,为什么?值得我们思考。 2.加强与同行和标牌研究单位的交流。我认为改革开放的主要意义在于:走出去,拿进来。走出厂房.走出地域.甚至走出国门。去学习先进的管理模式,先进的生产技术,去借鉴.去筛选.拿来发展自己的企业。当然,有人会说,国门我走不出,同行不愿交流,研究单位找不到等一系列的问题。我想问,你去真诚的交流了吗?标牌的研究单位你真地去努力找了吗? 3.合理定位,切勿“好高骛远” 。合理定位就是以多数客户的市场的需求定位,以自己的生产能力定位。各位老板,请问你们标牌的主打产品是什么?我想多数人的回答应该是设备标牌。因为设备标牌市场广阔,批量大,占标牌总量的80% 以上,且制作相对简单,定 型后几乎长期不变。只要你的质量过关,价格合理,可常年为同一客户生产。这里有两个关键词:质量过关.价格合理,也就是说质量决定价格。标牌不仅是设备的铭牌,同时也有为设备画龙点睛之妙笔。可以想象假如你生产的标牌拿在客户手中爱不释手,他还与你讨价还价吗?他还去找其他厂家吗?我想不会的。但反之则不然。切勿“好高骛远” 。如果基本的设备标牌都没做好,你还想去学所谓高档的标牌吗?即使你学会了,有市场吗?我个人认为,从基础做起,先做好基本的,再寻求所谓高档的。 二. 选用耐腐蚀油墨的问题。金属腐蚀标牌使用的耐蚀刻油墨必须具备以下几点要求:便于丝

不锈钢的耐腐蚀性

不锈钢的耐腐蚀性 1、污水中的氯离子浓度 ●V2A/304L 最大值:200mg/l ●V2A/304L,当停留时间大约5h(因为在污水中有可能产生硫化物)最大值:150mg/l ●V4A/316L,316Ti 最大值:400mg/l 2、污水中的pH值 ●V2A/304和V4A/316 最低值:6.5 3、饮用水中的氯离子浓度 ●V2A/301,304L 最大值:100mg/l ●V4A/316L,316Ti 最大值:250mg/l ●pH值最低值:7 4、饮用水中的铁离子浓度最大值2mg/l 铁离子具有腐蚀性,尤其是和氯离子混合 5、污水沟渠内的硫化氢浓度最大值:6 mg/l 在电控柜内最大值:2 mg/l 6、污水中的停留时间最大值:5小时 污水会可能产生腐烂、腐蚀性、有毒气体,并有可能产生高浓度的硫酸盐。 氯离子浓度高于100 mg/l的废水中会产生或释放硫化氢,喷嘴应该配置以对顶部空间冲洗。 7、使用水泵提升 ●停留时间取决于水量和水泵间歇时间。要注意泵池内的停留时间。 ●使用通风设备每小时10次更换空气,(注意预防臭气,可采用生物过滤除臭) ●封闭容器或沟渠需要增加喷嘴进行顶部空间冲洗。 8、高温下安装(大于40摄氏度,或大约104华氏度) 可能对设备产生的影响: ●过度热膨胀引起问题 ●干物质结盖引起机械故障(例如:栅渣或砂粒) ●增加腐蚀风险(例如,在70°C氯离子的允许浓度是20°C允许浓度的50%) 补救措施

●在室内安装设备/电控柜,防止直接暴露在阳光下 ●安装空调/风冷设备 ●使用受极端温度或温度变化影响较小的产品或零部件 ●对设备/控制柜进行隔热处理 9、海边安装 空气中的高浓度氯离子可引起不锈钢腐蚀。 ●使用V4A/316Ti,316L制造的设备 ●使用V4A/316Ti,316L制造的盖罩 ●使用可以抵抗氯离子材料制造的盖罩

不锈钢管道点腐蚀的理论分析

不锈钢管道点腐蚀的理论分析 1 循环水旋转滤网反冲洗系统简介 循环水过滤系统(CFI)的主要设备是旋转海水滤网,在其运行中要不断清除滤出的污物,通过反冲洗系统来实现。反冲洗的水源与主循环水一样引自旋转滤网后的海水水室,后经两级泵加压和中间过滤输至旋转滤网的特定部位冲洗污物,设计流速2.3m/s。反冲洗海水管道设计采用公称直径150mm(壁厚7.11mm)的316L不锈钢管。输送的海水含氯量为17g/L,摩尔浓度为0.48mol/L,为防止回路中海生物滋生,注入次氯酸钠溶液,使循环水入口次氯酸钠的质量分数控制在1×10-6。 2 316L不锈钢管道的使用情况 CFI系统于2000-05-17完成安装交付调试,进行单体调试及系统试运。2001年4月,1号机组管道首次出现泄漏,泄漏部位位于管道竖直段与水平段弯头焊口处,泄漏点表现为穿透性孔,孔的直径很小,但肉眼可见,管道内壁腐蚀处呈扩展状褐色锈迹,判断为典型的不锈钢点腐蚀。当时的处理措施是切除泄漏的管段,更换同材质的新管段,并在新管段底部增加了一个疏水阀,目的是在管道停运期间排空管内积水以防止腐蚀的再次发生。但在2001年9月,1号机管道又发现漏点。2001年10月电厂决定将所有反冲洗管道更换为碳钢衬胶管道。改造后运行至今未发生泄漏。 3 316L不锈钢的抗腐蚀性分析 316L不锈钢属300系列Fe-Cr-Ni合金奥氏体不锈钢,由于铬、镍含量高,是最耐腐蚀的不锈钢之一,并具有很好的机械性能。字母“L”表示低碳(碳含量被控制在0.03%以下),以避免在临界温度范围(430~900℃)内碳化铬的晶界沉淀,在焊后提供特别好的耐蚀性。但316L不锈钢抗氯离子点腐蚀的能力较差。

不锈钢的腐蚀汇总

第三部分 不锈钢的腐蚀 一、概述 1、不锈钢的定义 不锈钢是一系列在空气,水,盐的水溶液,酸以及其它腐蚀介质中具有高度化学稳定性的钢种。在空气中耐腐蚀的钢称为“不锈钢”,在各种腐蚀性较强的介质中耐腐蚀的钢种称为“耐酸钢”。 通常,我们把不锈钢与耐酸钢统称为不锈耐酸钢,或简称为不锈钢。根据习惯用法,不锈钢一词常包括耐酸钢在内。 现有的不锈钢从化学成分来看,都是高铬钢。由于在大气中,当钢中的铬含量超过大约12%时,就基本上不会生锈。钢的这种不锈性一般认为与钢在氧化性介质中的钝化现象有关。 2、不锈钢的分类 不锈钢分类主要有以下几种方式: 1)按化学成分分有----铬钢(及铬钼钢),铬镍钢,铬锰钢(或铬锰氮钢),铬锰镍钢等。 2)按显微组织分有----奥氏体钢,铁素体钢,马氏体钢,奥氏体+铁素体双相钢,铁素体+马氏体双相钢奥氏体钢等 3)按用途分有----耐海水不锈钢,耐点蚀不锈钢(统一在某一钢种上),耐应力腐蚀破裂不锈钢,耐浓硝酸腐蚀不锈钢,耐硫酸腐蚀不锈钢,深冲用不锈钢,高强度不锈钢,易切削不锈钢,耐热不锈钢等。 二、不锈钢的点蚀 1、点蚀现象和识别 点蚀是在不锈钢表面上局部形成的具有一定深度的小孔或锈斑。由于点蚀常常被锈层,腐蚀产物等覆盖,因而难以发现。在金相显微镜下观察点蚀,其断面有多种形貌。 点蚀一般系在特定腐蚀介质中,特别是在含有Clˉ(包括Brˉ,Iˉ)离子的介质中产生。使不锈钢产生点蚀的常见介质有:大气,水介质及水蒸气,海水,漂白液,各种有机和无机氯化物等。 点蚀可在室温下出现并随腐蚀介质温度升高而更易产生并更趋严重。点蚀不仅可导致设备,管线等穿孔而破坏,而且常常诱发晶间腐蚀,应力腐蚀和疲劳腐蚀。虽然,不锈钢的点蚀事故仅占化工,石油等系统腐蚀破坏的~20%,但在大气中使用的不锈钢,却有近80%是由于点蚀和锈斑而损坏。见图1(a)、(b)。 2、机理 一般认为,不锈钢的点蚀是在金属表面非金属夹杂物,析出相,晶界,位错露头等缺

相关文档
最新文档