《圆的证明与计算》专题讲解
圆的相关证明与计算(复习讲义)(原卷版)-中考数学重难点题型专题汇总

题型五--圆的相关证明与计算(复习讲义)【考点总结|典例分析】考点01圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.考点02垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.考点03圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.考点04圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.考点05与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r ⇔点在⊙O 外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r考点06切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.考点07三角形与圆1.三角形外接圆外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.1.如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=()A.48︒B.24︒C.22︒D.21︒2.如图,A,B,C 是半径为1的⊙O 上的三个点,若,∠CAB=30°,则∠ABC 的度数为()A.95°B.100°C.105°D.110°3.如图,AB 是⊙O 的直径,AC,BC 是⊙O 的弦,若20A ∠=︒,则B Ð的度数为()A.70°B.90°C.40°D.60°4.如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是()A.3B.C.4D.25.如图,已知在⊙O 中, AB BCCD ==,OC 与AD 相交于点E.求证:(1)AD∥BC(2)四边形BCDE 为菱形.6.如图,A,B 是O 上两点,且AB OA =,连接OB 并延长到点C,使BC OB =,连接AC.(1)求证:AC 是O 的切线.(2)点D,E 分别是AC,OA 的中点,DE 所在直线交O 于点F,G,4OA =,求GF 的长.7.如图,Rt ABC 中,90ABC ∠=︒,以点C 为圆心,CB 为半径作C ,D 为C 上一点,连接AD 、CD ,AB AD =,AC 平分BAD ∠.(1)求证:AD 是C 的切线;(2)延长AD 、BC 相交于点E,若2EDC ABC S S = ,求tan BAC ∠的值.8.如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.9.如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.10.如图,已知点C 是以AB 为直径的圆上一点,D 是AB 延长线上一点,过点D 作BD 的垂线交AC 的延长线于点E ,连结CD ,且CD ED =.(1)求证:CD 是O 的切线;(2)若tan 2DCE ∠=,1BD =,求O 的半径.11.如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接AC,CE⊥AB 于点E,D 是直径AB 延长线上一点,且∠BCE=∠BCD.(1)求证:CD 是⊙O 的切线;(2)若AD=8,BE CE=12,求CD的长.12.如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.13.如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO并延长,与⊙O 交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.=CD =DB ,连接AD,过点D作14.如图,AB为⊙O的直径,C、D为⊙O上的两个点,ACDE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.15.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.16.如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC 平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=3,求⊙O的半径.17.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若⊙O的半径为5,BC=16,求DE的长.。
涉及圆的证明与计算问题

涉及圆的证明与计算问题圆的证明与计算是中考必考点,也是中考的难点之一。
纵观全国各地中考数学试卷,能够看出,圆的证明与计算这个专题内容有三种题型:选择题、填空题和解答题。
一、与圆有关的概念1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
2.圆心角:顶点在圆心上的角叫做圆心角。
圆心角的度数等于它所对弧的度数。
3.圆周角:顶点在圆周上,并且两边分别与圆相交的角叫做圆周角。
4.外接圆和外心:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。
外接圆的圆心,叫做三角形的外心。
外心是三角形三条边垂直平分线的交点。
外心到三角形三个顶点的距离相等。
5.若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆。
6.和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
内心是三角形三个角的角平分线的交点。
内心到三角形三边的距离相等。
二、与圆有关的规律1.圆的性质:(1)圆具有旋转不变性;(2)圆具有轴对称性;(3)圆具有中心对称性。
2.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
3.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.4.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
5.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.7.圆内接四边形的特征①圆内接四边形的对角互补;②圆内接四边形任意一个外角等于它的内对角。
三、点和圆、线和圆、圆和圆的位置关系1.点和圆的位置关系①点在圆内⇔点到圆心的距离小于半径②点在圆上⇔点到圆心的距离等于半径③点在圆外⇔点到圆心的距离大于半径2.直线与圆有3种位置关系如果⊙O的半径为r,圆心O到直线l的距离为d,那么d<;①直线l和⊙O相交⇔rd=;②直线l和⊙O相切⇔rd>。
圆的证明与计算PPT

(7)切线长定理: 线段相等、垂直关系、角相等及全等。 2、圆中几个关键元素之间的相互转化:
弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和 计算中经常用到.
二、考题形式分析:
主要以解答题的形式出现,近两年来,此题考查形 式由原来的单图题演变成双图题;
第一小问也由原来的切线的证明,转变成应用圆中 简单性质进行计算和证明; 第二问则在第一问的基础上进行深化和运用,考查 学生灵活运用所学圆的相关知识解决线段长,面积、线 段比、三角函数的有关问题的能力。
圆的证明与计算
(双图题)专题探究
华科附中初三备课组 主讲人:常静
一、圆中的有关知识点:
1、圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明— —弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推论: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线.
原创例题2:
来源:课本九年级上册86页例2
第一问考查:
利用弦切角 找特殊直角三 角形
构题的出发点:
以切割线为背景合理 运用圆的有关性质和 勾股定理建立方程进 行计算。
第二问考查:(基本策略)
看见等弧找等弦;看见直径找直角; 看见三角函数找直角三角形; 看见切割线找相似 目标线段旁有特殊角的情况下,作垂 线构造直角三角形。
(3)如图(3):若CK⊥AB于K,则:①CK=CD;BK=DE; 1 CK= 2 BE=DC;AE+AB=2AK=2AD; ②⊿ADC∽⊿ACB AC2=AD•AB
《圆的证明与计算》专题讲解

《圆的证明与计算》专题讲解圆的有关证明一、圆中的重要定理:(1) 圆的能义:主要是用来证明四点共圆.(2) 垂径定理:主要是用来证明一一弧相等、线段相等、垂直关系等等.(3) 三者之间的关系圧理:主要是用来证明一一弧相等、线段相等、圆心角相等.(4) 圆周角性质泄理及其推轮:主要是用来证明一一直角、角相等、弧相等.(5) 切线的性质定理:主要是用来证明一一垂直关系.(6) 切线的判定眾理:主要是用来证明直线是圆的切线.(7) 切线长定理:线段相等、垂直关系、角相等.2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化•这在圆中的证明和讣算中经常用到.知识点一:判定切线的方法:(1>若切点明确,则“连半径,证垂直”。
常见手法有:全等转化:平行转化:直径转化:中线转化等:有时可通过计算结合相似、勾股定理证垂直:(2)若切点不明确,则“作垂直,证半径”。
常见手法:角平分线泄理;等腰三角形三线合一,隐藏角平分线:总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。
任证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线•例:方法一:若直线1过OO上某一点A,证明I是OO的切线,只需连OA,证明OA丄1就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1如图,在Z\ABC中,AB=AC,以AB为直径的00交BC于D,交AC于E, B为切点的切线交0D延长线于F.求证:EF与OO相切.例2如图,已知:AB是的直径,点C在€)0上,且ZCAB=30°, BD=0B, D在AB 的延长线上.求证:DC是00的切线例3如图,AB是0O的直径,CD丄AB, ji OA2=OD・OP.求证:PC是OO的切线.方法二若直线1与OO没有已知的公共点,又要证明1是OO的切线,只需作OA丄1, A 为垂足,证明OA是QO的半径就行了,简称:“作垂直;证半径”(一般用于函数与几何综合题)例1:已知:如图,AC, BD与OO切于A、B,且AC〃BD,若ZCOD=90°.求证:CD是00的切线.知识点二:与圆有关的计算计算圆中的线段长或线段比,通常与勾股泄理、垂径圧理与三角形的全等、相似等知识的结合,形式复杂,无规律性。
中考数学题型专题复习题型2圆的证明与计算课件

即(7+x)2-72=42-x2,
解得x=1或-8(舍去).
∴AC=8,BD=
=
∴S菱形ABFC=AC·BD=8 . ∴S半圆= ×π×42=8π.
5.[2018·无锡]如图,四边形ABCD内接于圆
O,AB=17,CD=10,∠A=90°,cosB=
3 ,求AD的长.
5
解:如图,延长AD,BC交于点E.
题型2 圆的证明与计算
考查类型
与圆的性质 有关的证明
与计算
年份 2015
2018
2017
与圆的切线 有关的证明
与计算
2016
2014
2013
与扇形有关 的计算
2018
考查形式
题型
以圆内接四边形为背景,判断三角形的形状 ,结合全等三角形探究线段间关系,通过图
形分割探究四边形最大面积
解答
已知圆的切线,根据圆的性质证明两线垂直 ,并求出线段长度及弧长
∴EA=
∴AD=EA-DE=
类型②与圆的位置关系有关的证明与计算
例2►[2018·黄冈]如图,AD是⊙O的直径,AB为⊙O的弦, OP⊥AD,OP与AB的延长线交于点P,过点B的切线交OP于点C. (1)求证:∠CBP=∠ADB;
(2)若OA=2,AB=1,求线段BP的长.
规范解答:(1)证明:如图,连接OB. ∵BC是⊙O的切线. ∴OB⊥BC, ∴∠OBC=90°,即∠OBD+∠DBC=90°. ∵AD为⊙O的直径, ∴∠ABD=90°, ∴∠DBP=90°,即∠CBP+∠DBC=90°, ∴∠OBD=∠CBP. ∵OB=OD, ∴∠OBD=∠ADB, ∴∠CBP=∠ADB.…………………………………………(5分)
圆中的相关证明与计算

圆中的相关证明与计算圆是平面上到一个给定点的距离恒定的所有点的集合。
通过研究圆的性质和相关的定理,我们可以了解圆的性质和概念,并可以进行相关的证明和计算。
以下是一些关于圆的相关证明和计算的例子:1.圆的半径与直径的关系证明:首先,我们知道直径是通过圆心并且两端点在圆上的线段。
现在我们要证明直径是半径的两倍。
证明:假设圆的半径为r,直径为d。
根据直径的定义,我们知道直径是通过圆心的,并且它的两个端点在圆上。
所以直径d可以看作是两个半径r的长度相加,即d=r+r=2r。
所以我们可以得出结论:直径等于半径的两倍。
即d=2r。
2.圆周率的计算:周长的计算公式为:C=2πr,其中r为圆的半径。
面积的计算公式为:A=πr^2,其中r为圆的半径。
例如,如果一个圆的半径为5厘米,则它的周长为:C=2π*5=10π≈31.42厘米;面积为:A=π*5^2=25π≈78.54平方厘米。
3.弦和半径的垂直关系证明:在圆中,连接圆周上的两点的线段称为弦。
现在我们要证明如果一个弦与半径相交,那么这个弦就是半径的垂直平分线。
证明:假设在圆中有一个弦AB,如果它与半径OC相交于点M,我们要证明AM=MB。
根据圆的性质,半径OC与弦AB相交于点M,则角OMC是直角,因为OC是半径,所以OM=MC。
又由于弦AB与半径OC相交于点M,所以AM=MC,MB=MC。
综上所述,AM=MB,即弦AB是半径OC的垂直平分线。
通过以上证明和计算,我们可以更深入地了解圆的性质和相关的定理。
圆是几何学中重要的概念之一,它在各种数学和科学领域中都有广泛的应用。
希望以上内容对您有所帮助。
第40讲 与圆有关的计算与证明题 课件(共74张ppt) 2024年中考数学总复习专题突破.ppt

复习讲义
(2)若 = 5 , cos ∠ =
4
,求 的长.
5
∘
解: ∵ ∠ = 90∘ , ∴ ∠ + ∠ = 90 .
由(1)知, = 2 = 10 , ∠ = 90∘ ,
∴ ∠ + ∠ = 90∘ .
图3
∴ ∠ = ∠.
4
.
5
∴ cos = cos ∠ =
复习讲义
(2)若 = 10 , = 12 , = 2 ,求 ⊙ 的半径.
思路点拨 由(1)知 ⊥ ,因此可在 Rt △
中利用勾股定理列方程求解.
解: ∵ = , ⊥ , ∴ = =
1
2
= 6.
图1
∴ = 2 − 2 = 102 − 62 = 8.
∴ = 6 .
目录导航
9
第40讲 与圆有关的计算与证明题
复习讲义
2.(2022·鄂尔多斯)如图3,以 为直径的
⊙ 与 △ 的边 相切于点 ,且与 边
交于点 ,点 为 的中点,连接 , ,
.
(1)求证: 是 ⊙ 的切线.
1.(2022·衡阳)如图2, 为 ⊙ 的直径,过圆上一
点 作 ⊙ 的切线 交 的延长线于点 ,过点
作 // 交 于点 ,连接 .
(1)直线 与 ⊙ 相切吗?请说明理由.
图2
目录导航
7
第40讲 与圆有关的计算与证明题
复习讲义
解:直线 与 ⊙ 相切.
, 的点,连接 , ,点 在 的延长线
上,且 ∠ = ∠ ,点 在 的延长线上,
陕西中考圆的证明与计算(2023版)

陕西中考圆的证明与计算(2023版)知识总结1.切线的性质:垂直于过切点的半径.(连半径,得垂直)2.切线的判定:(1)定义法:和圆只有一个交点的直线是圆的切线;(2)距离法:到圆心距离等于半径的直线是圆的切线;证明d =r 即可,常用于已知数据的计算,比如动圆相切问题.(3)判定定理:经过半径外端且垂直于这条半径的直线是圆的切线.换个说法:⎧⎨⎩有交点:连半径,证垂直无交点:作垂直,证半径,多用于几何证明.多数情况为有交点,重点考虑如何证垂直:①证明和已知垂线平行;②证明夹角为直角.3.常见相切图(1)角分+等腰得平行:点C 在以AB 为直径的圆O 上,AH ⊥CH ,且AC 平分∠HAB .【证明】连接OC,则OC=OA,∴∠OCA=∠OAC,又∠OAC=∠HAC,∴∠OCA=∠HAC,∴OC∥AH,∴OC⊥CH,∴CH是圆O的切线.(2)证明和已知直角相等.证明△PCO≌△PAO,可得∠PCO=∠PAO=90°.(3)证明夹角为直角.(弦切角定理)如图,若∠BAC=∠D,则AB是圆O切线.如图,连接AO并延长交圆O于点P,则∠P=∠D=∠BAC,∵∠P+∠PAC=90°,∴∠BAC+∠PAC=90°,即AB⊥AP,∴AB是圆O的切线.1.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC 于点E.(1)求证:DE=AE;(2)若AD=8,DE=5,求BC的长度.2.如图,在Rt△ABC中,∠ABC=90°,以BC为直径的⊙O交AC于点E,⊙O的切线DE交AB于点D.(1)求证:DA=DB;(2)连接BE,OD,交点为F,若cos A=,BC=6,求OF的长.3.如图,AB是⊙O的直径,经过⊙O上一点D,作⊙O的切线EF,交AB的延长线于点F,AE⊥EF,交BD的延长线于点C.(1)求证:AB=AC.(2)若⊙O的半径为3,,求BF的长.4.如图,AB为⊙O的直径,C、E为⊙O上的两点,过点E的切线交CB的延长线于点D,且CD⊥DE,连接CE,AE.(1)求证:∠ABC=2∠A;(2)若⊙O半径为,AB:BD=5:1,求AE的长.5.已知:如图,AB为⊙O的直径,CD与⊙O相切于点C,交AB延长线于点D,∠D=30°,连接AC、BC,CE平分∠ACB交⊙O于点E,过点B作BF⊥CE,垂足为F.(1)求证:CA=CD;(2)若AB=12,求线段BF的长.6.已知:如图,⊙O过正方形ABCD的顶点A,B,且与CD边相切于点E.点F是BC与⊙O的交点,连接OB,OF,AF,点G是AB延长线上一点,连接FG,且∠G+∠BOF=90°.(1)求证:FG是⊙O的切线;(2)如果正方形边长为8,求⊙O的半径.7.如图,在△AOB中,以点O为圆心的⊙O与AB相切于点D,延长AO交⊙O于点C,连接CD,过点A作AF⊥BO,交BO的延长线于点H,交⊙O于点F,∠B=∠C.求证:(1)AF∥CD;(2)AH2=OH⋅BH.8.如图,AB是⊙O的直径,已知点D是弧BC的中点,连接DO并延长,在延长线上有一点E,连接AE,且∠E=∠B.(1)求证:AE是⊙O的切线;(2)连接AC,若AC=6,CF=4,求OE的长.9.如图,AB是⊙O的直径,C在AB的延长线上,⊙O与CD相切于点D,过点A作AE ⊥CD,垂足为E.(1)求证:AD平分∠EAC.(2)若BC=3,,求⊙O的半径以及线段ED的长.10.如图,AB是⊙O的直径,点D是直径AB上不与A,B重合的一点,过点D作CD⊥AB,且CD=AB,连接BC交⊙O于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)当D是OA的中点时,AB=4,求BF的长.11.如图,△ABC内接于⊙O,AB=AC,过点A作BC平行线AM,连接BO并延长,交AM于点D,连接AO、CO.(1)求证:AM是⊙O的切线;(2)若BC=10,AD=8,求⊙O的半径.12.如图,已知△ABC的边AB所在的直线是⊙O的切线,切点为B,AC经过圆心O并与圆交于点D、C,E为AB延长线上一点,连接CE交⊙O于点F,且∠BCE=∠ACB.(1)求证:CE⊥AB;(2)若⊙O的半径是6,AB=8,求EF的长.13.如图,在△ABC中,∠C=90°,以FB为直径作⊙O,⊙O与直角边AC相切,切点为E.(1)求证:∠DBE=∠EBA;(2)若AB=10,DB=4,求EB的长.14.如图,已知AB是⊙O的直径,C是⊙O上一点,OD⊥BC,垂足为D,连接AD,过点A作⊙O的切线与DO的延长线相交于点E.(1)求证:∠B=∠E;(2)若⊙O的半径为4,OE=6,求AD的长.15.如图,AB是⊙O的直径,点D、E均在⊙O上,连接AD、BD、BE、DE,过点D作⊙O的切线,交AB的延长线于点C.(1)求证:∠DEB=∠CDB;(2)若BD=DE=6,BE=9.6,求⊙O的半径.16.如图,△ABC是⊙O的内接三角形,BC为⊙O的直径,点E是⊙O上一点,连接OE 并延长交过点C的切线CD于点D,∠B=∠D.(1)求证:OD∥AC;(2)延长EO交AB于点F,AF=2,⊙O的直径为2,求OD的长.17.如图,已知△ABC的外接圆直径是AB,点O是圆心,点D在⊙O上,且=,过点D作⊙O的切线,与CA、CB的延长线分别交于点E、F.(1)求证:AB∥EF;(2)若⊙O的半径为5,BC=8,求DF的长度.18.如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB.(1)判定直线CE与⊙O的位置关系,并说明你的理由;(2)若AD=3,AC=4,求圆的半径.19.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,与AC边的交点为F,过点D作DE⊥AC于点E.(1)求证:直线DE是⊙O的切线;(2)若AB=5,tan∠ACB=2,求弦AF的长度.20.如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作DE⊥AC,垂足为E,延长CA交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若tan B=,⊙O的半径为5,求线段CF的长.21.如图,AB为⊙O的直径,OD为⊙O的半径,⊙O的弦CD与AB相交于点F,⊙O的切线CE交AB的延长线于点E,EF=EC.(1)求证:OD垂直平分AB;(2)若⊙O的半径长为3,且BF=BE,求OF的长.22.如图,AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,BD⊥CD,DB的延长线与⊙O交于点E.(1)求证:∠ABE=2∠A;(2)若,BD=4,求BE的长.23.如图,在△ABC中,AC=AB,以AB为直径的⊙O交BC于点D,过点D作ED⊥AC 点E,交AB延长线于点F.(1)求证:EF是⊙O的切线;(2)若DF=4,tan∠BDF=,求AC的长.24.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,F是AD延长线上一点,连接CD,CF,且∠DCF=∠CAD.(1)求证:CF是⊙O的切线;(2)若直径AD=10,cos B=,求FD的长.25.如图,AB是⊙O的直径,AE是⊙O的切线,点C为直线AE上一点,连接OC交⊙O 于点D,连接BD并延长交线段AC于点E.(1)求证:∠CAD=∠CDE;(2)若CD=6,tan∠BAD=,求⊙O的半径.26.如图,四边形ABCD是⊙O的内接四边形,且对角线BD为⊙O的直径,过点A作AE ⊥CD,与CD的延长线交于点E,且DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若⊙O的半径为5,CD=6,求AD的长.27.如图,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是的中点,过点B的切线与AC的延长线交于点D.①求证:BD⊥AD;②若AC=9,tan∠ABC=,求⊙O的半径.28.如图,△ABC中,∠C=90°,点O在AB上,⊙O经过点A,且与BC相切于点D.(1)求证:AD平分∠BAC;(2)若AC=6,cos∠BAC=,求⊙O的半径.29.如图,AB是⊙O的直径,点C为⊙O上一点,CD平分∠ACB,交AB于点E,交⊙O 于点D,延长BA到点P,使得PE=PC.(1)求证:PC与⊙O相切;(2)若⊙O的半径3,PC=4,求CD的长.30.如图,AB是⊙O的直径,点C、D是⊙O上两点,CE与⊙O相切,交DB延长线于点E,且DE⊥CE,连接AC,DC.(1)求证:∠ABD=2∠A;(2)若DE=2CE,AC=8,求⊙O的半径.31.如图,AB是⊙O的直径,AC是弦,且OD⊥AC于点E,OD交⊙O于点F,连接CF、BF,若∠BFC=∠ODA.(1)求证:AD是⊙O的切线:(2)若AB=10,AC=8,求AD的长.32.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,连接OD,过点D作⊙O的切线DE,交AC于点E,延长CA交⊙O于点F,连接BF.(1)求证:DE⊥AC;(2)若⊙O的直径为5,cos C=,求CF的长.33.如图,在⊙O中,PA是直径,PC是弦,PH平分∠APB且与⊙O交于点H,过H作HB⊥PC交PC的延长线于点B.(1)求证:HB是⊙O的切线;(2)若HB=4,BC=2,求⊙O的半径.34.如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使得EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.35.如图,四边形ABCD是⊙O的内接四边形,且对角线BD为直径,过点A作⊙O的切线AE,与CD的延长线交于点E,已知DA平分∠BDE.(1)求证:AE⊥DE;(2)若⊙O的半径为5,CD=6,求AD的长.36.如图,在Rt△ACD中,∠ACD=90°,点O在CD上,作⊙O,使⊙O与AD相切于点B,⊙O与CD交于点E,过点D作DF∥AC,交AO的延长线于点F,且∠OAB=∠F.(1)求证:AC是⊙O的切线;(2)若OC=3,DE=2,求DF的长.37.如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,以CD为直径作⊙O,与BC交于点E,过点E作⊙O的切线EF,交AB于点F.(1)求证:EF⊥AB;(2)若⊙O的半径是,cos∠ACD=,求DF的长.38.如图,⊙O是△ABC的外接圆,=,过点A作AD∥BC交⊙O于点D,连接CD,延长DA到点E,连接CE,∠D=∠E.(1)求证:CE是⊙O的切线;(2)若CE=8,AE=5,求⊙O半径的长.39.如图,BD为⊙O的直径,∠ABE=∠BCA,过点A的直线与⊙O分别交于点E,C,与BD交于点F,连接BE,BC.(1)求证:AB为⊙O的切线.(2)若∠A=∠ABE,BE=5,BC=8,求⊙O的半径.40.如图,AB是⊙O的直径,AE是⊙O的切线,点C为直线AE上一点,连接OC交⊙O 于点D,连接BD并延长交线段AC于点E.(1)求证:∠CDE=∠CAD;(2)若CD=4,tan B=,求⊙O的半径.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆的证明与计算》专题讲解
圆的有关证明
一、圆中的重要定理:
(1)圆的定义:主要是用来证明四点共圆.
(2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等.
(3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等.
(4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等.
(5)切线的性质定理:主要是用来证明——垂直关系.
(6)切线的判定定理: 主要是用来证明直线是圆的切线.
(7)切线长定理: 线段相等、垂直关系、角相等.
2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到.
知识点一:判定切线的方法:
(1)若切点明确,则“连半径,证垂直”。
常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直;
(2)若切点不明确,则“作垂直,证半径”。
常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线;
总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。
在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例:
方法一:若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.
例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.
求证:EF与⊙O相切.
例2 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延
长线上.
求证:DC是⊙O的切线
例3 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP.求证:PC是⊙O的切线.
方法二:若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A 为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”(一般用于函数与几何综合题)
例1:已知:如图,AC,BD与⊙O切于A、B,且AC∥BD,若∠COD=900.
求证:CD是⊙O的切线.
知识点二:与圆有关的计算
计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。
分析时要重点注意观察已知线段间的关系,选择定理进行线段或者角度的转化。
特别是要借助圆的相关定理进行弧、弦、角之间的相互转化,找出所求
线段与已知线段的关系,从而化未知为已知,解决问题。
其中重要而常见的数学思想方法有: (1)构造思想:如:①构建矩形转化线段;②构建“射影定理”基本图研究线段(已知任意两条线段可求其它所有线段长);
射影定理:所谓射影,就是正投影。
其中,从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影。
一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影。
由三角形相似的性质:直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
公式Rt△ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则有射影定理如下::(1)(AD)2
;=BD·DC,
(2)(AB)2;=BD·BC , (3)(AC)2
;=CD·BC 。
等积式 (4)ABXAC=BCXAD(可用面积来证明)
③构造垂径定理模型:弦长一半、弦心距、半径; ④构造勾股定理模型(已知线段长度); ⑤构造三角函数(已知有角度的情况); ○
6找不到,找相似 (2)方程思想:设出未知数表示关键线段,通过线段之间的关系,特别是发现其中的相等关系建立方程,解决问题。
(3)建模思想:借助基本图形的结论发现问题中的线段关系,把问题分解为若干基本图形的问题,通过基本图形的解题模型快速发现图形中的基本结论,进而找出隐藏的线段之间的数量关系。
例讲解:
例题1:△ABP 中,∠ABP =90°,以AB 为直径作⊙O 交AP 于C 点,弧⋂
CF =⋂
CB ,过C 作AF 的垂线,垂足为M ,MC 的延长线交BP 于D. (1)求证:CD 为⊙O 的切线;
(2)连BF 交AP 于E ,若BE =6,EF =2,求
AF
EF
的值。
例题2:直角梯形ABCD 中,∠BCD =90°,AB=AD+BC ,AB 为直径的圆交BC 于E ,连OC 、BD 交于F.
⑴求证:CD 为⊙O 的切线 ⑵若5
3
=AB BE ,求DF BF 的值
F
O
E C
D
B
A
例题3:如图,AB 为直径,PB 为切线,点C 在⊙O 上,AC ∥OP 。
(1)求证:PC 为⊙O 的切线。
(2)过D 点作DE ⊥AB ,E 为垂足,连AD 交BC 于G ,CG =3,DE =4,求
DB
DG
的值。
例题4(2009调考):如图,已知△ABC 中,以边BC 为直径的⊙O 与边AB 交于点D ,点E 为 的
中点,AF 为△ABC 的角平分线,且AF ⊥EC 。
(1)求证:AC 与⊙O 相切;
(2)若AC =6,BC =8,求EC 的长
家庭练习:
1.如图,Rt △ABC ,以AB 为直径作⊙O 交AC 于点D , ,过D 作AE 的垂线,F 为垂足.
(1)求证:DF 为⊙O 的切线;
(2)若DF =3,⊙O 的半径为5,求tan BAC 的值.
O F
H
E
D C
B
2.如图,AB为⊙O的直径,C、D为⊙O上的两点,,过D作直线BC的垂线交直线AB于点E,F为垂足.
(1)求证:EF为⊙O的切线;
(2)若AC=6,BD=5,求sin E的值.
3.如图,AB为⊙O的直径,半径OC⊥AB,D为AB延长线上一点,过D作⊙O的切线,E 为切点,连结CE交AB于点F.
(1)求证:DE=DF;
∠的值.
(2)连结AE,若OF=1,BF=3,求tan A
4.如图,Rt△ABC中,∠C=90°,BD平分∠ABC,以AB上一点O为圆心过B、D两点作⊙O,⊙O交AB于点一点E,EF⊥AC于点F.
(1)求证:⊙O与AC相切;
∠的值.
(2)若EF=3,BC=4,求tan A
5.如图,等腰△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,DE⊥AC于E.(1)求证:DE为⊙O的切线;
(2)若BC
=,AE=1,求cos AEO
∠的值.
6.如图,BD为⊙O的直径,A为的中点,AD交BC于点E,F为BC延长线上一点,且FD=FE.
(1)求证:DF为⊙O的切线;
(2)若AE=2,DE=4,△BDF
的面积为tan EDF
∠的值.
7、如图,AB是⊙O的直径,M是线段OA上一点,过M作AB的垂线交AC于点N,交BC 的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.
(1)求证:CF是⊙O的切线;
(2)设⊙O的半径为1,且AC=
CE=AM的长.
A
8、如图,AB是⊙O的直径,BC⊥AB,过点C作⊙O的切线CE,点D是CE延长线上一点,连结AD,且AD+BC=CD.
(1)求证:AD是⊙O的切线;
(2)设OE交AC于F,若OF=3,EF=2,求线段BC的长.
9、如图,△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,且CD=BD.
(1)求证:BC是⊙O的切线;
(2)已知点M、N分别是AD、CD的中点,BM延长线交⊙O于E,EF∥AC,分别交BD、BN 的延长线于H、F,若DH=2,求EF的长.
10、如图,AB是半⊙O上的直径,E是⌒
BC的中点,OE交弦BC于点D,过点C作交AD的平行线交OE的延长线于点F. ∠ADO=∠B.
(1)求证:CF为⊙O的⊙O切线;
(2)求sin∠BAD的值.
11、如图,⊿ABC中,AB=AC,以AC为直径的⊙O与AB相交于点E,点F是BE的中点.(1)求证:DF是⊙O的切线.
(2)若AE=14,BC=12,求BF的长。