二面角的计算方法

合集下载

求二面角的几何法

求二面角的几何法

3种求二面角的几何法二面角的度量问题是立几中学生比较困难的一个问题,课本上是通过它的平面角来进行度量的,关键在于充分利用平面角的定义。

下面来介绍求二面角的大小的几种方法:直二面角情况:一般是通过几何求证的方法,主要依据是直线与平面垂直的判定定理。

例1. 如图 ABCD 是矩形,AB =a ,BC =b (a >b),沿对角线AC 把 △ADC 折起,使 AD ⊥BC ,证明:平面 ABD ⊥平面BCD 。

证明:由题意可知:AD ⊥BC ,AD ⊥DC∴ AD ⊥面BCD 又 AD 面ABD ∴ 平面ABD ⊥平面BCD例2. 在四棱锥 A-BCDE 中,底面是直角梯形,其中 BC ∥DE ,∠BCD =90°,且 DE =CD =21BC ,又AB =AE =21BC ,AC =AD , 求证:面ABE ⊥面BCD 。

证明:取BE 的中点M ,CD 的中点N , 连结 AM ,AN ,MN ,∵ AB =AC (已知) ∴ AM ⊥BE同理 AC =AD 有AN ⊥CD 在直角梯形BCDE 中,∵ M 、N 分别是BE 、CD 的中点 ∴ MN ∥BC 又 ∠BCD =90° ∴ MN ⊥CD ∴ CD ⊥面AMN ∴ CD ⊥AM又 AM ⊥BE ,CD 、BE 是梯形的两个腰,即它们一定相交,CB∴ AM ⊥面BCD , 又AM 面ABE ∴ 面ABE ⊥面BCD 。

当二面角不是直二面角时可以采用下面几种方法。

1.充分利用二面角的定义,证明某角即为二面角的平面角,如找不到现成的,则可以通过三垂线定理或其逆定理把它作出来再计算。

例3.如图三棱锥 P-ABC 中,PC ⊥平面ABC ,PC =32 ,D 是 BC 的中点,且△ADC 是边长为 2的正三角形,求二面角 P-AB -C 的大小。

解:由已知条件,D 是BC 的中点∴ CD =BD =2 又△ADC 是正三角形 ∴ AD =CD =BD =2∴ D 是△ABC 之外心又在BC 上 ∴ △ABC 是以∠BAC 为直角的三角形, ∴ AB ⊥AC , 又 PC ⊥面ABC∴ PA ⊥AB (三垂线定理)∴∠PAC 即为二面角 P-AB-C 之平面角, 易求 ∠PAC =30°例4.如图在三棱锥 S-ABC 中,SA ⊥底面ABC ,AB ⊥BC ,DE 垂直平分SC ,且分别交 AC 、SC 于D 、E ,又SA =AB ,BS =BC , 求以BD 为棱,BDE 与BDC 为面的二面角的度数。

高中数学求二面角公式

高中数学求二面角公式

高中数学求二面角公式
二面角的公式在高中数学中是非常重要的一部分,下面我们介绍一些常用的二面角公式。

二面角的平面角公式:
设二面角为$angle ACB$,其中$angle A$为$angle ACB$的一个方向角,$angle B$为$angle ACB$的另一个方向角,$angle C$为$angle ACB$的第三个方向角,则二面角的平面角公式为:
$$angle ACB = angle A + angle B + angle C$$
这个公式可以帮助我们计算任意一个方向角的平面角。

二面角的垂直角公式:
设二面角为$angle ACB$,其中$angle A$为$angle ACB$的一个垂直角,$angle B$为$angle ACB$的另一个垂直角,$angle C$为$angle ACB$的第三个垂直角,则二面角的垂直角公式为:
$$angle ACB = 2angle A + angle B + angle C$$
这个公式可以帮助我们计算任意一个垂直角的平面角。

二面角的平面角和垂直角的关系公式:
设二面角为$angle ACB$,其中$angle A$为$angle ACB$的一个垂直角,$angle B$为$angle ACB$的另一个垂直角,$angle C$为$angle ACB$的第三个垂直角,则二面角的平面角和垂直角的关系公式为:
$$angle ACB = 2angle A + angle B - angle C$$
这个公式可以帮助我们在计算二面角的平面角和垂直角时,把它们的关系理清楚。

以上是一些比较常用的二面角公式,它们可以帮助我们更好地理解和计算二面角的大小。

求二面角的五种方法

求二面角的五种方法

五法求二面角从全国19份高考试卷中我们知道,立体几何题中命有求二面角大小的试题共有12份,并都为分值是12分的大题,足以说明这一知识点在高考中的位置,据有关专家分析,它仍然是2010年高考的重点,因此,我们每位考生必须注意,学会其解题方法,掌握其解题技巧,是十分重要的。

一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD,AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。

证(I )略解(II ):利用二面角的定义。

在等边三角形ABM 中过点B作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。

则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG FG366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-练习1(2008山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点. (Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角E —AF —C 的余弦值. 分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。

求二面角的六种方法

求二面角的六种方法

求二面角的六种方法一、引言二面角是几何学中的一个重要概念,它用于描述两个平面的夹角。

求解二面角的方法有多种,本文将介绍六种常用的方法,包括向量法、三角函数法、三边长法、内外法、旋转法和平行四边形法。

对于每种方法,我们将详细介绍其原理和具体步骤,并给出相关的实例来加深理解。

二、向量法向量法是最常用的求解二面角的方法之一,其基本原理是通过两个平面的法向量来计算二面角。

具体步骤如下:2.1 确定两个平面首先,我们需要确定需要求解的两个平面。

平面可以由三个不共线的点或者法向量和过点的方程来确定。

2.2 求解法向量找到两个平面的法向量,分别记作n1⃗⃗⃗⃗ 和n2⃗⃗⃗⃗ 。

2.3 计算二面角的余弦值通过法向量n1⃗⃗⃗⃗ 和n2⃗⃗⃗⃗ 的点积计算二面角的余弦值:cosθ=n1⃗⃗⃗⃗ ⋅n2⃗⃗⃗⃗ ∥n1⃗⃗⃗⃗ ∥∥n2⃗⃗⃗⃗ ∥2.4 计算二面角通过余弦值反函数(如反余弦函数)计算二面角的值:θ=arccos(cosθ)三、三角函数法三角函数法是另一种常用的求解二面角的方法,主要基于三角函数的关系来计算二面角。

具体步骤如下:3.1 确定两个平面同样,我们首先需要确定需要求解的两个平面。

3.2 求解法向量和对应边长求解两个平面的法向量n 1⃗⃗⃗⃗ 和n 2⃗⃗⃗⃗ ,以及两个平面上的边长。

3.3 计算三角函数的值根据边长和法向量的乘积,分别计算sinα=∥n 1⃗⃗⃗⃗⃗ ×n 2⃗⃗⃗⃗⃗ ∥∥n 1⃗⃗⃗⃗⃗ ∥∥n 2⃗⃗⃗⃗⃗ ∥和cosα=n1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ ∥n 1⃗⃗⃗⃗⃗ ∥∥n 2⃗⃗⃗⃗⃗ ∥,其中α为两个边向量构成的夹角。

3.4 计算二面角通过三角函数的反函数(如反正弦函数、反余弦函数)计算夹角α的值,即得到二面角的值。

四、三边长法三边长法是一种适用于三角形的方法,其原理是利用给定的三边长计算三角形的角度,进而求得二面角。

具体步骤如下:4.1 确定三个边长根据具体情况,确定三个边长a 、b 和c 。

数学二面角的求法总结

数学二面角的求法总结

数学二面角的求法总结数学二面角是指在三维空间中,两个平面的夹角。

它是一个重要的几何概念,在计算机图形学、物理学、化学等领域都有广泛的应用。

本文将总结数学二面角的求法,帮助读者更好地理解和应用这一概念。

一、定义数学二面角是指在三维空间中,两个平面的夹角。

具体来说,设平面P1和平面P2相交于一条直线L,将P1和P2分别沿着L旋转,直到它们重合为止。

此时,P1和P2的夹角就是它们的二面角。

二、求法1. 余弦定理法设P1和P2的法向量分别为n1和n2,它们的夹角为θ,则有:cosθ =(n1·n2) / (|n1|·|n2|)其中,·表示向量的点积,|n1|和|n2|分别表示n1和n2的模长。

由于n1和n2都是单位向量,所以|n1|=|n2|=1。

因此,上式可以简化为:cosθ = n1·n2这个式子就是余弦定理。

它告诉我们,两个向量的点积等于它们的模长乘以夹角的余弦值。

因此,我们可以通过求出n1和n2的点积来计算二面角的余弦值,然后再用反余弦函数求出夹角。

2. 向量叉积法设P1和P2的法向量分别为n1和n2,它们的夹角为θ,则有:sinθ = |n1×n2| / (|n1|·|n2|)其中,×表示向量的叉积。

由于n1和n2都是单位向量,所以|n1|=|n2|=1。

因此,上式可以简化为:sinθ = |n1×n2|这个式子就是向量叉积的模长公式。

它告诉我们,两个向量的叉积的模长等于它们的模长乘以夹角的正弦值。

因此,我们可以通过求出n1和n2的叉积的模长来计算二面角的正弦值,然后再用反正弦函数求出夹角。

3. 三角形面积法设P1和P2的法向量分别为n1和n2,它们的夹角为θ,则有:sinθ = 2·S / (|P1|·|P2|)其中,S表示P1和P2的交线段所在的平面的面积,|P1|和|P2|分别表示P1和P2的面积。

立体几何向量法求二面角

立体几何向量法求二面角

立体几何向量法求二面角一、引言在几何学中,二面角是指两个平面或者一个平面和一个直线之间的夹角。

它是描述多面体中相邻两个面之间的夹角的重要参数。

在工程学、物理学和化学等领域,求解二面角是非常常见的问题。

本文将介绍立体几何向量法求解二面角的方法。

二、立体几何向量法立体几何向量法是一种非常有效的求解二面角的方法。

它基于向量叉积和点积的运算,通过将多面体分解成若干个三角形来计算二面角。

1. 向量叉积向量叉积是两个向量所构成的新向量,其大小等于两个向量所构成平行四边形的面积,方向垂直于这两个向量所构成平行四边形所在平面。

设有两个三维向量a = (a1, a2, a3)和b = (b1, b2, b3),则它们的叉积c = a × b定义为:c = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)其中c表示a和b所构成平行四边形所在平面上一条垂直这个平行四边形的向量。

2. 向量点积向量点积是两个向量所构成的标量,其大小等于两个向量夹角的余弦值乘以两个向量的模长之积。

设有两个三维向量a = (a1, a2, a3)和b = (b1, b2, b3),则它们的点积c = a · b定义为:c = a1b1 + a2b2 + a3b3其中c表示a和b之间夹角的余弦值乘以它们的模长之积。

3. 二面角计算公式二面角可以通过计算相邻两个面法线向量之间夹角的余弦值来求解。

具体地,设有一个多面体,其中相邻两个面A和B所对应的法线分别为nA和nB,则它们之间的二面角θAB可以通过以下公式计算:cosθAB = -nA·nB / |nA||nB|其中“·”表示向量点积,“| |”表示向量模长。

4. 多面体分解在实际问题中,通常需要将多面体分解成若干个三角形来计算二面角。

具体地,考虑一个四面体(如图1),其中相邻两个三角形ABC和ABD所对应的法线分别为nABC和nABD,则它们之间的二面角θABC-D可以通过以下公式计算:cosθABC-D = -nABC·nABD / |nABC||nABD|其中“·”表示向量点积,“| |”表示向量模长。

例谈二面角的求解方法

例谈二面角的求解方法
求二面角的大小是立体几何中的难点,也是高考考察的热点。常见的求解方法有直接法、投影法和向量法。直接法是通过求二面角的平面角来直接得到二面角的大小。投影法则是通过投影公式来计算二面角的大小,其中涉及到投影图形和被投影图形的面积以及这两个图形所在平面的夹角。向量法则是通过作二面角的两个面的法向量,将求二面角的大小转化为求这两个法向量夹角的大小。本文通过具体引例来比较三种方法的优劣,直接法在某些情况下可能是最简单的方法,投影作,而向量法则适用于更一般的情况。在实际应用中,需要根据题目的具体条件和图形特点来选择合适的方法。

射影面积法求二面角原理

射影面积法求二面角原理

射影面积法求二面角原理概述:射影面积法是计算二面角的常用方法之一,它基于物体在不同角度下的射影面积的变化来求解二面角。

二面角是指由两个平面所夹的角,它在几何学和计算几何学中有着广泛的应用。

本文将详细介绍射影面积法求解二面角的原理及其应用。

一、射影面积法原理射影面积法通过计算物体在不同角度下的射影面积来求解二面角。

具体步骤如下:1.选择观察点:确定观察点的位置,通常选择观察点位于物体所在平面外部,且与物体的一条边垂直相交。

2.确定观察面:从观察点出发,选择一个平面作为观察面,该平面与物体的一条边垂直相交,并且与观察点所在平面垂直。

3.计算射影面积:在观察面上,以物体的一条边为边界,通过观察点将物体投影到观察面上,计算投影的面积。

4.改变观察角度:保持观察点不变,改变观察面与物体的夹角,重复步骤3,计算不同角度下的射影面积。

5.计算二面角:根据不同角度下的射影面积,利用数学方法求解二面角的大小。

二、射影面积法的应用射影面积法可以应用于多个领域,包括几何学、物理学、计算机图形学等。

以下是该方法的一些具体应用:1.计算物体的空间角:射影面积法可以用于计算物体在空间中所占的角度,例如计算两个平面所夹的角度、计算一个立体角等。

2.三维建模:在计算机图形学中,射影面积法可以用于三维建模和渲染,通过计算物体在不同角度下的射影面积,可以生成真实感的三维模型。

3.物体识别:射影面积法可以应用于物体识别和目标跟踪,通过计算物体在不同角度下的射影面积,可以对物体进行形状和姿态的判断。

4.光线追踪:在光线追踪算法中,射影面积法可以用于计算光线与物体的相交情况,从而实现真实感的光影效果。

总结:射影面积法是一种常用的求解二面角的方法,通过计算物体在不同角度下的射影面积,可以准确地求解二面角的大小。

该方法在几何学、物理学和计算机图形学等领域有着广泛的应用,可以用于计算物体的空间角、三维建模、物体识别和光线追踪等方面。

射影面积法的原理简单易懂,但在具体应用中需要注意选择合适的观察点和观察面,以及正确计算射影面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图1二面角计算一 、直接法:即先作出二面角的平面角,再利用解三角形知识求解之。

通常作二面角的平面角的途径有:⑴定义法:在二面角的棱上取一个特殊点,由此点出发在二面角的两个面内分别作棱的垂线;⑵三垂线法:如图1,C 是二面角βα--AB 的面β内的一个点,CO ⊥平面α于O ,只需作OD⊥AB 于D ,连接CD ,用三垂线定理可证明∠CDO 就是 所求二面角的平面角。

⑶垂面法:即在二面角的棱上取一点,过此点作平面γ,使γ垂直于二面角的棱,则γ 与二面角的两个面的交线所成的角就是该二面角的平面角。

例1 如图2,在四棱锥V-ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形, 平面VAD⊥底面ABCD . (1)证明AB⊥平面VAD ;(2)求面VAD 与面VDB 所成的二面角的大小. 解:(1)证明:VAD ABCD AB AD AB VADAB ABCD AD VAD ABCD ⊥⎫⎪⊥⎪⇒⊥⎬⊂⎪⎪=⎭平面平面平面平面平面平面 (2)解:取VD 的中点E ,连结AF ,BE , ∵△VAD 是正三形,四边形ABCD 为正方形, ∴由勾股定理可知,BD VB,===∴AE⊥VD,BE⊥VD,∴∠AEB 就是所求二面角的平面角. 又在Rt△ABE 中,∠BAE=90°,AB ,因此,tan∠AEB=.332=AE AB 即得所求二面角的大小为.332arctan例2 如图3,AB⊥平面BCD ,DC⊥CB,AD 与平面BCD成30°的角,且AB=BC.(1)求AD 与平面ABC 所成的角的大小; (2)求二面角C-AD-B 的大小;(3)若AB=2,求点B 到平面ACD 的距离。

解:(1) ∵AB⊥平面BCD ,∴∠ADB 就是AD 与平面BCD 所成的角,即∠ADB=300,且CD⊥AB, 又∵DC⊥BC,ABBC B =,∴ CD⊥平面ABC ,∴ AD 与平面ABC 所成的角为∠DAC ,设AB=BC=a,则AC=a 2, BD=acot300=a 3,AD=2a, a BC BD CD 222=-=,∴ tan∠DAC=122==aa CDAC , ∴ 045=∠DAC ,即,AD 与平面ABC 所成的角为450. (2)作CE⊥BD 于E ,取AD 的中点F ,连CF , ∵ AB⊥面BCD ,ABD AB ⊂面, ∴ 面ABD⊥面BCD , 又∵ 面ABD面BCD=BD ,BCD CE ⊂面,CE⊥BD,∴ CE⊥面ABD ,又∵AC=BC=a 2,AF=FD ,∴AD⊥EF,有三垂线定理的逆定理可知,∠CFE 就是所求二面角的平面角.计算可知, BC CD CE BD ⋅=,2AD a,=12CF AD a ==,∴ CE sin CFE CF ∠==故,所求的二面角为3.略例3如图4,P 是边长为1的正六边形ABCDEF 所在平面外一点,1PA =,P 在平面ABC 内的射影为BF 的中点O.(1)证明PA ⊥BF ;(2)求面APB 与面DPB 所成二面角的大小。

解:(1)在正六边形ABCDEF 中,ABF ∆为等腰三角形, ∵ P 在平面ABC 内的射影为O , ∴ PO⊥平面A BF ,∴ AO 为PA 在平面ABF 内的射影; 又∵ O 为BF 中点,ABF ∆为等腰三角形, ∴ AO⊥BF,∴ 有三垂线定理可知,PA⊥BF. (2)∵O 为BF 中点,ABCDEF 是正六边形 ,∴ A、O 、D 共线,且直线AD⊥BF, ∵ PO⊥平面A BF ,ABF BF ⊂面,∴ 由三垂线定理可知, AD⊥PB,过O 在平面PBF 内作OH⊥PB 于H ,连AH 、DH , 则 PB⊥平面A HD,所以AHD ∠为所求二面角平面角。

又∵正六边形ABCDEF 的边长为1,∴12AO =,32DO =,2BO =。

1AHO tan 7AO OH AHO OH∆=∠===在中,,3DHO tan DODHO OH ∆∠===在中,tan tan()AHD AHO DHO ∠=∠+∠==从而,故,所求的二面角为-arctan9.π二、面积射影法:如图5,二面角l αβ--为锐二面角, △ABC 在半平面α内, △ABC 在平面β内的射影为△A 1B 1C 1,那么二面角l αβ--的大小111 cos A B C ABCS S θθ∆∆=应满足.例4 如图6,矩形ABCD 中,AB=6,BC=32,沿对角线BD 将ABC ∆折起,使点A移至点P,且P 在平面BCD 内的射影为O,且O 在DC 上. (1)求证:PD⊥PC;(2)求二面角P-DB-C 的平面角的余弦值;(3)求CD 与平面PBD 所成的角的正弦值.解: (1)证明: ∵ PC 在面BCD 内的射影为OC, 且OC⊥BC,∴由三垂线定理可知,BC⊥PC,又∵PB=6,BC=32, ∴PC=,62而PD=32,DC=6∴ =+22PC PD36=DC2,∴ PD⊥PC.(2)PBD 1OBD S 62PBD ∆∆∆=⨯⨯=在面BCD 内的射影为,且 OC 322136S S S BOC CBD OBD ⨯⨯-=-=∆∆∆. 设OC=x,则OD=6-x , ∵ 2222BD DO BC CO ,-=- ∴ ()2261224x x --=- , ∴.4=x∴,323436=-=∆BOD S设二面角P-DB-C 的大小为θ,则.313632cos ==θ 1arccos .3故,所求二面角为三、空间向量法:I 、先用传统方法作出二面角的平面角,再利用向量的夹角公式进行计算。

例5 如图7,直二面角D-AB-E 中,四边形ABCD 是边长为2的正方形,AE =EB ,F 为CE 上的点,且BF⊥平面ACE . (1)求证:AE⊥平面BCE ; (2)求二面角B-AC-E 的大小; (3)求点D 到平面ACE 的距离。

解:(1)∵ 二面角D-AB-E 为直二面角,AB 为棱,CB⊥AB,∴ CB⊥平面EAB ,进而可得,CB⊥AE, 又∵ BF⊥平面ACE ,∴ AE⊥BF, 而BC BCE, BF BCE, BC BF=F,⊂⊂平面平面且∴AE⊥平面BCE.(2)连结BD 交AC 于点O ,连结OF ,由于ABCD 为正方形,所以OB ⊥AC ,又因为BF⊥平面ACE ,由三垂线定理的逆定理可知,OF ⊥AC , ∴ ∠BOF 就是所求二面角的平面角.在平面ABE 内作Ax ⊥AB,以A 为原点,分别以Ax 、AB 、AD 为x 轴、y 轴、z 轴,建立 如图7的空间直角坐标系,易知△AEB 为等腰直角三角形,所以,A ( 0, 0, 0), O ( 0, 1 , 1), B(0, 2, 0), C(0 , 2, 2 ) , E( 1 ,1 ,0 ),设F (m, n, t ),∵ C 、E 、F 三点共线, ∴ ()()CF=CE, -2 t-2112m,n ,,,,λλ=--即∴ 2 t 22 2 22m ,n ,,λλλλλλ==-=---即点F 坐标为(, ,), 又∵ BF⊥AC,∴()()λ -λ-λ0,2,2=0,⋅⋅BFAC=0,即,,22 ∴ 23,λ⎛⎫=⎪⎝⎭242故,点F的坐标为,,,333∴ ()211011333OF ,,,OB ,,.⎛⎫=-=-⎪⎝⎭∴ 33OF OB cos BOF OF OB⋅∠==故,所求的二面角为arccos3II 、直接求出平面αβ和的法向量12n n 、,利用向量的夹角公式求12n n 、的夹角,再根据法向量12n n 、分别相对于二面角l αβ--的方向确定出二面角l αβ--的大小。

一般地,当法向量12n n 、都是从二面角l αβ--的内部向外部(或外部向内部)穿行时,二面角l αβ--的大小就是12n n 、的夹角的补角;当法向量12n n 、一个从二面角l αβ--的内部向外部穿行,另一个从二面角l αβ--的外部向内部穿行时,二面角l αβ--的大小就是12n n 、的夹角。

例6 (2006年四川卷)如图8,在长方体1111ABCD A B C D -中,,E P 分别是11,BC A D 的中点,,M N 分别是1,AE CD 的中点,1,2AD AA a AB a === (Ⅰ)求证://MN 面11ADD A ; (Ⅱ)求二面角P AE D --的大小。

(Ⅲ)求三棱锥P DEN -的体积。

解:以D 为原点,1,,DA DC DD 所在直线分别为x 轴,y 轴,z 轴,建立直角坐标系,则 ()()()()()11,0,0,,2,0,0,2,0,,0,,0,0,A a B a a C a A a a D a∵,,,E P M N 分别是111,,,BC A D AE CD 的中点 ∴3,2,0,,0,,,,0,0,,,2242a a a a E a P a M a N a ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(1)3,0,42a MN a ⎛⎫=-⎪⎝⎭取()0,1,0n =,显然n ⊥面11ADD A又0MN n ⋅=,∴MN n ⊥而MN⊄面11ADD A ∴//MN 面11ADD A(2)显然,()10,0,1m =是平面ABCD 的一个法向量;设()2,,m x y z =是平面PAE 的一个法向量,则2200.m AE m AP ⋅=⋅=且而,0,,,2,0.22a a AP a AE a ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭∴ 0,220.2ax az a x ay ⎧-⋅+=⎪⎪⎨⎪-⋅+=⎪⎩ ∴ 可取212,,1,2m ⎛⎫= ⎪⎝⎭∴ 1212122cos ,2121m m m m m m ⋅===又法向量()10,0,1m =是从二面角P AE D --的外部向内部穿行的,法向量212,,1,2m ⎛⎫= ⎪⎝⎭是从二面角P AE D --的内部向外部穿行的 .故,所求二面角为arccos21(3)设()1111,,n x y z =为平面DEN 的法向量,则11,n DE n DN ⊥⊥又,2,0,0,,,,0,222a a a DE a DN a DP a ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴1111202202ax ay a y z ⎧+=⎪⎪⎨⎪+=⎪⎩ 即 111142x y z y =-⎧⎨=-⎩ ∴可取()14,1,2n =-∴P 点到平面DEN的距离为11216DP n ad n ⋅===∵8cos ,85DE DNDE DN DE DN⋅==⋅, 21sin,DE DN =∴2121sin ,28DENS DE DN DE DN a ∆=⋅⋅= ∴321143386P DEN DEN a a V S d a -∆=⋅=⨯⨯=。

相关文档
最新文档