我国的森林生物量研究
我国林业生物质能源发展的现状与潜力

我国林业生物质能源发展的现状与潜力我国发展林业生物质能源具有巨大的资源优势和良好的技术基础。
一、发展林业生物质能源有着巨大的资源优势与潜力从广义上讲,林业生物质资源是森林内绿色植物生物量的总和。
根据森林资源清查资料可知,我国现有森林面积1.75亿公顷,活立木总蓄积136.18亿立方米,其中森林蓄积124.56亿立方米,据初步估算,我国林木生物质总量约178.86万吨,需采伐更新的林木生物总量约40.5亿吨,可产生采伐剩余物生物量约16.2亿吨。
从发挥森林生态功能和推动森林可持续发展出发,按照生态和能源双赢的原则,发展生物质能源,主要是充分利用林业剩余物、废旧木料、木本油料能源植物、木本淀粉植物、灌木林等林业生物质资源。
就林业剩余物而言,主要包括采伐剩余物、造材剩余物和木材加工剩余物等。
根据国务院批准的“十一五”期间森林采伐限额,全国每年采伐指标为2.48亿立方米,换算成生物量约为2.91亿吨,每年可产生采伐剩余物生物量1.09亿吨。
根据有关部门不完全统计,全国木材加工企业年加工能力9379.85万立方米,产出剩余物约0.418亿吨;各种类木材制品抛弃物约0.60亿吨。
林业剩余物折合标准煤约1.05亿吨。
就木本油料和淀粉植物而言,据有关资料表明,我国木本油料植物有151科697属1554种,其中种子含油量在40%以上的植物有154种。
现具有良好的资源和技术基础并可规模化培育的燃料油木本植物约有10种,如黄连木、麻疯树、光皮树、文冠果、油桐、乌桕等。
目前我国木本油料树种总面积超过400万公顷,果实产量在500万吨以上,木本淀粉植物有100多种,现有面积约1000万公顷,按每公顷生产750公斤淀粉计算,总计年产淀粉750万吨,可生产380万吨燃料乙醇。
就灌木林而言,我国现有灌木林4529.68万公顷,灌木林的生物量每公顷2吨~8吨,以平均每公顷4吨计算,我国灌木林的生物量约为1.81亿吨,折合标准煤0.9亿吨。
林分生物量测定

第11章林分生物量测定[本章提要]本章在介绍森林生产量、生产力、生物量及森林生物量的组成与结构等基本概念的基础上,重点介绍林木生物量及林分生物量的测定方法。
11.1森林生产力和生物量11.1.1概述森林生产力(Forest Prductivity)是表示森林生态系统的结构和功能特征的重要指标之一。
任何一个生态系统中的能量流动开始于绿色植物的光合作用对太阳能的固定,所以绿色植物是生态系统最基本的组成成分,没有绿色植物就没有其他的生命(包括人类),也就没有生态系统。
森林生产力的大小是森林中植物(乔灌木和草本植物)和其他生物(动物、微生物等)、土壤(土壤质地、营养元素等)、气候(如光、温度、湿度和降雨等)以及人为干扰等状况的一个综合反映。
森林生态系统中能量流动与物质循环的研究都靠生产力的测定提供基础资料,即从生产力的测定开始研究各种森林群落中物质与能量及其固定、消耗、分配、积累与转换的特点;因此,森林生产力的调查是正确认识、管理和利用森林生态系统的基础。
森林生物量(Forest Biomass)是森林植物群落在其生命过程中所产干物质的累积量,它的测定以树木生物量测定最为重要。
森林的生物量受到诸如林龄、密度、立地条件和经营措施的影响,其变动幅度非常之大。
就同一林分内即使胸径和树高相同的林木,而其树冠大小、尖削度及单位材积干物质重量也不相同。
在同龄林内,由于林木大小不同,根、干、枝叶干物质量对全株所占比率也不相似。
森林生态系统的复杂性和森林生物量构成的多样性,一方面给生物量调查造成了许多困难;另一方面,由于森林生态系统结构具有相对的稳定性,使得森林生态系统形成长期稳定的森林结构,这为测定和了解森林生态系统的结构和其功能都提供了许多有利条件。
因此,采取怎样有效的方法调查森林生物量,显然是一项重要的工作。
森林生物量是森林生态系统的最基本数量特征。
它既表明森林的经营水平和开发利用的价值,同时又反映森林与其环境在物质循环和能量流动上的复杂关系。
中国西南地区森林生物量及生产力研究综述

中国西南地区森林生物量及生产力研究综述摘要:在参考前人大量的研究结果基础上,按不同林分类型和林分起源对中国西南地区(云南省、贵州省、四川省、重庆市) 的森林生物量和净生产力进行了总结概述。结果显示,西南地区的森林生物量为162.15 t/hm2;若按不同的林分类型来划分,则阔叶林的森林生物量(178.08 t/hm2) 大于针叶阔叶混交林(164.63 t/hm2)和针叶林(145.18 t/hm2) 的;若按不同的林分起源进行划分,则天然林的森林生物量(210.58 t/hm2) 大于人工林(110.65 t/hm2) 的。西南地区的森林净生产力为11.98 t/(hm2·a),若按不同的林分类型来划分,则阔叶林的森林净生产力12.75 t/(hm2·a)大于针叶林的12.13 t/(hm2·a) 和针叶阔叶混交林的9.61 t/(hm2·a);若按不同的林分起源进行划分,则天然林的森林净生产力13.38 t/(hm2·a)大于人工林的10.56 t/(hm2·a)。同时对研究中发现的一些问题及以后的研究方向进行了讨论与展望。关键词:森林;林分类型;林分起源;生物量;生产力;中国西南地区全球性的温室效应、气候变暖等生态环境问题正在严重威胁着人类生存与社会经济的可持续发展,已成为全世界共同关注的焦点问题之一[1-3]。森林是陆地生态系统的主体,在全球碳循环中具有重要的作用和地位;生物量的测定是研究森林生态系统生产力和自然界环境要素循环的基础工作[4],森林生产力作为陆地碳循环的重要组成部分,是判定森林碳源(汇)和调节生态过程的主要因子[5]。森林生物量和生产力特征是森林生态系统结构和功能的最基本要素之一[4,5],并且生态系统的能量和营养元素循环的研究首先也依赖于生物量和生产力的数据[6]。森林的生物量积累和生产力发展是生态系统发展的根本动力,所以森林生物量和生产力的动态决定着森林生态系统的变化[7],因此森林生物量和生产力动态对人类进行森林的管理与利用也就具有重要的参考价值;考虑到森林及其变化对陆地生物圈的重要性,推算森林生物量和生产力便成为生态学和全球气候变化研究的重要内容之一,同时还可为系统研究森林植被碳库及其变化提供基础数据。在充分总结前人研究结果的基础上,课题组对中国西南地区(云南省、贵州省、四川省、重庆市)森林的主要优势树种林型的生物量和生产力进行了汇总,旨在为该地区的森林生产力监测与评价提供基础数据支撑,为森林净生产力有关的信息查询、分析评价、辅助决策等提供综合服务。1森林净生产力概念及计算方法净生产力指单位土地面积上、单位时间内有机物的净生产量[8]。用净生产力确定林分的总生产量比较困难,所以在研究评价林分的净生产力时,往往采用其年净生物量作为衡量指标,即求算现有林分的年生长量、植物凋落和枯损的量、被采食(伐)量三者之和。但因后两者的量值很小,以往的研究几乎都将其忽略,因此所计算的森林年净生物量要比实际情况略低一些。森林年净生物量计算公式为:ΔW=(Wa-Wa-n)/n;式中,Wa为森林单位面积现存的生物量,Wa-n为n单位时间前森林单位面积的生物量,n为从Wa-n到Wa的时间跨度(单位:年);若Wa-n为0,则森林年净生物量ΔW为n年的平均净生产量(Wp),否则为连年净生物量。2西南地区森林生物量和净生产力2.1西南地区森林生物量和净生产力研究现状本研究收集了中国西南地区(云南省、贵州省、四川省、重庆市)自1986年以来,在森林生物量和净生产力研究领域里发表的相关研究结果[2,3,5,8-53],包括针叶林、针叶阔叶混交林、阔叶林的生物量和净生产力,并对其进行了整理、分析、汇总[54,55],其中涉及的树种有辐射松(Pinups radiata D. Don)、云南松(Pinus yunnanensis Faranch.)、海南五针松(P. fenzeliana Hand.-Mzt.)、油松(P. tabulaeformis Carr.)、华山松(P. armandii Franch..)、马尾松(P. massoniana Lamb.)、思茅松[P. kesiya Royle ex.Gordon var. langbianensis(A.Chev.)Gaussen]、高山松(P. densata Mast.)、日本落叶松[Larix kaempferi(Lamb.)Carr.]、红杉(L. potaninii Batalin)、峨眉冷杉[Abies fabri(Mast.)Craib]、长苞冷杉(A. georgei Orr.)、云南紫果冷杉[A. recurvata Mast. var. salonenensis(Botd Zres-Rey et Gaussen)C. T. Kauan.]、杉木[Cunninghamia lanceolata(Lamb.)Hook.]、云杉(Picea asperata Mast.)、紫果云杉(P. purpurea Mast.)、油麦吊云杉[P. brachytyla(Franch.)Pritz. var. complanata(Mast.)Cheng.]、墨西哥柏(Cupressus lusitanica Mill.)、柏木(C. funebris Endl.)、桤木(Alnus cremastogyne Burk.)、黄背栎(Quercus pannosa Hand.-Mazz.)、辽东栎(Q. liaotungensis Koidz.)、灰背栎(Q. senescens Hand.-Mazz.)、桦木(Betula spp.)、红桦(B. albo-sinensis Burk.)、黄毛青冈[Cyclobalanopsis delavayi(Franch.et)Schottky]、杜鹃(Rhododendron simsii Planch.)、杜仲(Eucommia ulmoides Oliver)、楠木(Phoebe zhennan S. Lee.)、光果西南杨[Populus schneideri(Rehder)N. Chao var. tibetica(C. K. Schneid.) N. Chao.]、连香树(Cercidiphyllum japonicum Sieb. et Zucc.)、竹(Bambusoideae)、刺楸[Kalopanax septemlobus (Thunb.) Koidz.]、赤桉(Eucalyptus camaldulensis Dehnh.)、元江栲(Castanopsis orthacantha Franch.)、短刺栲(C. echidnocarpa Miq.)、木果石栎[Lithocarpus xylocarpus(Kurz)Markg.]等;其中针叶林的各树种生物量和净生产力汇总情况见表1,针叶阔叶混交林的各树种生物量和净生产力汇总情况见表2,阔叶林的各树种生物量和净生产力汇总情况见表3。2.2西南地区森林生物量和净生产力资料汇总综合表1、表2、表3结果进一步汇总可以得出,中国西南地区的森林生物量为162.15 t/hm2,其中乔木层生物量为148.41 t/hm2,乔木层、灌木层、草本层和枯落物层所占总生物量的比例分别为91.53%、2.93%、1.46%和 4.08%;森林净生产力为11.98 t/(hm2·a),其中乔木层净生产力为10.64 t/(hm2·a),乔木层、灌木层、草本层所占总净生产力的比例分别为88.80%、6.04%和5.16%。2.2.1不同林分类型的生物量和净生产力若按林分类型来划分,则中国西南地区(云南省、贵州省、四川省、重庆市)的森林生物量和净生产力汇总情况见表4,由表4可知,各林分总生物量的大小顺序为阔叶林总生物量、针叶阔叶混交林总生物量、针叶林总生物量。针叶林的林分总生物量为145.18 t/hm2,其中乔木层的生物量为126.15 t/hm2,占针叶林林分总生物量的86.89%,灌木层、草本层和枯落物层的生物量分别占针叶林林分总生物量的3.36%、2.96%和6.79%。阔叶林的林分总生物量为178.08 t/hm2,其中乔木层的生物量为166.84 t/hm2,占阔叶林林分总生物量的93.69%,灌木层、草本层和枯落物层的生物量分别占阔叶林林分总生物量的3.20%、0.66%和2.45%。针叶阔叶混交林的林分总生物量为164.63 t/hm2,其中乔木层的生物量为160.17 t/hm2,占针叶阔叶混交林林分总生物量的97.29%,灌木层、草本层和枯落物层的生物量分别占针叶阔叶混交林林分总生物量的0.64%、0.82%和1.25%。从表4还可知,各林分的总净生产力大小顺序为阔叶林总净生产力、针叶林总净生产力、针叶阔叶混交林总净生产力。针叶林的林分总净生产力为12.13 t/(hm2·a),其中乔木层的净生产力为10.74 t/(hm2·a),占针叶林林分总净生产力的88.54 %,灌木层和草本层的净生产力分别占针叶林林分总净生产力的 5.19%和6.27%。阔叶林的林分总净生产力为12.75 t/(hm2·a),其中乔木层的净生产力为11.33 t/(hm2·a),占阔叶林林分总净生产力的88.86%,灌木层和草本层的净生产力分别占阔叶林林分总净生产力的7.69%和 3.45%。针叶阔叶混交林的林分总净生产力为9.61 t/(hm2·a),其中乔木层的净生产力为8.63 t/(hm2·a),占针叶阔叶混交林林分总净生产力的89.80%,灌木层和草本层的净生产力分别占针叶阔叶混交林林分总净生产力的1.46%和8.74%。2.2.2不同林分起源的生物量和净生产力若按林分起源来划分,则中国西南地区(云南省、贵州省、四川省、重庆市)的森林生物量和净生产力汇总情况见表5,由表5可知,天然林的林分总生物量大于人工林的。天然林的林分总生物量为210.58 t/hm2,其中乔木层的生物量为196.09 t/hm2,占天然林林分总生物量的93.12%,灌木层、草本层和枯落物层的生物量分别占天然林林分总生物量的 3.04%、1.15%和2.69%;人工林的林分总生物量为110.65 t/hm2,其中乔木层的生物量为97.84 t/hm2,占人工林林分总生物量的88.42%,灌木层、草本层和枯落物层的生物量分别占人工林林分总生物量的2.34%、2.08%和7.16%。各林分的天然林总净生产力也大于人工林的。天然林的林分总净生产力为13.38 t/(hm2·a),其中乔木层的净生产力为11.96 t/(hm2·a),占天然林林分总净生产力的89.39%,灌木层和草本层的净生产力分别占天然林林分总净生产力的7.55%和 3.06%;人工林的林分总净生产力为10.56 t/(hm2·a),其中乔木层的净生产力为9.24 t/(hm2·a),占人工林林分总净生产力的87.50%,灌木层和草本层分别占人工林林分总净生产力的3.31%和9.19%。3西南地区森林生物量和净生产力影响因素谷晓平等[56]研究了近20年来的气候变化对云南省、贵州省、四川省和西藏自治区部分地区植被净初级生产力的影响,结果表明,这些地区总植被净初级生产力的空间分布与降水量呈显著的正相关,与海拔高度呈显著的负相关;从年际变化来看,这些地区总植被净初级生产力有上升趋势;蒙吉军等[57]也对近20年来西南喀斯特地区(云南省、贵州省、广西壮族自治区)植被变化对气候变化的响应进行了研究,其结果表明,植被指数年际变化与气候因子年际变化的相关系数区域差异比较明显,20世纪80年代以来,西南喀斯特地区植被覆盖度和净初级生产力总体均呈增加的趋势,但差异不显著。王兆礼等[58]对珠江流域(云南省、贵州省、广西壮族自治区、广东省)植被净初级生产力及其时空格局进行了研究,结果表明,受气候和土地利用变化的影响,近20年来珠江流域植被净生产力整体上呈现减少的趋势,单位面积减少了约0.6%,不过差异不显著;这个结果同谷晓平等[56]和蒙吉军等[57]的研究结果存在一定的差异,其产生的原因可能是由于行政区划范围的不同造成的。杨亚梅等[59]和王玉娟等[60]分别研究了季节变化对贵州省植被净初级生产力的影响,前者研究结果表明,在1981~2000年期间,春季和秋季的植被净生产力都呈显著增加的趋势,而夏季和冬季的植被净生产力都呈减少的趋势,春季是植被净生产力增加速率最快的季节,夏季是植被净生产力减少速率最快的季节;后者研究结果表明,植被的净生产力大小顺序为春季净生产力、秋季净生产力、冬季净生产力。4小结1)在总结前人大量研究结果的基础上,将西南地区(云南省、贵州省、四川省、重庆市)的森林生物量和净生产力按不同林分类型和林分起源进行了总结概述,结果显示,该地区的森林生物量为162.15 t/hm2,净生产力为11.98 t/(hm2·a),这比于维莲等[54]的研究结果[广西壮族自治区、云南省、贵州省、四川省、重庆市、湖南省,1989~1993年平均总森林生物量为148.66 t/hm2,净生产力9.64 t/(hm2·a)]和方精云等[55]的研究结果[云南省、贵州省、四川省,森林生物量为101.43 t/hm2,净生产力为9.67 t/(hm2·a)]稍高;就是按不同林分起源来划分,同于维莲等[54]的研究结果[天然林林分生物量为156.65 t/hm2、人工林林分生物量为84.51 t/hm2,天然林林分净生产力为8.93 t/(hm2·a)、人工林林分净生产力为10.20 t/(hm2·a)]也存在一些差异。产生以上差异的原因可能是所选参考文献的范围、年限等不一致造成的,也可能是计算方法上的差异造成的,其具体原因还有待进一步深入查找分析。2)在查阅大量文献资料的基础上,笔者发现不同林分类型乔木层的净生产力及灌木层、草本层的净生产力计算方法差异较大,主要是在林龄的确定上没有一个统一的标准。丁贵杰等[8]认为,林龄8、12、18、22、30年的马尾松林分松针叶龄应分别取1.4、1.5、1.7和1.8年;吴兆录等[29]对林龄40和100年的高山松林分松针叶龄取的则是3.5年;宿以明等[14]对35年生的峨眉冷杉林分针叶叶龄取的是5年,林内灌木层和草本层林龄分别取的是5年和4年,而在“川西采伐迹地早期植被生物量与生产力动态初步研究”一文中,草本层的年龄取的则是1年[45];潘攀等[35]在对杜仲人工林生产力研究中,草本层的林龄取的则是林分年龄7年;江洪等[11]对云南松林分松针叶龄取的是林分年龄18年等。基于以上种种差异,笔者认为有必要对其进行更深入的研究,根据不同林龄、不同林分类型等来划分,统一其林龄或叶龄取舍及其计算方法。3)本研究共收集了有关西南地区(云南省、贵州省、四川省、重庆市)森林生物量和净生产力相关文献60篇,但针对针叶阔叶混交林生物量和净生产力的研究文献仅有7篇,60篇文献中只有13篇的林分净生产力包括了枯落物,其他的文献则没有。基于此,笔者认为,今后对针叶阔叶混交林林分的生物量和净生产力、林分枯落物的净生产力研究还有待进一步拓展。另外,收集的60篇相关文献中,有多达34篇是2000年以前发表的,由此可反映出西南地区(云南省、贵州省、四川省、重庆市)森林净生产力的相关研究还是相对滞后的。参考文献:[1] 方精云. 中国森林生产力及其对全球气候变化的响应[J]. 植物生态学报,2000,24(5):513-517.[2] 刘彦春,张远东,刘世荣,等. 川西亚高山针阔混交林乔木层生物量、生产力随海拔梯度的变化[J]. 生态学报,2010,30(21):5810-5820.[3] 刘彦春,张远东,刘世荣. 川西亚高山次生桦木林恢复过程中的生物量、生产力与材积变化[J]. 生态学报,2010,30(3):594-601.[4] 郑征,刘宏茂,刘伦辉,等. 西双版纳原始热带季节雨林生物量的研究[J]. 广西植物,1999,19(4):309-314.[5] 夏焕柏. 茂兰喀斯特植被不同演替阶段的生物量和净初级生产力估算[J]. 贵州林业科技,2010,38(2):1-8.[6] 何海,乔永康,刘庆,等. 亚高山针叶林人工恢复过程中生物量和材积动态研究[J].应用生态学报,2004,15(5):748-752.[7] 罗辑,杨忠,杨清伟.贡嘎山森林生物量和生产力的研究[J]. 植物生态学报,2000,24(2):191-196.[8] 丁贵杰,王鹏程. 马尾松人工林生物量及生产力变化规律研究Ⅱ.不同林龄生物量及生产力[J]. 林业科学研究, 2001, 15(1):54-60.[9] 潘攀,慕长龙,牟菊英,等. 辐射松人工幼林生物量和生产力研究[J]. 四川林业科技,2005,26(1):22-29.[10] 宿以明. 日本落叶松人工林生物量和生产力的研究[J].四川林业科技,1995,16(3):36-42.[11] 江洪,林鸿荣.飞播云南松林分生物量和生产力的系统研究[J]. 四川林业科技,1985,6(4):1-10.[12] 张家贤,袁永珍. 海南五针松人工林林分生物量的研究[J]. 植物生态学与地植物学学报,1988,12(1):63-69.[13] 周世强,黄金燕. 四川红杉人工林林分生物量和生产力的研究[J]. 植物生态学与地植物学学报,1991,15(1):9-15.[14] 宿以明,刘兴良,向成华. 峨眉冷杉人工林林分生物量和生产力研究[J]. 四川林业科技,2000,21(2):31-35.[15] 鄢武先,宿以明,刘兴良,等. 云杉人工林生物量和生产力的研究[J]. 四川林业科技,1991,12(4):17-22.[16] 潘攀,李荣伟,向成华,等. 墨西哥柏人工林生物量和生产力研究[J]. 长江流域资源与环境,2002,11(2):133-136.[17] 杨洪国. 长江上游柏木人工林林分生物量研究[J].四川林勘设计,2007(1):17-19.[18] 王江. 桤柏混交幼林群落特征及生物量调查[J].四川林业科技,1993,14(1):66-69.[19] 杨韧,邓朝经,覃模昌,等. 川中丘陵区柏木人工林生物量的测定[J]. 四川林业科技, 1987,8(1):21-24.[20] 江洪. 紫果云杉天然中龄林林分生物量和生产力的研究[J]. 植物生态学与地植物学学报,1986,10(2):146-152.[21] 马明东,江洪,罗承德,等. 四川西北部亚高山云杉天然林生态系统碳密度、净生产量和碳贮量的初步研究[J]. 植物生态学报,2007,31(2):305-312.[22] 江洪,朱家骏. 云杉天然林林分生物量和生产力的研究[J]. 四川林业科技,1986,7(2):5-13.[23] 张治军,王彦辉,袁玉欣,等. 马尾松天然次生林生物量的结构与分布[J]. 河北农业大学学报,2006,29(5):37-43.[24] 吴兆录,党承林. 云南普洱地区思茅松林的生物量[J]. 云南大学学报(自然科学版),1992,14(2):119-127.[25] 吴兆录,党承林.云南普洱地区思茅松林的净第一性生产力[J]. 云南大学学报(自然科学版),1992,14(2):128-136.[26] 吴兆录,党承林. 云南昌宁县思茅松林的生物量和净第一性生产力[J]. 云南大学学报(自然科学版),1992,14(2):137-145.[27] 石培礼,钟章成, 李旭光. 四川桤柏混交林生物量的研究[J]. 植物生态学报,1996,20(6):524-533.[28] 吴兆录,党承林,王崇云,等. 滇西北高山松林生物量的初步研究[J]. 云南大学学报(自然科学版),1994,16(3):220-224.[29] 吴兆录,党承林,王崇云,等. 滇西北高山松林净第一性生产力的初步研究[J]. 云南大学学报(自然科学版),1994,16(3):225-228.[30] 党承林,吴兆录. 黄毛青冈群落的生物量研究[J]. 云南大学学报(自然科学版),1994,16(3):205-209.[31] 党承林,吴兆录. 黄毛青冈群落的净第一性生产力研究[J]. 云南大学学报(自然科学版),1994,16(3):210-213.[32] 党承林,吴兆录,王崇云,等. 云南中甸长苞冷杉群落的生物量和净生产力研究[J]. 云南大学学报(自然科学版),1994,16(3):214-218.[33] 吴兆录,党承林,和兆荣,等. 滇西北油麦吊云杉林生物量的初步研究[J]. 云南大学学报(自然科学版),1994,16(3):230-234.[34] 吴兆录,党承林,和兆荣,等. 滇西北油麦吊云杉林净第一性生产力的初步研究[J].云南大学学报(自然科学版),1994,16(3):240-244.[35] 潘攀,李荣伟,覃志刚,等.杜仲人工林生物量和生产力研究[J]. 长江流域资源与环境,2000,9(1):71-77.[36] 马明东,江洪,杨俊义. 四川盆地西缘楠木人工林林分生物量的研究[J]. 四川林业科技,1989,10(3):6-14.[37] 彭培好,彭俊生,王成善,等. 川西高原光果西南杨人工林生物量及生产力的研究[J]. 林业科技,2003,28(4):14-18.[38] 刘文耀. 昆明北郊水源保护区圣诞树人工林林分生物量及生产力的研究[J]. 广西植物,1995,15(4):327-334.[39] 孔维静,郑征. 岷江上游茂县退化生态系统及人工恢复植被地上生物量及净初级生产力研究[J]. 山地学报,2004,22(4):445-450.[40] 方向京,李贵祥,张正海. 滇东北不同退耕还林类型生物生产量及水土保持效益分析[J]. 水土保持研究,2009,16(5):229-232.[41] 林伟宏,陈克明,刘照光. 川西南干热河谷赤桉人工林生物量和营养元素含量[J]. 山地研究,1994,12(4):251-255.[42] 宿以明,慕长龙,潘攀,等. 岷江上游辽东栎天然次生林生物量测定[J]. 南京林业大学学报(自然科学版), 2003, 27(6):107-109.[43] 吴兆录,党承林,和兆荣,等. 滇西北黄背栎林生物量和净第一性生产力的初步研究[J].云南大学学报(自然科学版),1994,16(3):245-249.[44] 吴兆录,党承林. 昆明附近灰背栎林生物量和净第一性生产力的初步研究[J]. 云南大学学报(自然科学版),1994,16(3):235-239,244.[45] 宿以明,王金锡,史立新,等. 川西采伐迹地早期植被生物量与生产力动态初步研究[J]. 四川林业科技,1999,20(4):14-21.[46] 唐建维,张建侯,宋启示,等. 西双版纳热带次生林生物量的初步研究[J]. 植物生态学报,1998,22(6):489-498.[47] 唐建维,张建侯,宋启示,等. 西双版纳热带次生林净初级生产力的初步研究[J]. 植物生态学报,2003,27(6):756-763.[48] 郑征,冯志立,甘建民. 西双版纳热带季节雨林下种植砂仁干扰对雨林净初级生产力影响[J]. 植物生态学报,2003,27(1):103-110.[49] 党承林,吴兆录. 元江栲群落的生物量研究[J]. 云南大学学报(自然科学版),1994,16(3):195-199.[50] 党承林,吴兆录. 元江栲群落的净第一性生产力研究[J]. 云南大学学报(自然科学版), 1994,16(3):200-204.[51] 党承林,吴兆录.季风常绿阔叶林短刺栲群落的生物量研究[J]. 云南大学学报(自然科学版),1992,14(2):95-107.[52] 党承林,吴兆录. 季风常绿阔叶林短刺栲群落的的净第一性生产力研究[J]. 云南大学学报(自然科学版),1994,16(3):108-118.[53] 谢寿昌,刘文耀,李寿昌,等. 云南哀牢山中山湿性常绿阔叶林生物量的初步研究[J]. 植物生态学报,1996,20(2):167-176.[54] 于维莲,董丹,倪健. 中国西南山地喀斯特与非喀斯特森林的生物量与生产力比较[J].亚热带资源与环境学报,2010, 5(2):25-30.[55] 方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产力[J]. 生态学报,1996,16(5):497-508.[56] 谷晓平,黄玫,季劲钧,等. 近20年气候变化对西南地区植被净初级生产力的影响[J]. 自然资源学报,2007,22(2):251-259.[57] 蒙吉军,王钧. 20世纪80年代以来西南喀斯特地区植被变化对气候变化的响应[J]. 地理研究,2007,26(5):857-866.[58] 王兆礼,陈晓宏.珠江流域植被净初级生产力及其时空格局[J]. 中山大学学报(自然科学版),2006,45(6):106-110.[59] 杨亚梅,胡蕾,武伟,等. 贵州省陆地净初级生产力的季节变化研究[J]. 西南大学学报(自然科学版),2008,30(9):123-128.[60] 王玉娟,杨胜天,吕涛,等. 喀斯特地区植被净第一性生产力遥感动态监测及评价——以贵州省中部地区为例[J]. 资源科学,2008,30(9):1421-1430.。
我国森林植被的生物量和净生产量

我国森林植被的生物量和净生产量一、本文概述本文旨在全面探讨我国森林植被的生物量和净生产量,深入分析其分布格局、动态变化及其影响因素,以期为我国森林生态系统的科学管理、生态环境保护和可持续发展提供理论支持和实践指导。
我们将通过梳理国内外相关研究成果,结合我国森林植被的实际状况,综合运用生态学、林学、地理学等多学科的理论和方法,对森林植被的生物量和净生产量进行深入研究。
研究内容包括但不限于森林植被生物量的估算方法、生物量的空间分布特征、生物量的动态变化及其驱动机制,以及森林植被净生产量的计算方法、影响因素和提升途径等。
本文期望通过系统研究和综合分析,为我国森林资源的合理利用和生态环境保护提供科学依据,同时也为全球森林生态系统的研究提供参考和借鉴。
二、我国森林植被分布及特点我国地域辽阔,地形复杂,气候多样,这为森林植被的多样化分布提供了得天独厚的条件。
从北到南,从东到西,我国的森林植被类型丰富,各具特色。
东北针叶林区:主要分布在大兴安岭、小兴安岭和长白山等地,以针叶林为主,如落叶松、红松等。
华北落叶阔叶林区:包括华北平原、黄土高原以及部分山地,以落叶阔叶林为主,如杨、柳、榆等。
华中华南常绿阔叶林区:分布在长江以南的广大地区,以常绿阔叶林为主,如樟树、楠木等。
西南高山针叶林区:位于青藏高原及其周边山地,以高山针叶林为主,如冷杉、云杉等。
热带季雨林区:主要分布在海南岛、台湾岛和云南的南部,以热带季雨林为主,如橡胶树、椰子树等。
生物多样性丰富:我国森林植被类型众多,每种类型中又包含大量的物种,生物多样性十分丰富。
地理分布不均:受地形、气候等条件的影响,我国森林植被的分布具有明显的地理特点,东部和南部的森林覆盖率较高,而西北部的森林覆盖较低。
植被垂直带谱明显:在高山地区,随着海拔的升高,森林植被类型会发生明显的变化,形成明显的垂直带谱。
人工林比重较大:近年来,我国大力开展植树造林活动,人工林面积不断增加,成为我国森林植被的重要组成部分。
森林油松生物量测定方法

量或能量来表不。
需 靠下 侧锯 1 个 圆盘 ,然后再截取角度 3 0  ̄ 以上的 2个扇 形块 。 准确测定每个 圆盘或扇形块 的鲜重 , 然后尽快将树皮 剥离 , 用天平称取树皮鲜 重。 将木材样 品和树皮样品分别装 入划 、 布袋 , 并在袋 中放人编号标签 。 样 品重量 要求 精确 到 1 %。原 则 上要求 样 品鲜重 在 l O O g以上者( 如木材) , 记载到 g ; l O O g以下者 口 树皮) , 记载
森林生物量测算方法

11
• 一元回归方程使用最多,而且使用。 • 常用的方程为异速生长方程,基本形式: Y=aDb 式中,D为胸径,a和b为常数。 • 一般建立过程是从枝条开始,特别是大树,需 要对树冠的生物量进行估测后建立胸径-生物量 相关模型。
12
模型法的基本过程
1)分别径级取一定量样木,总数不少于30株 2)伐倒后测量胸径、树高、所有一级枝条直径 3)区分求积法测定树干体积,根据木材密度计算树干生物量 4)取不同直径的枝条,分布均匀,不少于30个体,测定木质和 叶片生物量 5)建立枝条生物量模型:w=adb 6)计算单株树冠生物量:将每一株样木的枝条直径代入枝条生 物量模型,总和后求得单株树冠生物量。 7)单株树木生物量:树干生物量+树冠生物量 8)建立胸径-生物量模型:W=aDb 9)计算样地内所有树木生物量:将林木直径代入树木生物量模 型。合计后得到全样地生物量
25
实测值法和估计值法建立的单株分器官生物 量(kg)-胸径(cm)回归方程
方法 实测值法 要素 叶 枝 干 总 估计值法 叶 枝 干 总 方程
0.0074D2.3183 0.0137D2.3683 0.0420D2.3455 0.0632D2.3496 0.0070D2.2507 0.0163D2.2508 0.0226D2.5953 0.0413D2.5031
1)测定树木直径:对样地内树木测定直径,不少于200株。 2)划分径级:根据最大直径和最小直径,分成3—5个等各 间隔的直径级。 3)计算径级平均直径:分别直径级计算平均直径,作为标准 木的依据。 3)选定标准木:每个径级1--2株,直径符合径级平均直径。 株数较多的径级可适当多取样木。 4)伐倒标准木,测定各组分的生物量,计算各径级平均单株 生物量。 5)计算径级生物量:径级平均单株生物量*径级株数。 6)计算林分生物量:Σ(径级生物量)/样地面积
我国森林植被的生物量和净生产量

我国森林植被的生物量和净生产量森林植被作为地球上重要的生态系统之一,对于维持地球生态平衡具有至关重要的作用。
在我国,森林植被的生物量和净生产量对于我国的生态、经济和环境等方面都有着重要的影响。
因此,本文将就我国森林植被的生物量和净生产量进行探讨,以期为相关政策和决策提供参考。
我国拥有丰富的森林资源,根据第七次全国森林资源清查数据,全国森林面积达到08亿公顷,占国土面积的6%。
其中,天然林面积41亿公顷,人工林面积67亿公顷。
森林覆盖率达到6%,森林蓄积量达到45亿立方米。
我国森林植被类型多样,包括针叶林、阔叶林、混交林等,其中针叶林是我国主要的森林类型。
森林植被生物量是指森林植被中有机质的总量,包括树木、枝叶、皮渣等。
我国森林植被生物量丰富,根据研究,全国森林植被生物量达到170亿吨。
其中,树木生物量占据主导地位,达到150亿吨,其余为枝叶、皮渣等生物量。
我国森林植被生物量的分布情况与森林资源的分布情况基本一致,天然林生物量占据主导地位。
森林植被净生产量是指森林植被在一定时间内通过光合作用等生理过程所积累的有机物质总量。
根据研究,我国森林植被净生产量达到44亿吨。
其中,树木净生产量占据主导地位,达到54亿吨,其余为枝叶、皮渣等生物量的净生产量。
我国森林植被净生产量的分布情况也与森林资源的分布情况基本一致,天然林净生产量占据主导地位。
而且,不同树种的净生产能力差异较大,有些树种的净生产量较高,如落叶松、樟子松等,而有些树种的净生产量较低,如云杉、冷杉等。
我国森林植被的生物量和净生产量都十分丰富,这为我国生态、经济和环境等方面提供了有力的支撑。
然而,在保障森林植被的可持续利用方面仍存在一些问题,如过度采伐、环境污染等。
因此,我们需要采取积极的措施,保障森林植被的可持续利用。
需要加强森林资源保护法律法规的制定和实施,打击非法采伐和环境污染行为。
需要加强森林资源的科学管理和经营,采取科学合理的采伐方式和经营模式,保障森林资源的可持续利用。
森林生物量及碳储量遥感监测方法研究

森林生物量及碳储量遥感监测方法研究一、本文概述随着全球气候变化问题的日益严峻,对森林生物量及碳储量的准确监测和评估显得尤为重要。
作为地球上最大的陆地生态系统,森林在全球碳循环中发挥着至关重要的作用。
然而,传统的森林生物量和碳储量监测方法往往受限于其耗时、耗力和高成本的特点,无法满足大规模、高频率的监测需求。
因此,遥感技术的引入为森林生物量和碳储量的监测提供了新的解决方案。
本文旨在探讨和研究利用遥感技术进行森林生物量及碳储量监测的方法。
我们将详细介绍遥感技术在森林生物量和碳储量监测中的应用原理、技术流程以及相关的数据处理和分析方法。
我们还将评估遥感技术的准确性和可靠性,并探讨其在实际应用中的优缺点。
通过对遥感监测方法的研究,我们期望能够为森林生态系统的碳循环和气候变化研究提供更为准确、高效的数据支持。
我们还将探讨如何将这些遥感监测方法应用于实际的森林管理和保护工作中,以实现对森林生物量和碳储量的长期、持续监测,为森林生态系统的可持续发展提供科学依据。
二、森林生物量及碳储量遥感监测基础森林作为地球上最大的陆地生态系统,其生物量和碳储量的监测对于全球气候变化研究、生态系统服务评估以及森林资源管理具有重要意义。
遥感技术作为一种高效、无损的监测手段,在森林生物量和碳储量的估算中发挥着越来越重要的作用。
遥感监测森林生物量的基础在于利用植被的光谱反射特性与生物量之间的关系。
不同植被类型、不同生长阶段的植物叶片对光谱的反射和吸收特性存在差异,这些差异可以通过遥感卫星或无人机搭载的光谱仪器进行捕捉和量化。
通过分析这些光谱数据,可以推断出植被的生物量分布和动态变化。
碳储量的遥感监测则主要依赖于植被的光合作用过程。
植被通过光合作用吸收二氧化碳并转化为有机物质,这一过程与植被的生长和生物量积累密切相关。
因此,通过遥感手段监测植被的生长状况,可以间接估算出森林生态系统的碳储量。
遥感技术还可以结合地面实测数据,建立生物量与碳储量之间的转换模型,进一步提高碳储量估算的精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第22卷 第5期世 界 林 业 研 究Vol.22 No.5 2009年10月World Forestry Research Oct12009我国的森林生物量研究3马 炜 孙玉军(北京林业大学省部共建森林培育与保护教育部重点实验室,北京100083)摘要:论述了我国森林生物量的研究内容及方法,对乔木层、林下植被、凋落物、粗木质残体、根系以及区域尺度的生物量研究进行了总结,概述了直接收获法、回归模型、平均换算因子法等常见的森林生物量估测方法。
最后提出当前我国在研究重点分布、基础数据采集以及空间尺度转换等方面存在的一些问题,指出森林生物量研究在遥感监测等方面的发展趋势。
关键词:森林生物量,模型估算,粗木质残体,尺度转换,遥感反演中图分类号:S758.5 文献标识码:A 文章编号:1001-4241(2009)05-0071-06Forest B i oma ss i n Ch i n aMa W ei SunYujun(The Key Laborat ory for Silviculture and Conservati on of M inistry of Educati on,Beijing Forestry University,Bejing100083,China)Abstract:Forest bi o mass has great research and app licati on value in f orest ecol ogical syste m.Con2 cep ti on,significance and devel opment hist ory of China’s f orest bi omass were exp lained.Extra e m2 phasis was p laced on research contents and methods of forest bi omass in China.An intr oducti on was made on the researches including dom inant s pecies,vegetati on,litter,coarse,r oot and regi onal scale bi omass esti m ati on as well.Some common forest bi omass esti m ati on methods were su mmarized, such as harvest,regressi on model,and bi omass-expansi on-fact or equati on.There still existed s ome shortages in forest bi omass research in China,i.e.in dis p r oporti on of study field,the collec2 ti on of basic data and the scaling-up of measure ment.Finally,the devel opment trend of forest bi o2 mass was pointed out.Key words:forest bi omass,esti m ati on model,coarse woody debris,scaling-up,re mote sensing inversi on 森林生物量是森林生态系统最基本的数量特征,近十几年来,其提供了大量可靠的基础数据用以研究森林生态系统的生产能力以及揭示森林生态系统能量平衡和养分循环等功能过程的变化规律[1-2]。
森林生物量已成为量度森林结构和功能变化的重要指标,并为生态系统的碳汇和碳素循环研究提供关键数据,在碳循环、全球气候变化研究中起到重要作用[3-5]。
目前国际林联(I U FRO)在《国际森林资源监测大纲》中已将森林生物量列为最主要的监测项目之一[6]。
我国植被生物量的研究起步较晚,但经过近30年的发展,已经对森林生态系统中主要乔木、林下植被、凋落物、粗木质残体、根系等生物量进行了大量估测,开拓了不同森林类型、不同气候带与区域尺度生物量等研究领域。
目前,我国森林生物量已经有了大量点上的分散资料的积累,这3收稿日期:2009-05-23基金项目:引进国际先进林业科学技术计划资助项目(948)(2008-4-48);高等学校博士学科点专项科研基金基于树木生长的森林碳储量模型(20060022009);国家自然科学基金资助项目基于森林资源清查的碳循环研究(30571492)作者简介:马炜(1985-),男,福建龙岩人,硕士,主要从事森林资源监测与评价研究,E-mail:bright m a wei@通讯作者:孙玉军,E-mail:sunyj@.an世 界 林 业 研 究第22卷些既有局部典型又有国家尺度的研究大大推进了我国森林生物量及相关的生态系统和全球变化研究的开展,也为系统研究我国的森林植被碳库及其变化打下了基础。
1 研究内容及方法1.1 乔木层生物量估测潘维俦等于1979年最早估测了杉木人工林的生物量和生产力,李文华、冯宗炜等也对长白山温带天然林、南方马尾松人工林等生物量进行了初步研究[1]。
李意德等结合森林采伐采用皆伐法对我国海南岛尖峰岭热带山地雨林生物量进行了调查,取得了较精确的数据[7]。
早期的这些研究使我国森林生态系统生物量的研究在人工林和天然林2个方面都得到了初步发展,但采用的方法基本局限于直接收获法,成本较高,对环境影响也较大。
随着计算机技术和各种先进统计分析软件的广泛应用,在直接收获法基础上衍生出了回归模型估测法,根据相对生长理论,以胸径D、树高H、D2H等为变量,利用数理统计配置回归方程,通过实测生物量或建立统计关系进行宏观拓展,获得某一树种或林型的生物量状况[8-9],具有较高的准确度和可信度,在局部森林生物量估计中广泛采用。
“平均生物量法”结合了大量调查数据和单株测树因子建模,也是较常用的方法[10]。
近十几年来,各地学者结合直接收获法及回归模型对我国主要树种生物量进行了更深入的研究。
乔木单株木生物量研究方面,温远光等按径级标准木法测定了尾叶桉干、皮、枝等器官生物量,建立了相对生长方程推算尾叶桉林分的生物量和生产力[11]。
李燕燕等通过分级取样测定法,对马尾松纯林及马尾松-格氏栲混交林生物量空间结构进行了分析,发现混交林能明显增加生态系统的生物量,特别是枝叶生物量分布结构合理,所占比例较大[12]。
在乔木生物量与林分因子、群落关系研究方面,段爱国等总结前人生物量调查研究资料并结合杉木人工林固定样地长期观测材料,研究了杉木人工林生物量在不同林龄、立地指数和林分密度的变化规律[13]。
刘申等根据鼎湖山多种植被类型乔木生物量研究结果,得到群落生物量递减、倒钟型和递增3种径级分配规律,认为山地常绿阔叶林生物量发展潜力巨大[14]。
目前,我国主要树种以及一些主要森林类型的生物量都已经得到测定,并提出许多较为成熟的估算模型[15-16]。
但是,树冠等因子与乔木生物量关系的研究尚处于起步阶段[17],如何规范生物量计量参数,并解决总量与各维量模型间的相容性也是当前困扰生物量研究的主要问题[18-19]。
1.2 区域尺度森林生物量估测在区域尺度生物量估测领域,冯宗炜等率先总结了全国不同森林类型的生物量及其分布格局[20]。
罗天祥、李文华等进一步建立了我国主要生物生产力优化模型系列,估算了我国森林生物总产量[21]。
平均生物量法、平均换算因子法及换算因子连续函数法基于系统抽样进行样地调查或建立在森林资源清查资料基础上,是估算区域尺度森林生物量较常用的方法。
平均生物量法对于大量不同森林类型和树种构建模型并不容易实现[22]。
平均换算因子法以及换算因子连续函数法则分别通过固定的和随材积变化的生物量转换因子(B EF),再根据林木蓄积推算得到生物量[23-24]。
方精云等结合实测资料和全国森林资源清查资料,建立“B EF=a+b/V”模型,实现了由样地调查向区域推算的简单尺度转换[25]。
陈先刚等根据中国竹林面积及生物量等研究成果,发现我国竹林碳储量在过去50年呈增加趋势,并预测随着面积的增加,竹林碳储量仍将继续增加[26]。
国内区域森林生物量研究范围涵盖了温带、亚热带等气候带,不同森林类型生物量的变化显著,而且天然林乔木层生物量明显大于人工林。
此外,基于遥感技术和模拟模型方法估测区域尺度植被总生物量的研究也得到了初步发展,方精云等较早结合卫星遥感技术和植被等地面空间数据,应用CAS A模型估算了我国植被年净第一性生产量及其时空变化[27]。
李克让等利用CE VS A模拟了国家尺度的植被总碳储量[28]。
为了准确评估森林在全球不同尺度地学过程中的作用,如何更有效地利用森林资源清查资料、遥感技术和模型模拟来监测评估国家和区域尺度的森林生物量和碳储量,正日益成为人们关注的重点。
1.3 林下植被生物量估测林下植被是林下乔木幼苗、灌木、草本及藤本等的统称,因与乔木层相比其生物量仅占10%~30%,处于次要地位而较少受到重视[29]。
上世纪27第5期马炜,孙玉军:我国的森林生物量研究80年代,在结构过于简单的杉木、杨树等人工林系统中暴露出严重的地力衰退等各种生态问题后,林下植被在促进森林生态系统养分循环、维持立地生产力等方面的作用得到肯定[30],灌木等林下植被生物量研究才日渐展开。
林下植被生物量的测定方法主要为传统的“全收获法”和回归模型估测法。
回归模型估测法在近几年迅速发展,多以树高、基径、冠幅、盖度等作为预测变量,建立直线、二项式及指数等多种回归模型。
姚茂和、林开敏等最早对杉木人工林林下植被生物量进行了研究,描述了不同立地指数和不同林龄下的动态特征,提出一系列预测模型[31]。
潘攀等以长白落叶松人工林的林龄和密度为自变量,建立了灌木和草本生物量的多种回归关系[32]。
近年来,松杉类人工林林下植被生物量研究日渐成熟,对于结构较复杂且所占比例较大的阔叶林林下植被生物量的研究也日渐增多[33]。
曾小平等通过研究发现,南亚热带丘陵地带阔叶林林下生物量积累呈明显的增长趋势,并高于针叶林[34]。
杨昆、管东生认为,以冠幅、盖度和高度作自变量建立简单的线性回归方程,能较准确预测南亚热带次生常绿阔叶林林下灌木单株及单位面积生物量[35]。
近几年,国内逐渐有了关于森林生态系统中苔藓等生物量研究的报道,包维楷等通过生物量测定认为,苔藓是评判人工林生态功能恢复效果的必要手段[36]。