防反二极管的使用说明

合集下载

TVS ESD 二极管介绍与应用说明

TVS ESD 二极管介绍与应用说明

TVS ESD 二极管介绍与应用说明便携式设备的ESD保护十分重要,而TVS二极管是一种十分有效的保护器件,与其它器件相比有其独特的优势,但在应用时应当针对不同的保护对象来选用器件,因为不同的端口可能受到的静电冲击有所不同,不同器件要求的保护程度也有不同。

要注意相应的参数鉴别以及各个生产商的不同设计,同时还要进行合理的PCB布局。

本文介绍在便携式设备的ESD保护中如何应用TVS二极管器件。

便携式设备如笔记本电脑、手机、PDA、MP3播放器等,由于频繁与人体接触极易受到静电放电(ESD)的冲击,如果没有选择合适的保护器件,可能会造成机器性能不稳定,或者损坏。

更坏的情况是查不出确切的原因,使用户误认为是产品质量问题而损坏企业信誉。

一般情况下,对此类设备暴露在外面可能与人体接触的端口都要求进行防静电保护,如键盘、电源接口、数据口、I/O口等等。

现在比较通用的ESD标准是IEC61000-4-2,应用人体静电模式,测试电压的范围为2kV~15kV(空气放电),峰值电流最高为20A/ns,整个脉冲持续时间不超过60ns。

在这样的脉冲下所产生的能量总共不超过几百个微焦尔,但却足以损坏敏感元器件。

便携式设备所采用的IC器件大多是高集成度、小体积产品,精密的加工工艺使硅晶氧化层非常薄,因而更易击穿,有的在20V左右就会受到损伤。

传统的保护方法已不再普遍适用,有的甚至还会造成对设备性能的干扰。

TVS二极管的特点可用于便携式设备的ESD保护器件有很多,例如设计人员可用分立器件搭建保护回路,但由于便携设备对于空间的限定以及避免回路自感,这种方法已逐渐被更加集成化的器件所替代。

多层金属氧化物器件、陶瓷电容还有二极管都可以有效地进行防护,它们的特性及表现各有不同,TVS二极管在此类应用中的独特表现为其赢得了越来越大的市场。

TVS二极管最显着的特点一是反应迅速,使瞬时脉冲在没有对线路或器件造成损伤之前就被有效地遏制,二是截止电压比较低,更适用于电池供电的低电压回路环境。

防电源接反,这里有个方法,加个肖特基二级管就可以!

防电源接反,这里有个方法,加个肖特基二级管就可以!

防电源接反,这里有个方法,加个肖特基二级管就可以!熟悉二极管的特性就知道,二极管显著的一个特性就是单向导电性。

防止电路板正负极接反,在电路板中加二极管是最简单有效的方法。

为什么用肖特基二极管呢?因为肖特基二极管功耗低、超高速。

其最显著特点是反向恢复时间极短(可以小到几纳秒),正向导通压降0.4V左右。

其主要用于高频、低压、大电流整流二极管、续流二极管、保护二极管,也有在微波通信等电路中作整流二极管、小信号检波二极管使用。

在变频器、通信电源等应用中比较常见。

那么该怎么在电路板中加肖特基二极管呢?有几种方法:(1)最常见的就是在电路板电源输入正极上加一个二极管如图所示,在电源的正极上接个二极管,由二极管的单向导电性可知,此时,电源与负载电路板形成一条回路,电路板可正常工作。

当电源正负极接反时,如图所示:此时电流从电路板负极流向正极,经过二极管处时,由于二极管的单向导电性,阻止了电流流过,此时的电路板与电源无法构成一条回路,因此电源接反对电路板没有任何影响。

假如没有这个防电源接反二极管,当电源接反时,此时负载电路构成回路,负载流过的电流与正常情况不一样,从而导致负载电路烧毁。

(2)在电路板电源输入负极上加一个二极管原理和加在正极一样,当电源接反时,二极管阻止了电流流过,无法形成回路。

(3)一种无极电路接法上面单二极管防反接原理,只有当电源正负极接线正常时电路板才能正常工作。

下面介绍一种方法:电源正负极接反一样可以正常工作的电路原理。

具体原理如图所示。

(1)当输入IN1为正,IN2为负时,D1导通,D3截止,正电压电流从D1流向电路板正极;D4导通,D2截止,电路板负极电流由D4流向IN2,形成一条完整的回路,电路板正常工作。

(2)当输入IN2为正,IN1为负时,D2导通,D4截止,正电压电流从D2流向电路板正极;D3导通,D1截止,电路板负极电流由D3流向IN1,形成一条完整的回路,电路板正常工作。

总结:此电路的优点是,无论电源的正负极如何接线,电路板一样正常工作;缺点是,整个回路有两个二极管的压降。

防反二极管

防反二极管

太阳能电池方阵-防反充(防逆流)和旁路二极管在太阳能电池方阵中,二极管是很的器件,常用的二极管基本都是硅整流二极管,在选用时要规格参数留有余量,防止击穿损坏。

一般反向峰值击穿电压和最大工作电流都要取最大运行工作电压和工作电流的2倍以上。

二极管在太阳能光伏发电系统中主要分为两类。

1、防反充(防逆流)二极管防反充二极管的作用之一是防止太阳能电池组件或方阵在不发电时,蓄电池的电流反过来向组件或方阵倒送,不公消耗能量,而且会使组件或方阵发热甚至损坏;作用之二是在电池方阵中,防止方阵各支路之间的电流倒送。

这是因为串联各去路的输出电压不可能绝对相等,各支路电压总有高低之差,或者某一支路故障、阴影遮蔽等使该支路的输出电压降低,高电压支路的电流就会流向低电压支路,甚至会使方阵总体输出电压的降低。

在各支路中串联接入防反充二极管就避免了这一现象的发生。

在独立光伏发电系统中,有些光伏控制器的电路上已经接入了防反充二极管,即控制器带有防反充功能时,组件输出就不需要再接二极管了。

防反充二极管存在有正向导通压降,串联在电路中会有一定的功率消耗,一般使用的硅整流二极管压降为0.7V左右,大功率管可达1~20.3V,但其耐压和功率都较小,适合小功率场合应用。

2、旁路二极管当有较多的太阳能电池组件串联组成电池方阵或电池方阵的一个支路时,需要在每块电池板的正负极输出端反向并联1个(或2~3个)二极管,这个并联在组件两端的二极管就叫旁路二极管。

旁路二极管的作用是防止方阵中的某个组件或组件中的某一部分被阴影遮挡或出现故障停止发电时,在该组件旁路二极管两端会形成正向偏压使二极管导通,组件串工作电流绕过故障组件,经二极管流过,不影响其他正常组件的发电,同时也保护被旁路组件避免受到较高的正向偏压或由于“热斑效应”发热而损坏。

旁路二极管一般都直接安装在接线盒内,根据组件功率大小和电池片串的多少,安装1~3个二极管。

旁路二极管也不是任何场合都需要的,当组件单独使用或并联使用时,是不需要接二极管的。

防反充和旁路二极管

防反充和旁路二极管

防反充(防逆流)和旁路二极管在太阳能电池方阵中,二极管是很重要的器件,常用的二极管基本都是硅整流二极管,在选用时要注意规格参数留有余量,防止击穿损坏。

一般反向峰值击穿电压和最大工作电流都要取最大运行工作电压和工作电流的2倍以上。

二极管在太阳能光伏发电系统中主要分为两类。

①防反充(防逆流)二极管防反充二极管的作用之一是防止太阳能电池组件或方阵在不发电时,蓄电池的电流反过来向组件或方阵倒送,不仅消耗能量,而且会使组件或方阵发热甚至损坏;作用之二是在电池方阵中,防止方阵各支路之间的电流倒送。

这是因为串联各支路的输出电压不可能绝对相等,各支路电压总有高低之差,或者某一支路因为故障、阴影遮蔽等使该支路的输出电压降低,高电压支路的电流就会流向低电压支路,甚至会使方阵总体输出电压降低。

在各支路中串联接人防反充二极管ds就可避免这一现象的发生。

在独立光伏发电系统中,有些光伏控制器的电路中已经接入了防反充二极管,即控制器带有防反充功能时,组件输出就不需要再接二极管了。

防反充二极管存在有正向导通压降,串联在电路中会有一定的功率消耗,一般使用的硅整流二极管管压降为0.7v左右,大功率管可达1~2v。

肖特基二极管虽然管压降较低,为0.2~0.3v,但其耐压和功率都较小,适合小功率场合应用。

②旁路二极管当有较多的太阳能电池组件串联组成电池方阵或电池方阵的一个支路时,需要在每块电池板的正负极输出端反向并联1个(或2~3个)二极管db,这个并联在组件两端的二极管就叫旁路二极管。

旁路二极管的作用是防止方阵串中的某个组件或组件中的某一部分被阴影遮挡或出现故障停止发电时,在该组件旁路二极管两端会形成正向偏压使二极管导通,组件串工作电流绕过故障组件,经二极管旁路流过,不影响其他正常组件的发电,同时也保护被旁路组件受到较高的正向偏压或由于“热斑效应”发热而损坏。

旁路二极管一般都直接安装在组件接线盒内,根据组件功率大小和电池片串的多少,安装1~3个二极管。

组件中旁路二极管和防反充二极管

组件中旁路二极管和防反充二极管

组件中旁路二极管和防反充二极管
太阳能电池也是一种二极管,它的伏安特性如下图所示:
图示中太阳能电池的反向击穿电压在17V左右。

反向击穿电压与电池片的厚度有关,不同厚度的电池片击穿电压会不同。

一般不会低于10V。

一、旁边二极管的必要性
当组件中有一片电池片被挡时,如下图所示:
1、当负载短路时,组件电压超过电池片的反向击穿电压,则组件的所有功率都作用在被遮挡的电池片上。

2、当负载不是短路,组件电压超过电池片的反向击穿电压,则组件的所有功率被被遮挡的电池片和负载分担。

3、当负载不是短路,比如是一个蓄电池,被挡电池片没有反向击穿,则被挡电池片上的电阻很大,电流很小,功率当然也是很小。

处于1、2两种情况都有可能产生热斑效应。

处于3时不会发生热斑效应。

如果没有旁路二极管,当负载短路,则整串组件的电压都会加到被遮挡电池片上,电池片很容易反向击穿,可能产生热斑效应。

加上旁路二极管后,上图Ux的值不会超过0.6V。

相当于,只有整串组件的一半电压作用在被遮挡的电池片上。

该电池片不会反向击穿,不会产生热斑效应。

二、防反充二极管的必要性。

多路组件并联,则其它的组件都会给它供电。

可能会产生热斑效应。

不会产生热斑效应。

三、两串17V组件并联的两种方案:
方案1:
该方案加工难度大。

方案2:
该方案当其中一个串联支路被遮挡,与它并联的一串会给它供电,但不会产生太
高的热量,不至于会出现热斑现象。

(推荐)
日期:10.11.30。

汇流箱中的防反二极管的作用

汇流箱中的防反二极管的作用

汇流箱中的防反二极管针对汇流箱产品比较多听到汇流箱故障了,对它进行分类,一般反馈过来比较多的情况,第一是箱体生锈情况。

第二是保险丝熔断数量较多。

第三是保险丝座发黑且有熔化变形情况。

第四是断路器经常跳闸。

第五是监控不工作,后台读不到监控的术语。

按照汇流箱项目进度来做一个说明。

第一是前期设计方案包括元器件选型。

第二部分是内部布局设计和加工工艺。

第三个部分是现场安装及施工。

第四部分是后期运维。

把汇流箱从最开始到最后的过程分解开,根据过程把汇流箱可能出现的问题做一个说明。

前期设计方案,在谈论汇流箱质量的时候,往往都忽略了因为前期设计方案问题导致的产品先天性的问题。

第一个例子,对使用环境不同,箱体材质的选择考虑不组。

GJMH160A1600V是杭州国晶专业防反二极管,在业内传为佳话。

针对西北干旱少雨地区,建议使用冷板、镀锌板、覆铝锌板喷涂。

针对东部沿海地区或腐蚀性环境,使用不锈钢喷涂和PC。

第二个距离,对不同电站类型需要选择的汇流箱类型考虑。

光伏电站现阶段普通认可需要带智能监控汇流箱,可以监控每路组串电流,总电压、防雷器状态,短路器状态及箱体内部温度。

比如对于带跟踪系统的光伏电站,需要在监控的基础上增加放返二极管。

在这里面还需要考虑的因素,高温、雷击、沿海、严寒、海拔等等。

针对前期设计方案的元器件选型,我把它分为五类:箱体、断路器、防雷器,保险丝及座,监控模块。

针对箱体部分,主要讲一下常见的生锈问题。

这里主要讲一下箱体的防腐性能,这个里面表面处理工艺采用的浅处理工艺是酸洗磷化/陶化,包括电泳底漆。

断路器,在选型当中需要注意以下几个问题,第一,交流断路器不能当直流用。

第二,根据使用环境的温度不同,直流微断使用的环境温度一般是低温-30度。

第三,塑壳断路器的分段能力不能低于15KA微断的分段能力仅为6KA,所以这里面就涉及到成本的差别,这也是对系统稳定性的考量。

下面讲比较核心的部件就是熔断器和熔断器座,这里我只讲一点,关于熔断器的分段能力,所以这里只提了一个33KA,这里面的好处是,当你的分段能力越大,当你的系统出现短路或者有环流故障的时候,这个熔断器的保护能够更迅速,更安全,更可靠。

光伏电站防反二极管的典型应用

光伏电站防反二极管的典型应用

光伏电站防反二极管的典型应用一、引言集中式并网光伏电站是利用荒漠,集中建设大型光伏电站,发电直接并入公共电网,接入高压输电系统供给远距离负荷。

防反二极管在集中式并网光伏电站建设中,不可或缺的原因,主要是集中式光伏电站发展初期重点考虑系统运行的稳定性和可靠性等因素;随着集中式光伏电站建设规模的增大,节约成本成为集中式光伏电站建设的重点考虑问题。

二、防反二极管的作用利用二极管的单向导电性,在每个组串的正极串联一个防反二极管。

主要作用是:防止因光伏组件正负极反接导致的电流反灌而烧毁光伏组件;防止光伏组件方阵各支路之间存在压差而产生电流倒送,即环流;当所在组串出现故障时,作为一个断开点,与系统有效隔离,在保护故障组串的同时,为检修提供方便。

三、防反二极管的选型大电流的二极管主要有整流二极管和肖特基二极管。

这两种二极管的正向导通压降分别是:肖特基二极管约1.2V、大容量整流二极管约0.8V。

在通过相同电流的情况下,肖特基二极管的导通损耗大于整流二极管。

因此,集中式光伏电站建设中普遍采用大容量整流二极管。

选用大容量整流二极管主要考虑以下两方面:最大耐压和最大整流电流。

器件的最大耐压必须大于系统设计电压的1.5倍,最大电流值必须大于系统设计最大电流的2倍。

目前市场上大部分汇流箱、直流柜、逆变器等光伏设备上的防反二极管采用浙江柳晶整流器有限生产的光伏防反二极管产品,光伏设备比较常用的防反二极管型号有:MDK55A1600V MD55A1600V MDA55A1600V MD25A1600V MDK25A1600VMDA25A1600V MDK26A1600V MDK160A1600V MD300A1600V MDK300A1600VMDA300A1600V MDA500A1600V MD500A1600V MDK500A1600V等,柳晶目前采用的3D三维技术,还可以免费提供样品、3D三维图纸、技术资料、光盘、目录本等资料,可最大限度满足可以设计汇流箱、直流柜的需要。

防反充二极管的工作原理

防反充二极管的工作原理

防反充二极管的工作原理亲爱的小伙伴,今天咱们来唠唠防反充二极管这个超有趣的小玩意儿。

你知道吗?在电路的世界里呀,就像在一个小小的社区里一样,每个元件都有它独特的作用。

防反充二极管呢,就像是一个特别机灵的小卫士。

想象一下,咱们有一个电池,就好比是一个小能量仓库,里面存着电呢。

这个电池可能是给某个小设备供电的,比如说一个超酷的小收音机或者是一个可爱的小夜灯。

如果没有防反充二极管,那就可能会出现大麻烦哦。

比如说,当这个设备连接到一个外部电源的时候,可能会发生电流倒灌的情况。

这就像是本来应该是从仓库往外拿东西(电流从电池流出给设备供电),结果突然有人要把东西往仓库里乱塞(外部电流往电池里灌),这可不行呀。

那防反充二极管是怎么解决这个问题的呢?它呀,就像是一个单向的小阀门。

二极管有两个电极,一个是阳极,一个是阴极。

当电流按照正确的方向流动的时候,也就是从阳极流向阴极的时候,它就像打开了门一样,电流可以顺利地通过。

这个时候,电池的电可以正常地给设备供电,或者外部电源也能正常地给设备供电并且给电池充电(如果是可充电电池的话)。

但是呢,如果电流想反着来,从阴极往阳极跑,这时候二极管就像一个紧闭的大门,坚决不让电流通过。

这就有效地防止了电流的反充。

比如说,你有一个太阳能充电板给电池充电,当太阳下山了,没有阳光的时候,如果没有这个防反充二极管,电池的电可能就会往太阳能充电板那边跑,这不是浪费电池的电嘛。

有了这个二极管,电池的电就乖乖地待在电池里,不会乱跑啦。

而且哦,这个防反充二极管还特别的“执着”呢。

不管反向的电压有多大,只要在它的承受范围之内,它就坚决不会让反向电流通过。

这就像一个特别有原则的小卫士,不管坏人怎么诱惑(反向电压),它都坚守自己的岗位。

在一些小的电子设备里,你可能看不到这个防反充二极管,但是它可一直在默默地发挥着作用呢。

它就像是一个幕后英雄,虽然不起眼,但是缺了它可不行。

比如说那些便携式的小音箱,又能插电用,又能用电池。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

防反二极管的使用说明
使用说明:
一、使用条件及注意事项:
1、使用环境应无剧烈振动和冲击,环境介质中应无腐蚀金属和破坏绝缘的杂质和气氛。

2、模块管芯工作结温:二极管为-40℃∽150℃;环境温度不得高于40℃;环境湿度小于86%。

3、模块在使用前一定要加装散热器,散热器的选配见下节。

散热可采用自然冷却、强迫风冷或水冷;当实际负载电流大于40A的设备,一般都需要选择强迫风冷设计。

强迫风冷时,风速应大于6米⁄秒。

4、对于加装散热器后,如何检查散热器是否配置合适。

(1)可以用温度表测量散热器的温度(靠近模块与散热器安装结合部),来分析是否能够可靠运行。

(2)测量散热器温度的时间点把握。

待设备开机运行30分钟-60分钟,达到热平衡后。

(3)测量到的温度数据如果做分析?一般情况下,我们要求防反二极管安装的散热器最高有效温升小于50℃。

即当散热器工作的环境温度在25℃时,散热器的温度应该小于75℃;如果环境温度达到45℃时,散热器的温度应该小于95℃。

5、必须保证控制柜内控制循环流动。

当防反二极管模块安装于控制柜内时,必须在控制柜顶部安装2-3台往顶部外抽的轴流风机(热风是往上升的,有利于散热),同时控制柜靠近底部四周最好多开些百叶窗。

二、安装注意事项:
1、由于MDK光伏防反二极管模块是绝缘型(即模块接线柱对铜底板之间的绝缘耐压大于2.5KV 有效值),因此可以把多个模块安装在同一散热器上,或装置的接地外壳上。

2、散热器安装表面应平整、光滑,不能有划痕、磕碰和杂物。

散热器表面光洁度应小于10μm。

模块安装到散热器上时,在它们的接触面之间应涂一层很薄的导热硅脂。

涂脂前,用细砂纸把散热器接触面的氧化层去掉,然后用无水乙醇把表面擦干净,使接触良好,以减少热阻。

模块紧固到散热器表面时,采用M5或M6螺钉和弹簧垫圈,并以4NM力矩紧固螺钉与模块主电极的连线应采用铜排,并有光滑平整的接触面,使接触良好。

模块工作小时后,各个螺钉须再次紧固一遍。

模块散热器选择
用户选配散热器时,必须考虑以下因素:
①模块工作电流大小,以决定所需散热面积;
②使用环境,据此可以确定采取什么冷却方式——自然冷却、强迫风冷、还是水冷;
③装置的外形、体积、给散热器预留空间的大小,据此可以确定采用什么形状的散热器。

一般而论,大多数用户会选择铝型材散热器。

为方便用户,对我公司生产的各类模块,在特性参数表中都给出了所需散热面积。

此面积是在模块满负荷工作且在强迫风冷时的参考值。

下面给出散热器长度的计算公式:
模块所需散热面积=(散热器周长)×(散热器长度)+(截面积)×2
其中,模块所需散热面积为模块特性参数表中给出的参考值,散热器周长、截面积可以在散热器厂家样本中查到,散热器长度为待求量。

郑重声明:目前市场上充斥着各种劣质散热器,请在购买时注意鉴别,如因使用劣质散热器造成模块损坏或其他严重后果,我公司概不负责。

相关文档
最新文档