2014年高考数学(文)二轮复习专题提升训练(江苏专用):5 导数的综合应用 Word版含解析]

合集下载

2014届高考数学江苏专用(文)审题·解题·回扣三角函数的综合应用

2014届高考数学江苏专用(文)审题·解题·回扣三角函数的综合应用

解答题规范练三角函数的综合应用(推荐时间:80分钟)1. 设函数f (x )=a ·b ,其中向量a =(2cos x,1),b =(cos x ,3sin 2x ),x ∈R .(1)若函数f (x )=1-3,且x ∈⎣⎡⎦⎤-π3,π3,求x 的值; (2)求函数y =f (x )的单调增区间,并在给出的坐标系中画出y =f (x )在区间[0,π]上的图象.解 (1)依题设得f (x )=2cos 2x +3sin 2x =1+cos 2x +3sin 2x =2sin ⎝⎛⎭⎫2x +π6+1. 由2sin ⎝⎛⎭⎫2x +π6+1=1-3,得sin ⎝⎛⎭⎫2x +π6=-32. ∵-π3≤x ≤π3,∴-π2≤2x +π6≤5π6,∴2x +π6=-π3,即x =-π4.(2)当-π2+2k π≤2x +π6≤π2+2k π(k ∈Z ),即-π3+k π≤x ≤π6+k π(k ∈Z )时,函数y =f (x )单调递增,即函数y =f (x )的单调增区间为⎣⎡⎦⎤-π3+k π,π6+k π(k ∈Z ),2. 已知向量a =(cos x +3sin x ,3sin x ),b =(cos x -3sin x ,2cos x ),函数f (x )=a ·b -cos2x .(1)求函数f (x )的值域;(2)若f (θ)=15,θ∈⎣⎡⎦⎤π6,π3,求sin 2θ的值. 解 (1)f (x )=a ·b -cos 2x=(cos x +3sin x )(cos x -3sin x )+3sin x ·2cos x -cos 2x =cos 2x -3sin 2x +23sin x cos x -cos 2x =cos 2x -sin 2x -2sin 2x +23sin x cos x -cos 2x=cos 2x +3sin 2x -1 =2sin ⎝⎛⎭⎫2x +π6-1, f (x )的值域为[-3,1].(2)由(1)知f (θ)=2sin ⎝⎛⎭⎫2θ+π6-1, 由题设2sin ⎝⎛⎭⎫2θ+π6-1=15,即sin ⎝⎛⎭⎫2θ+π6=35, ∵θ∈⎣⎡⎦⎤π6,π3,∴2θ+π6∈⎣⎡⎦⎤π2,5π6, ∴cos ⎝⎛⎭⎫2θ+π6=-45, ∴sin 2θ=sin ⎣⎡⎦⎤⎝⎛⎭⎫2θ+π6-π6 =sin ⎝⎛⎭⎫2θ+π6cos π6-cos ⎝⎛⎭⎫2θ+π6sin π6 =35×32-⎝⎛⎭⎫-45×12=33+410.3. 已知向量m =⎝⎛⎭⎫sin A ,12与n =(3,sin A +3cos A )共线,其中A 是△ABC 的内角. (1)求角A 的大小;(2)若BC =2,求△ABC 面积S 的最大值. 解 (1)∵m ∥n ,∴sin A ·(sin A +3cos A )-32=0.∴1-cos 2A 2+32sin 2A -32=0, 即32sin 2A -12cos 2A =1, 即sin ⎝⎛⎭⎫2A -π6=1. ∵A ∈(0,π),∴2A -π6∈⎝⎛⎭⎫-π6,11π6. 故2A -π6=π2,A =π3.(2)∵BC =2,由余弦定理得b 2+c 2-bc =4,又b 2+c 2≥2bc ,∴bc ≤4(当且仅当b =c 时等号成立), 从而S △ABC =12bc sin A =34bc ≤34×4= 3.即△ABC 面积S 的最大值为 3.4. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -3cos C cos B =3c -ab.(1)求sin Csin A的值; (2)若B 为钝角,b =10,求a 的取值范围. 解 (1)由正弦定理,设a sin A =b sin B =c sin C=k , 则3c -a b =3k sin C -k sin A k sin B =3sin C -sin Asin B, 所以cos A -3cos C cos B =3sin C -sin A sin B,即(cos A -3cos C )sin B =(3sin C -sin A )cos B , 化简可得sin(A +B )=3sin(B +C ). 又A +B +C =π,所以sin C =3sin A , 因此sin Csin A =3.(2)由sin Csin A=3得c =3a . 由题意知⎩⎪⎨⎪⎧a +c >ba 2+c 2<b2,又b =10,所以52<a <10.5. 已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫其中x ∈R ,A >0,ω>0,-π2<φ<π2的部分图象如图所示.(1)求函数f (x )的解析式;(2)已知函数f (x )的图象上的三点M ,N ,P 的横坐标分别为-1,1,5,求sin ∠MNP 的值. 解 (1)由图可知,A =1,最小正周期T =4×2=8. 由T =2πω=8,得ω=π4.又f (1)=sin ⎝⎛⎭⎫π4+φ=1,且-π2<φ<π2, 所以π4+φ=π2,解得φ=π4.所以f (x )=sin ⎝⎛⎭⎫π4x +π4. (2)因为f (-1)=0,f (1)=1, f (5)=sin ⎝⎛⎭⎫5π4+π4=-1,所以M (-1,0),N (1,1),P (5,-1). 所以MN =5,PN =20,MP =37. 由余弦定理得cos ∠MNP =5+20-3725×20=-35.因为∠MNP ∈(0,π), 所以sin ∠MNP =45.6. 已知向量a =(cos α,sin α),b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),其中0<α<x <π.(1)若α=π4,求函数f (x )=b ·c 的最小值及相应x 的值;(2)若a 与b 的夹角为π3,且a ⊥c ,求tan 2α的值.解 (1)∵b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),α=π4,∴f (x )=b ·c =cos x sin x +2cos x sin α+sin x cos x +2sin x cos α=2sin x cos x +2(sin x +cos x ).令t =sin x +cos x ⎝⎛⎭⎫π4<x <π, 则2sin x cos x =t 2-1,且-1<t < 2. 则y =t 2+2t -1=⎝⎛⎭⎫t +222-32,-1<t <2, ∴t =-22时,y min =-32,此时sin x +cos x =-22, 即2sin ⎝⎛⎭⎫x +π4=-22, ∵π4<x <π,∴π2<x +π4<54π, ∴x +π4=76π,∴x =11π12.∴函数f (x )的最小值为-32,相应x 的值为11π12.(2)∵a 与b 的夹角为π3,∴cos π3=a ·b |a |·|b |=cos αcos x +sin αsin x =cos(x -α).∵0<α<x <π,∴0<x -α<π,∴x -α=π3.∵a ⊥c ,∴cos α(sin x +2sin α)+sin α(cos x +2cos α)=0, ∴sin(x +α)+2sin 2α=0,即sin ⎝⎛⎭⎫2α+π3+2sin 2α=0. ∴52sin 2α+32cos 2α=0,3∴tan 2α=-5.。

2014高考数学理二轮复习好题汇编(真题 模拟):导数及其应用-推荐下载

2014高考数学理二轮复习好题汇编(真题 模拟):导数及其应用-推荐下载

C.②④
B.①④
D.②③
【解析】 函数的导数为 f′(x)=3x2-9x+6=3(x2-3x+2)=3(x-1)
(x-2).则函数在 x=1 处取得极大值,在 x=2 处取得极小值,因为 f(a)=f(b)
=f(c)=0,所以函数有 3 个零点,则 f(1)>0,f(2)<0,即Error!解得Error!即
【答案】 B 9
2.(2013·临沂模拟)已知 f(x)=x3-2x2+6x-abc,a<b<c,且 f(a)=f(b) =f(c)=0,现给出如下结论:
①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(2)>0;
④f(0)f(2)<0.其中正确结论的序号为( )
A.①③
第1页 共7页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2014年高考导数的综合应用(精华)

2014年高考导数的综合应用(精华)

导数的综合应用(推荐时间:70分钟)1. 设函数f (x )=x 3-92x 2+6x -a .(1)对于任意实数x ,f ′(x )≥m 恒成立,求m 的最大值;(2)若方程f (x )=0有且仅有一个实根,求a 的取值范围.解 (1)f ′(x )=3x 2-9x +6, 因为x ∈(-∞,+∞),f ′(x )≥m , 即3x 2-9x +(6-m )≥0恒成立,所以Δ=81-12(6-m )≤0,解得m ≤-34,即m 的最大值为-34.(2)因为当x <1时,f ′(x )>0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以当x =1时,f (x )取极大值f (1)=52-a ;当x =2时,f (x )取极小值,f (2)=2-a , 故当f (2)>0或f (1)<0时,f (x )=0仅有一个实根. 解得a <2或a >52.2. 已知x =1是函数f (x )=(ax -2)e x (a ∈R )的一个极值点.(1)求a 的值;(2)当x 1,x 2∈[0,2]时,证明:f (x 1)-f (x 2)≤e. (1)解 f ′(x )=(ax +a -2)e x , 由已知得f ′(1)=0,解得a =1.当a =1时,f (x )=(x -2)e x 在x =1处取得极小值.所以a =1.(2)证明 由(1)知,f (x )=(x -2)e x ,f ′(x )=(x-1)e x ,当x ∈[0,1]时,f ′(x )=(x -1)e x ≤0, f (x )在区间[0,1]上单调递减; 当x ∈(1,2]时,f ′(x )=(x -1)e x >0, f (x )在区间(1,2]上单调递增,所以在区间[0,2]上,f (x )的最小值为f (1)=-e. 又f (0)=-2,f (2)=0,所以在区间[0,2]上,f (x )的最大值为f (2)=0, 对于x 1,x 2∈[0,2],有f (x 1)-f (x 2)≤f (x )max -f (x )min ,所以f (x 1)-f (x 2)≤0-(-e)=e. 3. 已知函数f (x )=x ln x .(1)求函数f (x )的极值;(2)设函数g (x )=f (x )-k (x -1),其中k ∈R ,求函数g (x )在区间[1,e]上的最大值.解 (1)f ′(x )=ln x +1(x >0).令f ′(x )≥0,得ln x ≥-1=ln e -1,x ≥1e;令f ′(x )≤0,得x ∈(]0,1e . 所以f (x )的单调递增区间是[)1e ,+∞,单调递减区间是(]0,1e ,f (x )的极小值为f ()1e =-1e.f (x )无极大值.(2)g (x )=x ln x -k (x -1),则g ′(x )=ln x +1-k ,由g ′(x )=0,得x =e k -1,所以,在区间(0,e k -1)上,g (x )为递减函数, 在区间(e k -1,+∞)上,g (x )为递增函数. 当e k -1≤1,即k ≤1时,在区间[1,e]上,g (x )为递增函数,所以,g (x )的最大值为g (e)=e -k e +k ; 当1<e k -1<e ,即1<k <2时, g (x )的最大值是g (1)或g (e), 由g (1)=g (e),得k =ee -1,当1<k <ee -1时,g (e)=e -e k +k >0=g (1),g (x )最大值为g (e)=e -k e +k , 当e e -1≤k <2时,g (e)=e -e k +k <0=g (1),g (x )最大值为g (1)=0;当e k -1≥e ,即k ≥2时,在区间[1,e]上,g (x )为递减函数,所以g (x )最大值为g (1)=0.综上,当k <ee -1时,g (x )最大值为e -k e +k ;当k ≥ee -1时,g (x )的最大值为0.4. 某网店专卖当地某种特产,由以往的经验表明,不考虑其他因素,该特产每日的销售量y (单位:千克)与销售价格x (单位:元/千克,1<x ≤5)满足:当1<x ≤3时,y =a (x -3)2+bx -1(a ,b 为常数);当3<x ≤5时,y =-70x +490,已知当销售价格为2元/千克时,每日可售出该特产700千克;当销售价格为3元/千克时,每日可售出该特产150千克.(1)求a ,b 的值,并确定y 关于x 的函数解析式;(2)若该特产的销售成本为1元/千克,试确定销售价格x 的值,使店铺每日销售该特产所获利润f (x )最大(x 精确到0.01元/千克). 解 (1)因为x =2时,y =700;x =3时,y =150,所以⎩⎪⎨⎪⎧a +b =700b2=150,解得a =400,b =300.每日的销售量y =⎩⎪⎨⎪⎧400(x -3)2+300x -1 (1<x ≤3)-70x +490 (3<x ≤5).(2)由(1)知,当1<x ≤3时,每日销售利润f (x )=⎣⎡⎦⎤400(x -3)2+300x -1(x -1)=400(x -3)2(x -1)+300=400(x 3-7x 2+15x -9)+300(1<x ≤3) f ′(x )=400(3x 2-14x +15). 当x =53,或x =3时f ′(x )=0;当x ∈()1,53时,f ′(x )>0,f (x )单调递增; 当x ∈()53,3时,f ′(x )<0,f (x )单调递减.∴x =53是函数f (x )在(1,3]上的唯一极大值点,f ()53=400×3227+300>700;当3<x ≤5时,每日销售利润f (x )=(-70x +490)(x -1)=-70(x 2-8x +7)f (x )在x =4时有最大值,且f (4)=630<f ()53. 综上,销售价格x =53≈1.67元/千克时,每日利润最大.5. 已知函数f (x )=ln(e x +a +1)(a 为常数)是实数集R 上的奇函数,函数g (x )=λf (x )+sin x 在区间[-1,1]上是减函数. (1)求实数a 的值;(2)若g (x )≤λt -1在x ∈[-1,1]上恒成立,求实数t 的最大值;(3)若关于x 的方程ln x f (x )=x 2-2e x +m 有且只有一个实数根,求m 的值.解 (1)∵f (x )=ln(e x +a +1)是实数集R 上的奇函数,∴f (0)=0,即ln(e 0+a +1)=0⇒2+a =1⇒a =-1,将a =-1代入f (x )=ln e x =x ,显然为奇函数. (2)由(1)知g (x )=λf (x )+sin x =λx +sin x , ∴g ′(x )=λ+cos x ,x ∈[-1,1], ∴要使g (x )是区间[-1,1]上的减函数, 则有g ′(x )≤0在x ∈[-1,1]上恒成立, ∴λ≤(-cos x )min ,∴λ≤-1.要使g (x )≤λt -1在x ∈[-1,1]上恒成立, 只需g (x )max =g (-1)=-λ-sin 1≤λt -1在λ≤-1时恒成立即可.∴(t +1)λ+sin 1-1≥0(其中λ≤-1)恒成立即可.令h (λ)=(t +1)λ+sin 1-1(λ≤-1),则⎩⎨⎧t +1≤0,h (-1)≥0,即⎩⎨⎧t +1≤0,-t -2+sin 1≥0,∴t ≤sin 1-2,∴实数t 的最大值为sin 1-2. (3)由(1)知方程ln xf (x )=x 2-2e x +m ,即ln x x=x 2-2e x +m , 令f 1(x )=ln xx ,f 2(x )=x 2-2e x +m , ∵f ′1(x )=1-ln xx 2当x ∈(0,e]时,f ′1(x )≥0, ∴f 1(x )在(0,e]上为增函数; 当x ∈[e ,+∞)时,f ′1(x )≤0, ∴f 1(x )在[e ,+∞)上为减函数; 当x =e 时,f 1(x )max =1e.而f 2(x )=x 2-2e x +m =(x -e)2+m -e 2. ∴当x =e 时,f 2(x )min =m -e 2.只有当m -e 2=1e ,即m =e 2+1e 时,方程有且只有一个实数根. 6. 已知函数f (x )=ax -1-ln x (a ∈R ).(1)讨论函数f (x )的单调性;(2)若函数f (x )在x =1处取得极值,不等式f (x )≥bx -2对∀x ∈(0,+∞)恒成立,求实数b 的取值范围;(3)当x >y >e -1时,证明不等式e x ln(1+y )>e y ln(1+x ).(1)解 f ′(x )=a -1x =ax -1x (x >0).当a ≤0时,ax -1<0,从而f ′(x )<0, 函数f (x )在(0,+∞)上单调递减;当a >0时,若0<x <1a ,则ax -1<0,从而f ′(x )<0,若x >1a,则ax -1>0,从而f ′(x )>0,函数在()0,1a 上单调递减,在()1a ,+∞上单调递增.(2)解 根据(1)函数的极值点是x =1a ,若1a =1,则a =1.所以f (x )≥bx -2,即x -1-ln x ≥bx -2, 由于x >0,即b ≤1+1x -ln xx.令g (x )=1x -ln x x ,则g ′(x )=-1x 2-1-ln xx 2=ln x -2x 2, 可知x =e 2为函数g (x )在(0,+∞)内唯一的极小值点,也是最小值点,故g (x )min =g (e 2)=-1e 2, 所以1+1x -ln x x 的最小值是1-1e 2,故只要b ≤1-1e2即可,故b 的取值范围是(]-∞,1-1e 2.(3)证明 不等式e x ln(1+y )>e y ln(1+x )⇔e x +1ln (x +1)>e y +1ln (y +1).构造函数h (x )=e xln x,则h ′(x )=e x ln x -1xe x ln 2x =e x ()ln x -1xln 2x , 可知函数在(e ,+∞)上h ′(x )>0, 即函数h (x )在(e ,+∞)上单调递增, 由于x >y >e -1,所以x +1>y +1>e ,所以e x +1ln (x +1)>e y +1ln (y +1),所以e x ln(1+y )>e y ln(1+x ).。

2014届高考数学(苏教版)一轮复习题及详解第3章导数及其应用3.3导数的综合应用

2014届高考数学(苏教版)一轮复习题及详解第3章导数及其应用3.3导数的综合应用

15 导数的综合应用一、填空题1.函数f (x )=12x -x 3在区间[-3,3]上的最小值是__________.2.(2013江苏溧水中学模拟)已知f (x )=x +cos x (x ∈R ),则不等式f (e x -1)>f (0)的解集为__________.3.已知函数y =3x 3+2x 2-1在区间(m,0)内为减函数,则m 的取值范围是__________.4.(2013江苏南通高三调研)已知f (x )=x 4-4x 3+(3+m )x 2-12x +12,m ∈R .若对于任意实数x ,f (x )≥0恒成立,则m 的取值范围为________.5.已知函数f (x )=x +sin x .设P ,Q 是函数f (x )图象上相异的两点,则直线PQ 的斜率________0(填“>”、“<”).6.已知:三次函数f (x )=x 3+ax 2+bx +c ,在(-∞,-1),(2,+∞)上单调递增,在(-1,2)上单调递减,当且仅当x >4时,f (x )>x 2-4x +5.则函数f (x )的解析式为________.7.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有f (0)+f (2)________2f (1).8.(2013江苏淮安四校联考)挖一条隧道,截面下方为矩形,上方为半圆(如图),如果截面积为20 m 2,当宽为__________时,使截面周长最小.9.(2013江苏盐城三模)若不等式|ax 3-ln x |≥1对任意x ∈ (0,1]都成立,则实数a 的取值范围是________.二、解答题10.设函数f (x )=6x 3+3(a +2)x 2+2ax .(1)若f (x )的两个极值点为x 1,x 2,且x 1x 2=1,求实数a 的值;(2)是否存在实数a ,使得f (x )是(-∞,+∞)上的单调函数?若存在,求出a 的值;若不存在,说明理由.11.某集团为了获得更大的收益,每年要投入一定的资金用于广告促销.经调查投入广告费t (百万元),可增加销售额约为-t 2+5t (百万元)(0≤t ≤5).(1)若该公司将当年的广告费控制在3百万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?(2)现该公司准备共投入3百万元,分别用于广告促销和技术改造.经预测,每投入技术改造费x (百万元),可增加的销售额约为-13x 3+x 2+3x (百万元).请设计一个资金分配方案,使该公司由此获得的收益最大?(注:收益=销售额-投放).12.(2013江苏泰州月考)已知f (x )=2x ln x ,g (x )=-x 2+ax -3.(1)求函数f (x )的最小值;(2)若存在x ∈ (0,+∞),使f (x )≤g (x )成立,求实数a 的取值范围;(3)证明对一切x ∈ (0,+∞),都有f (x )>2⎝⎛⎭⎫x e x -2e 成立.参考答案一、填空题1.-16 解析:由f ′(x )=12-3x 2=0,得x =-2或x =2.又f (-3)=-9,f (-2)=-16,f (2)=16,f (3)=9,∴函数f (x )在[-3,3]上的最小值为-16.2.(0,+∞) 解析:f (x )=x +cos x ,f ′(x )=1-sin x ≥0,∴f (x )(x ∈R )是增函数.若f (e x -1)>f (0),则e x -1>0,e x >1,即x >0.∴解集为(0,+∞).3.⎣⎡⎭⎫-49,0 解析:由y ′=9x 2+4x ≤0得-49≤x ≤0,而y =3x 3+2x 2-1在区间(m,0)内为减函数,所以-49≤m <0. 4.[4,+∞) 解析:f (x )=x 4-4x 3+(3+m )x 2-12x +12=(x 2+3)(x -2)2+(m -4)x 2. 当m <4时,f (2)=4(m -4)<0,不合题意;当m ≥4时,f (x )=(x 2+3)(x -2)2+(m -4)x 2≥0,对一切实数x 恒成立.所以m 的取值范围是[4,+∞).5.>6.f (x )=x 3-32x 2-6x -11 解析:∵f (x )在(-∞,-1),(2,+∞)上单增,(-1,2)上单减,∴f ′(x )=3x 2+2ax +b =0有两根-1,2. ∴2312,,326,12,3a a b b ⎧-+⎧⎪=-⎪⎪∴⎨⎨⎪⎪=--⨯=⎩⎪⎩∴f (x )=x 3-32x 2-6x +c . 令H (x )=f (x )-x 2+4x -5=x 3-52x 2-2x +c -5,H ′(x )=3x 2-5x -2=(3x +1)(x -2),H (x )在⎝⎛⎭⎫-∞,-13,(2,+∞)上单调递增,⎝⎛⎭⎫-13,2上单调递减, 故(4)0,11.1()0.3H c H =⎧⎪∴=-⎨-<⎪⎩∴f (x )=x 3-32x 2-6x -11.7.≥ 解析:当x ≥1时,f ′(x )≥0,故f (2)≥f (1);当x <1时,f ′(x )≤0,故f (0)≥f (1),又f (2)≥f (1),所以f (0)+f (2)≥2f (1).8.4104+π解析:如图所示,设半圆的半径为r ,矩形的高为h ,则截面积S =2rh +πr 22=20,截面周长C =2r +2h +πr =2r +20-πr 22r +πr =2r +20r -πr 2+πr =⎝⎛⎭⎫2+π2r +20r . 设C ′(r )=⎝⎛⎭⎫2+π2-20r 2, 令C ′(r )=0,解得r =2104+π. 故当r =2104+π时,周长C 最小,即宽为4104+π时,截面周长最小. 9.a ≥e 23解析:显然x =1时,有|a |≥1,则a ≤-1或a ≥1. 令g (x )=ax 3-ln x ,g ′(x )=3ax 2-1x =3ax 3-1x.①当a ≤-1时,对任意x ∈(0,1],g ′(x )=3ax 3-1x<0,g (x )在(0,1]上递减, g (x )min =g (1)=a ≤-1,此时g (x )∈[a ,+∞),|g (x )|的最小值为0,不适合题意.②当a ≥1时,对任意x ∈(0,1],g ′(x )=3ax 3-1x =0⇒x =313a, |g (x )|的最小值为g ⎝ ⎛⎭⎪⎫313a =13+13ln(3a )≥1,解得:a ≥e 23,故所求a ≥e 23. 二、解答题10.解:(1)f ′(x )=18x 2+6(a +2)x +2a ,令f ′(x )=0,得18x 2+6(a +2)x +2a =0两根为x 1,x 2,且x 1x 2=1=2a 18,所以a =9.(2)由f ′(x )=18x 2+6(a +2)x +2a 开口向上,且Δ=36(a +2)2-8×18a =36(a 2+4)>0恒成立,得方程18x 2+6(a +2)x +2a =0有两个相异实根,故不存在a 使f (x )是单调函数.11.解:(1)设投入t (t 百万元)的广告费后增加的收益为f (t )(百万元),则有f (t )=(-t 2+5t )-t =-t 2+4t =-(t -2)2+4(0<t ≤3),所以当t =2百万元时,f (t )取得最大值4百万元.即投入2百万元时的广告费时,该公司由此获得的收益最大.(2)设用技术改造的资金为x (百万元),则用于广告促销的资金为(3-x )(百万元),则有g (x )=⎝⎛⎭⎫-13x 3+x 2+3x +[-(3-x )2+5(3-x )]-3=-13x 3+4x +3(0≤x ≤3), 所以g ′(x )=-x 2+4.令g ′(x )=0,解得x =2,或x =-2(舍去).又当0≤x <2时,g ′(x )>0,当2<x ≤3时,g ′(x )<0.故g (x )在[0,2]上是增函数,在[2,3]上是减函数.所以当x =2时,g (x )取最大值,即将2百万元用于技术改造, 1百万元用于广告促销,该公司由此获得的收益最大.12.(1)解:f (x )的定义域为(0,+∞),f ′(x )=2(ln x +1),令f ′(x )=0,得x =1e . 当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0; 当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0,所以f (x )在⎝⎛⎭⎫0,1e 上单调递减;在⎝⎛⎭⎫1e ,+∞上单调递增. 故当x =1e 时,f (x )取最小值为-2e.(2)解:存在x ∈∈(0,+∞),使f (x )≤g (x )成立,即存在x ∈ (0,+∞)使2x ln x ≤-x 2+ax-3能成立,等价于存在x ∈ (0,+∞)使a ≥2ln x +x +3x能成立. 等价于a ≥⎝⎛⎭⎫2ln x +x +3x min . 记h (x )=2ln x +x +3x,x ∈ (0,+∞), 则h ′(x )=2x +1-3x 2=x 2+2x -3x 2=(x +3)(x -1)x 2. 当x ∈ (0,1)时,h ′(x )<0;当x ∈ (1,+∞)时,h ′(x )>0,所以当x =1时,h (x )取最小值为4,故a ≥4.(3)证明:记j (x )=2⎝⎛⎭⎫x e x -2e ,x ∈ (0,+∞),则j ′(x )=2⎝⎛⎭⎫1-x e x .当x ∈ (0,1)时,j ′(x )>0;当x ∈ (1,+∞)时,j ′(x )<0,所以当x =1时,j (x )取最大值为-2e. 又由(1)知当x =1e 时,f (x )取最小值为-2e, 故对一切x ∈ (0,+∞),都有f (x )>2⎝⎛⎭⎫x e x -2e 成立.。

2014届高考数学二轮专题热点提升训练导数的综合应用(2)

2014届高考数学二轮专题热点提升训练导数的综合应用(2)

常考问题5 导数的综合应用[真题感悟]1.(2013·新课标全国Ⅱ卷)已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( ).A .∃x 0∈R ,f (x 0)=0B .函数y =f (x )的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)上单调递减D .若x 0是f (x )的极值点,则f ′(x 0)=0解析 若c =0,则有f (0)=0,所以A 正确.函数f (x )的解析式可以通过配方的方法化为形如(x +m )3+n (x +m )+h 的形式,通过平移函数图象,函数的解析式可以化为y =x 3+nx 的形式,这是一个奇函数,其图象关于坐标原点对称,故函数f (x )的图象是中心对称图形,所以B 正确;由三次函数的图象可知,若x 0是f (x )的极小值点,则极大值点在x 0的左侧,所以函数在区间(-∞,x 0)单调递减是错误的,D 正确.选C.答案 C2.(2013·湖北卷)已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是( ). A .(-∞,0)B .(0,12)C .(0,1)D .(0,+∞)解析 由题知,x >0,f ′(x )=ln x +1-2ax ,由于函数f (x )有两个极值点,则f ′(x )=0有两个不等的正根,即函数y =ln x +1与y =2ax 的图象有两个不同的交点(x >0),则a >0;设函数y =ln x +1上任一点(x 0,1+ln x 0)处的切线为l ,则k l =y ′=1x 0,当l 过坐标原点时,1x 0=1+ln x 0x 0⇒x 0=1,令2a =1⇒a =12,结合图象知0<a <12,故选B. 答案 B3.(2013·安徽卷)已知函数f (x )=x 3+ax 2+bx +c 有两个极值点x 1,x 2.若f (x 1)=x 1<x 2,则关于x 的方程3(f (x ))2+2af (x )+b =0的不同实根个数为 ( ).A .3B .4C .5D .6 解析 因为函数f (x )=x 3+ax 2+bx +c 有两个极值点x 1,x 2,可知关于导函数的方程f ′(x )=3x2+2ax+b=0有两个不等的实根x1,x2,则方程3(f(x))2+2af(x)+b=0有两个不等的实根,即f(x)=x1或f(x)=x3,原方程根的个数就是这两个方程f(x)=x1和f(x)=x2的不等实根的个数之和,再结合图象可看出函数y=f(x)的图象与直线y=x1和直线y=x2共有3个不同的交点,故所求方程有3个不同的实根.答案 A[考题分析]题型选择题、填空题、解答题难度中档考查利用导数解决函数的单调性、极值与最值高档①在选择题、填空题中考查导数、不等式以及图象等交汇问题;②在解答题中考查利用导数研究含参数的函数单调性、极值、最值以及与不等式交汇等.(说明:部分省市要求不一样)。

江苏省2014年高考数学(文)二轮复习简易通真题感悟:常考问题4 导数的简单应用

江苏省2014年高考数学(文)二轮复习简易通真题感悟:常考问题4 导数的简单应用

常考问题4 导数的简单应用[真题感悟]1.(2012·南京、盐城模拟)函数f (x )=(x 2+x +1)e x (x ∈R)的单调减区间为________.解析 f ′(x )=(2x +1)e x +(x 2+x +1)e x=(x 2+3x +2)e x <0,解得-2<x <-1,故函数f (x )的减区间为(-2,-1).答案 (-2,-1)(或闭区间)2.(2013·广东卷)若曲线y =kx +ln x 在点(1,k )处的切线平行于x 轴,则k =________.解析 ∵y ′=k +1x,∴y ′|x =1=k +1=0,∴k =-1. 答案 -13.(2013·江西卷)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________.解析 设e x =t ,则x =ln t (t >0),∴f (t )=ln t +t ,∴f ′(t )=1t +1,∴f ′(1)=2.答案 24.(2013·新课标全国Ⅰ卷)若函数f (x )=(1-x 2)(x 2+ax +b )的图象关于直线x =-2对称,则f (x )的最大值是________.解析 由题意知⎩⎨⎧ f (0)=f (-4),f (-1)=f (-3),即⎩⎨⎧b =-15×(16-4a +b ),0=9-3a +b ,解得a =8,b =15, 所以f (x )=(1-x 2)(x 2+8x +15),则f ′(x )=-4(x +2)(x 2+4x -1).令f ′(x )=0,得x =-2或x =-2-5或x =-2+5,当x <-2-5时,f ′(x )>0;当-2-5<x<-2时,f′(x)<0;当-2<x<-2+5时,f′(x)>0;当x>-2+5时,f′(x)<0,=16;所以当x=-2-5时,f(x)极大值当x=-2+5时,f(x)=16,所以函数f(x)的最大值为16.极大值答案16[考题分析]高考对本内容的考查主要有:(1)导数的几何意义是考查热点,要求是B级,理解导数的几何意义是曲线上在某点处的切线的斜率,能够解决与曲线的切线有关的问题;(2)导数的运算是导数应用的基础,要求是B级,熟练掌握导数的四则运算法则、常用导数公式及复合函数的导数运算,一般不单独设置试题,是解决导数应用的第一步;(3)利用导数研究函数的单调性与极值是导数的核心内容,要求是B级,对应用导数研究函数的单调性与极值要达到相等的高度.。

北大附中2014届高考数学二轮复习专题精品训练 导数及其应用

北大附中2014届高考数学二轮复习专题精品训练 导数及其应用

北大附中2014届高考数学二轮复习专题精品训练:导数及其应用本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知实数a 、b 、c 、d 成等比数列,且函数y =ln (x +2)-x 当x =b 时取到极大值c ,则ad 等于( ) A .-1 B .0 C .1 D .2 【答案】A2.⎰=-202)12cos 2(πdx x( ) A .32-B .1C .12D .32【答案】B3.如图,函数()y f x =的图象在点P 处的切线方程是,(1)'(1)2y kx b f f =+-=若,则b=( )A .-1B .1C .2D .-2【答案】C4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316 C .313 D .310 【答案】D5.曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A . 12B .12-C .2 D .2【答案】A6.函数32)(ax x x f +-=,若1)2(='f ,则=a ( )A .4B .41 C .-4D .41-【答案】B7.如图所示,一质点(,)P x y 在xOy 平面上沿曲线运动,速度大小不变,其在x 轴上的投影点(,0)Q x 的运动速度()V V t =的图象大致为( )【答案】B8.已知()1sin cos f x x x =+,()1n f x +是()n f x 的导函数,即()()21f x f x '=,()()32f x f x '=,…,()()1n n f x f x +'=,n ∈*N ,则()2011f x =( )A .sin cos x x +B .sin cos x x -C .sin cos x x -+D .sin cos x x --【答案】D 9.函数1ln ()xf x x+=在(1,1)处的切线方程是( ) A .1x = B .1y x =-C .1y =D .1y =-【答案】C10.设()f x 在x 处可导,则()()lim2h f x h f x h h→+--等于( )A .()2f x 'B .()12f x 'C .()f x 'D .()4f x '【答案】C11.设函数)(x f 在区间],[b a 上连续,用分点b x x x x x a n i i =<<<<<=- 110,把区间],[b a 等分成n 个小区间,在每个小区间],[1i i x x -上任取一点),,2,1(n i i =ξ,作和式∑=∆=ni i n xf S 1)(ξ(其中x ∆为小区间的长度),那么n S 的大小( )A .与)(x f 和区间],[b a 有关,与分点的个数n 和i ξ的取法无关B . 与)(x f 和区间],[b a 和分点的个数n 有关,与i ξ的取法无关C . 与)(x f 和区间],[b a 和分点的个数n,i ξ的取法都有关。

江苏省2014年高考数学(文)二轮复习简易通真题感悟:常考问题5 导数的综合应用

江苏省2014年高考数学(文)二轮复习简易通真题感悟:常考问题5 导数的综合应用

常考问题6 三角函数的图象与性质[真题感悟]1.(2013·江苏卷)函数y =3sin ⎝ ⎛⎭⎪⎫2x +π4的最小正周期为 ________. 解析 ω=2,T =2π|ω|=π.答案 π2.(2011·江苏卷)函数f (x )=A sin(ωx +φ),(A ,ω,φ是常数,A >0,ω>0)的部分图象如图所示,则f (0)=________.解析 因为由图象可知振幅A =2,T 4=7π12-π3=π4,所以周期T =π=2πω,解得ω=2,将⎝ ⎛⎭⎪⎫7π12,-2代入,解得一个符合的φ=π3,从而y =2sin ⎝⎛⎭⎪⎫2x +π3,∴f (0)=62. 答案 623.(2013·四川卷改编)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是________.解析 34T =5π12-⎝ ⎛⎭⎪⎫-π3,T =π, ∴ω=2,∴2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π3,k ∈Z ,又φ∈⎝ ⎛⎭⎪⎫-π2,π2, ∴φ=-π3.答案 2,-π34.(2013·新课标全国Ⅰ卷)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=________.解析 f (x )=sin x -2cos x =5⎝ ⎛⎭⎪⎫55sin x -255cos x =5sin(x -φ),其中sin φ=255,cos φ=55,当x -φ=2k π+π2(k ∈Z )时,函数f (x )取得最大值,即θ=2k π+π2+φ时,函数f (x )取到最大值,所以cos θ=-sin φ=-255.答案 -255[考题分析]三角函数的有关知识大部分是B 级要求,只有函数y =A sin(ωx +φ)的图象与性质是A 级要求;试题类型可能是填空题,同时在解答题中也是必考题,经常与向量综合考查,构成中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常考问题5 导数的综合应用(建议用时:50分钟)1.若函数y =-43x 3+bx 有三个单调区间,则b 的取值范围是________. 解析 由条件y ′=-4x 2+b ,∴Δ=0+16b >0,得b >0. 答案 (-2,-1)2.已知函数f (x )=13x 3-2x 2+3m ,x ∈[0,+∞),若f (x )+5≥0恒成立,则实数m 的取值范围是________.解析 f ′(x )=x 2-4x ,由f ′(x )>0,得x >4或x <0.∴f (x )在(0,4)上递减,在(4,+∞)上递增,∴当x ∈[0,+∞)时,f (x )min =f (4).∴要使f (x )+5≥0恒成立,只需f (4)+5≥0恒成立即可,代入解之得m ≥179. 答案 ⎣⎢⎡⎭⎪⎫179,+∞3.下面四个图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R)的导函数y =f ′(x )图象,则f (-1)等于________.解析 ∵f ′(x )=x 2+2ax +a 2-1,∴f ′(x )的图象开口向上,则②,④排除.若图象不过原点,则f ′(x )的图象为①,此时a =0,f (-1)=53;若图象过原点,则f ′(x )的图象为③,此时a 2-1=0,又对称轴x =-a >0,∴a =-1, ∴f (-1)=-13. 答案 -13或534.(2013·南通调研)设P 是函数y =x (x +1)图象上异于原点的动点,且该图象在点P 处的切线的倾斜角为θ,则θ的取值范围是________. 解析 因为y ′=12x -12(x +1)+x =3x 2+12x≥234=3,(当且仅当x =13时,“=”成立)设点P (x ,y )(x >0),则在点P 处的切线的斜率k ≥3,所以tan θ≥3,又θ∈[0,π),故θ∈⎣⎢⎡⎭⎪⎫π3,π2.答案 ⎣⎢⎡⎭⎪⎫π3,π25.函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x+1的解集为______.解析 构造函数g (x )=e x ·f (x )-e x ,因为g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )]-e x >e x -e x =0,所以g (x )=e x ·f (x )-e x 为R 上的增函数.又因为g (0)=e 0·f (0)-e 0=1,所以原不等式转化为g (x )>g (0),解得x >0. 答案 (0,+∞)6.(2013·温州模拟)关于x 的方程x 3-3x 2-a =0有三个不同的实数解,则实数a 的取值范围是________.解析 由题意知使函数f (x )=x 3-3x 2-a 的极大值大于0且极小值小于0即可,又f ′(x )=3x 2-6x =3x (x -2),令f ′(x )=0,得x 1=0,x 2=2.当x <0时,f ′(x )>0;当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0,所以当x =0时,f (x )取得极大值,即f (x )极大值=f (0)=-a ;当x =2时,f (x )取得极小值,即f (x )极小值=f (2)=-4-a ,所以{ -a >0,-4-a <0,解得-4<a <0. 答案 (-4,0)7.若函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是______.解析 对f (x )求导,得f ′(x )=-x +4-3x =-x 2+4x -3x =-(x -1)(x -3)x.由f ′(x )=0得函数f (x )的两个极值点为1,3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,所以t <1<t +1或t <3<t +1,解得0<t <1或2<t <3. 答案 (0,1)∪(2,3) 8.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是______. 解析 由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min =f (0)=-1.根据题意可知存在x ∈[1,2],使得g (x )=x 2-2ax +4≤-1,即x 2-2ax +5≤0,即a ≥x 2+52x 能成立,令h (x )=x 2+52x ,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min ,又函数h (x )=x 2+52x 在x ∈[1,2]上单调递减(可利用导数判断),所以h (x )min =h (2)=94,故只需a ≥94. 答案 ⎣⎢⎡⎭⎪⎫94,+∞9.(2013·徐州质检)现有一张长为80 cm ,宽为60cm 的长方形铁皮ABCD ,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,若长方形ABCD 的一个角剪下一块正方形铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为x (cm),高为y (cm),体积为V (cm 3) (1) 求出x 与 y 的关系式; (2) 求该铁皮盒体积V 的最大值. 解 (1)由题意得x 2+4xy =4 800, 即y =4 800-x 24x,0<x <60.(2)铁皮盒体积V (x )=x 2y =x 2×4 800-x 24x =-14x 3+1 200x ,V ′(x )=-34x 2+1200,令V ′(x )=0,得x =40,因为x ∈(0,40),V ′(x )>0,V (x )是增函数;x ∈(40,60),V ′(x )<0,V (x )是减函数,所以V (x )=-14x 3+1 200x ,在x =40时取得极大值,也是最大值,其值为32 000 cm 3. 所以该铁皮盒体积V 的最大值是32 000 cm 3.10.(2013·东北三校联考)已知x =3是函数f (x )=a ln(1+x )+x 2-10x 的一个极值点. (1)求a ;(2)求函数f(x)的单调区间;(3)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.解f(x)的定义域为(-1,+∞).(1)f′(x)=a1+x+2x-10,又f′(3)=a4+6-10=0,∴a=16.经检验此时x=3为f(x)的极值点,故a=16.(2)由(1)知f′(x)=2(x-1)(x-3)x+1.当-1<x<1或x>3时,f′(x)>0;当1<x<3时,f′(x)<0.∴f(x)的单调增区间为(-1,1),(3,+∞),单调减区间为(1,3).(3)由(2)知,f(x)在(-1,1)上单调递增,在(1,3)上单调递减,在(3,+∞)上单调递增,且当x=1或x=3时,f′(x)=0.所以f(x)的极大值为f(1)=16ln 2-9,极小值为f(3)=32ln 2-21.因为f(16)>162-10×16>16ln 2-9=f(1),f(e-2-1)<-32+11=-21<f(3),所以根据函数f(x)的大致图象可判断,在f(x)的三个单调区间(-1,1),(1,3),(3,+∞)内,直线y=b与y=f(x)的图象各有一个交点,当且仅当f(3)<b<f(1).因此b的取值范围为(32ln 2-21,16ln 2-9).11.(2013·新课标全国Ⅱ卷)已知函数f(x)=e x-ln(x+m).(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0.(1)解f′(x)=e x-1x+m,由x=0是f(x)的极值点,得f′(0)=0,所以m=1,于是f(x)=e x-ln(x+1),定义域为{x|x>-1},f′(x)=e x-1x+1,函数f′(x)=e x-1x+1在(-1,+∞)上单递增,且f′(0)=0,因此当x∈(-1,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.所以f(x)在(-1,0)上单调递减,在(0,+∞)上单调递增.(2)证明当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时,f(x)>0,当m=2时,函数f′(x)=e x-1x+2在(-2,+∞)上单调递增.又f′(-1)<0,f′(0)>0,故f′(x)=0在(-2,+∞)上有唯一实根x0,且x0∈(-1,0).当x∈(-2,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得e x0=1x0+2,即ln(x0+2)=-x0,故f(x)≥f(x0)=1x0+2+x0=(x0+1)2x0+2>0.综上,当m≤2时,f(x)>0. 备课札记:。

相关文档
最新文档