塑料成型工艺学复习提纲-济南大学
《塑料成型工艺学》复习资料整理总结

《塑料成型工艺学》复习资料整理总结1、液体的流动和变形受到的应力有剪切、拉伸和压缩三种应力。
三种应力中,剪切应力对塑料的成型最为重要。
2、假塑性流体的粘度随剪切应力或剪切速率的增加而下降的原因与流体分子的结构有关。
对聚合物溶液来说,当它承受应力时,原来由溶剂化作用而被封闭在粒子或大分子盘绕空穴内的小分子就会被挤出,这样,粒子或盘绕大分子的有效直径即随应力的增加而相应地缩小,从而使流体粘度下降。
因为粘度大小与粒子或大分子的平均大小成正比,但不一定是线性关系。
对聚合物熔体来说,造成粘度下降的原因在于其中大分子彼此之间的缠结。
当缠结的大分子承受应力时,其缠结点就会被解开,同时还沿着流动的方向规则排列,因此就降低了粘度。
缠结点被解开和大分子规则排列的程度是随应力的增加而加大的。
3、膨胀性流体的表观粘度会随剪切应力的增加而上升。
4、表观粘度:非牛顿流体流动时剪切应力和剪切速率的比值称为表观粘度。
5、挤出胀大:聚合物熔体在挤出模口后膨胀使其横截面大于模口横截面的现象,由弹性效应引起。
6、鲨鱼皮症:是发生在挤出物表面上的一种缺陷。
这种缺陷可自挤出物表面发生闷光起,变至表面呈现与流动方向垂直的许多具有规则和相当间距的细微棱脊为止。
7、熔体破碎:熔体破碎是挤出物表面出现凹凸不平或外形发生畸变或断裂的总称。
8、塑料加热与冷却不能有太大的温差塑料是热的不良导体,导热性较差。
加热时,热源与被加热物的温差大,物料表面已达到规定温度甚至已经分解,而内部温度还很低,造成塑化不均匀。
冷却时温差大,物料表面已经冷却,而内部冷却较慢,收缩较大,形成较大的内应力。
9、剪切流动和拉伸流动的区别剪切流动是流体中一个平面在另一个平面的滑动,拉伸流动是一个平面两个质点间的距离拉长。
此外拉伸粘度还随所拉应力是单向、双向而异,剪切粘度则无。
10、交联过程的三个阶段:甲阶,这一阶段的树脂是既可以溶解又可以熔化的物质。
乙阶,此时树脂在溶解与熔化的量上受到了限制。
聚合物成型工艺学复习提纲

聚合物成型工艺复习题1、非牛顿流体的类型和特征?答:(1)粘性系统在受到外力作用而发生流动时的特性是:其剪切速率只依赖于所施加剪切应力的大小。
根据其剪切应力和剪切速率的关系。
又可分为宾哈(汉)流体、假塑性流体和膨胀性流体三种。
特征:<1>宾哈流体:与牛顿流体相比,剪切应力与剪切速率之间也呈线性关系。
但此直线的起始点存在屈服应力τу,只有当剪切应力高于τу时,宾哈流体才开始流动。
宾哈流体因流动而产生的形变完全不能恢复而作为永久变形保存下来,即这种流动变形具有典型塑性形变的特征,故又常将宾哈流体称为塑性流体。
<2>假塑性流体:非牛顿流体中最为普通的一种。
流动曲线不是直线,而是一条斜率先迅速变大而后又逐渐变小的曲线,而且不存在屈服应力。
流体的表观粘度随剪切应力的增加而降低。
即:剪切变稀。
<3>膨胀性流体:流动曲线非直线的,斜率先逐渐变小而后又逐渐变大的曲线,也不存在屈服应力。
表观粘度会随剪切应力的增加而上升。
即:剪切变稠。
(2)有时间依赖性的系统:这类液体的流变特征除与剪切速率与剪切应力的大小有关外,还与施加应力的时间长短有关,即在恒温、恒剪切力作用下,表观粘度随所施应力持续时间而变化(增大或减小,前者为震凝液体,后者为触变性液体),直至达到平衡为止。
特征:<1>摇溶性(或触变性)流体:表观粘度随剪切应力持续时间下降的流体。
如:涂料、油墨。
<2>震凝性流体:表观粘度随剪切应力持续时间上升的流体。
如:石膏水溶液。
3、聚合物熔体的黏度的影响因素?答:在给定剪切速率下,聚合物的粘度主要取决于实现分子位移和链段协同跃迁的能力(大分子长链之间的缠结解开)以及在跃迁链段的周围是否有可以接纳它跃入的空间(自由体积)两个因素,凡能引起链段跃迁能力和自由体积增加的因素,都能导致聚合物熔体粘度下降。
自由体积:自由体积大,分子间距就大,分子间作用力小,大分子链段容易活动,聚合物粘度小。
塑料模具设计复习提纲

第一章概论1、塑料成型模具的概念。
答:是将塑料材料成型为具有一定形状和尺寸的塑料制品的专用工具,简称塑料模具。
要点1)塑料模具----是一类模具;2)塑料模具----是用于塑料成型加工的模具;2、利用模具生产制件的优点。
答:效率高:成型周期短、批量生产、一模多件;质量好:外观质量、力学性能好;切削少:仿形制造、净成形或近净成形;节约能源和原材料:材料利用率高、废料少;成本低:模具寿命长、批量生产、塑件均摊费用低。
3、塑料成型模具的分类。
答:①注塑成型模具;②压塑成型模具;③传递成型模具;④挤塑成型模具;⑤中空制品吹塑成型模具;⑥热(真空或压缩空气)成型模具。
第二章塑料制件设计4、塑件脱模斜度的设计要点。
答:①制品精度要求越高,脱模斜度应越小。
②塑件的收缩率大,壁厚、斜度应取偏大值,反之取偏小值。
③尺寸大的制品,应采用较小的脱模斜度。
④塑件结构复杂,脱模阻力就比较大,应选用较大的脱模斜度。
⑤当塑件高度不大(一般小于2mm)时,可以不设计斜度;对型芯长或深型腔的塑件,斜度取偏小值。
⑥一般情况下,塑件外表面的斜度取值可比内表面的小些,有时也根据塑件的预留位置来确定。
⑦热固性塑料的收缩率一般较热塑性塑料小一些,故脱模斜度也相应取小一些。
5、塑件壁厚的设计原则。
答:①塑件壁厚的最小尺寸应满足以下要求:具有足够的刚度和强度,脱模时能经受脱模机构的冲击,装载时能承受紧固力。
②一般而言,在满足使用要求的前提下,制件壁厚应尽量取小些。
③同一塑件的壁厚应尽可能均匀一致,否则会导致各部分冷却固化收缩不均匀,使塑件产生气孔、裂纹及变形等缺陷,并导致内应力集中。
6、塑件加强筋的设计原则。
答:①用高度较低,数量较多筋代替高度较高的单一加强筋②筋的布置方向最好与熔料的充填方向一致。
③筋的根部用圆弧过渡,以免外力作用时产生应力集中而破坏,但根部圆弧过大则会出现凹陷。
④位于制品内部的凸台不要太靠近内壁,以免凸台局部熔体填充不足。
塑料成型工艺-期末复习资料

热塑性塑料:在加工过程中,主要只起物理变化,即加热至一定温度它会变软且具有可塑性,冷却后变硬成型,这种状态还可反复进行,这类塑料称为热塑性塑料。
热固性塑料:在加工过程中,不仅有物理变化,还伴有化学变化,即加热至一定温度时具有流动性而成型,进一步加热则发生固化反应,冷却后形成不溶不熔的固体。
这种状态不可反复。
这类塑料称为热固性塑料。
交联:交联是改善高分子材料力学性能,耐热性能化学稳定性和使用性能等的重要手段。
熟化:结晶:晶体,即原子、离子或分子按一定的空间次序排列而形成的固体。
也叫结晶体。
结晶度:用来表示聚合物中结晶区域所占的质量或体积分数。
取向:在成型加工时,受到剪切和拉伸力的影响,高分子化合物的分子链将发生取向,依受力情况,取向分为两类:流动取向和拉伸取向。
各向异性:材料在各方向的力学和物理性能呈现差异的特性。
层流:雷诺系数Re小于等于2300的为层流。
湍流:雷诺系数Re大于等于4000的为湍流。
拉伸流动:当黏弹性聚合物熔体在流动中受外力拉伸时会产生收敛流动,此时的熔体被拉长变细,此种收敛流动称为拉伸流动。
(指点速度仅沿流动方向发生变化)剪切流动:质点速度仅沿着与流动方向垂直的方向发生变化,剪切流动按其流动的边界条件可分为拖曳流动和压力流动。
牛顿黏度:流体流动时内部抵抗流动的阻力,是流体本身所固有的性质,其大小表征抵抗歪理所引起的流体变形的能力。
表观黏度:塑性流体在层流流动时,流动内部阻力的总和称为表观黏度。
表观剪切速率:入口效应:聚合物熔体在挤出时通过一个狭窄的口模,即使口模很短,也会有很大的压力降。
这种现象称为入口效应。
离模膨胀效应:聚合物熔体挤出后的截面积远比口模截面积大。
此种现象称之为巴拉斯效应,也成为离模膨胀效应。
钳住区:压延中物料受辊筒的挤压,受到压力的区域称为钳住区。
(辊筒开始对物料加压的点称为始钳住点,加压终止点为终钳住点,两辊中心称为中心钳住点,钳住区压力最大处为最大压力钳住点。
塑料成型工艺及模具设计第一章重点知识复习

1.1.1、高分子聚合物的形成1.1.2、高分子聚合物的结构1.1.3、高分子聚合物的物理状态、力学状态及加工适应性1.2.4、聚合物熔体的充型流动1.3.2、聚合物的结晶1.4.1、聚合物降解1.5.1、塑料的组成1.5.2、塑料的分类1.5.3、塑料的性能与用途1.6.1、收缩性1.6.2流动性1.6.3所料的其他工艺性能1.1.1、高分子聚合物的形成将低分子化合物单体转变成高分子物质的过程叫做聚合反应1.1.2、高分子聚合物的结构1、聚合物的长链结构组成聚合物的高分子成链状结构,其链状结构有以下三种类型:(1)线型高分子(2)支链型高分子(3)体型高分子2、聚合物的聚集态结构高分子的长链结构是决定聚合物基本性质的主要因素,而聚集态结构是决定聚合物本体性质的主要因素高分子材料的聚集状态有晶态(分子链在空间规则排列)、部分晶态(分子链在空间部分规则排列)和非晶态(分子链在空间无规则排列,亦称玻璃态)三种1.1.3、高分子聚合物的物理状态、力学状态及加工适应性由于聚合物的相对分子质量巨大且分子结构的连续性,所以它们的聚集状态是在不同的热力条件下呈现出独特的三态。
例如对于非晶态线型高聚物而言,分别是玻璃态,高弹态和粘流态;对于晶体线型高聚物而言,分别是结晶态、高弹态和粘流态1.2.4、聚合物熔体的充型流动充型是指高温聚合物熔体在注射压力的作用下,通过流到和浇口后在低温型腔内流动和成型的过程。
模具结构和注射工艺参数等因素都会影响聚合物熔体充型流动。
充型流动是否连续和平稳,将直接影响到塑件的表面质量、形状尺寸和力学性能1、浇口的型腔对熔体充型流动的影响(1)浇口的横截面高度和型腔的深度相差很大当塑件熔体从一个小的浇口进入一个较深的型腔时,容易产生喷射现象。
受离模膨胀的影响,高速充型的熔体很不稳,熔体表面粗糙且容易破裂,即使不发生破裂,先喷射的熔体也会因为速度的减慢而阻碍后面的熔体的流动,在型腔内形成蛇形,从而在塑件成型后产生波纹痕迹或表面瑕疵(2)浇口的横截面高度和型腔的深度相差不大当塑件的壁厚不太厚,且浇口的横截面高度与之相差不大时,熔体将以中速充型,熔体通过浇口后一般不会发生喷射流动,适当地降低注射速度,提高熔体的注射温度和模温,熔体进入型腔后则会以一种比较平稳的扩展性运动流动(3)浇口的横截面高度和型腔的深度接近当塑件的壁厚很小,且浇口的横截面高度与之接近时,熔体一般不会发生喷射流动的现象,所以在浇口条件适当时,熔体能以低速平稳的扩展流动充型2、扩张流动充与熔体接恨当熔体在型腔中流动的过程中遇到型芯和嵌件等障碍物时,则熔膜将被分成两股,最终在两股料流的汇合处产生熔接痕。
塑料成型工艺与模具设计复习要点

塑料是以树脂为基础,再加入用来改善其性能的各种添加剂制成的。
塑料在一定的温度和压力下具有可塑性,可以利用模具成形为具有一定形状和尺寸的塑料制件。
1.树脂(主要为合成树脂)是塑料的主要成分,它联系和胶粘着塑料中的其它一切组成分,并决定塑料的类型和性能。
塑料之所以具有流动性,就是树脂赋予的。
2.填充剂是塑料中另一重要的但并非必要的成分。
它在塑料中既有增量(降低塑料的成本)作用,又有改性作用,对塑料的推广和应用起了促进作用。
填充剂的种类如下。
粉状填充剂:木粉、纸浆、大理石粉、滑石粉、云母粉、石棉粉、高岭土、石墨、金属粉等等;纤维状填充剂:棉花、亚麻、石棉纤维、玻璃纤维、炭纤维、硼纤维、金属须等等;层状填充剂:纸张、棉布、石棉布、玻璃布、木片等等。
3.增塑剂常用的有甲酸脂类、磷酸脂类和氯化石蜡。
4.稳定剂提高树脂在热、光、氧和霉菌等外界因素作用时的稳定性,阻缓塑料变质。
常用的有硬脂酸盐、铅的化合物、及环氧化合物等等。
5.润滑剂其目的是改进塑料流体的流动性,减少或避免流体对设备和模具的摩擦、粘附,降低塑件表面粗糙度。
常用的有硬脂酸及其盐类。
6.着色剂无机颜料、无机颜料、染料。
7.固化剂使树脂具有体型网状结构,成为较坚硬和稳定的塑料制件。
常用的有六亚甲基四胺、乙二胺等等。
另外还有为特殊需要加的添加剂,如:发泡剂、阻燃剂、防静电剂、导电剂、导磁剂等等。
常用塑料1.聚乙烯(PE) 无毒、无味、成乳白色,耐热、绝缘性好,有一定机械强度但不太高,表面硬度差。
主要用途:塑料管、塑料板、、塑料薄膜、软管、塑料瓶、绝缘零件、包覆电缆、承载不高的齿轮、轴承等等。
2.聚丙烯(PP)无色、无味、无毒,不吸水、光泽好、易着色、外观似聚乙烯但比它更透明,屈服强度、抗拉强度、抗压强度、硬度、弹性都比聚乙烯好,但在氧、光、热的作用下极易解聚、老化,所以必须加防老化剂。
主要用途:做各种机械零件、水、蒸汽、各种酸减等的输送管道等等。
3.聚氯乙稀(PVC)插座、插头、凉鞋、雨衣、人造革等等。
塑料成型工艺学复习重点指导

6、泡沫塑料的发泡方法与原理 泡沫塑料的发泡方法和发泡原理如下: (1)机械发泡法:原理是用机械搅拌作用使空气混入塑料溶液中进行发泡。 (2)物理发泡法:原理是利用在塑料中加入物理发泡剂产生物理反应放出气体而发泡。 (3)化学发泡法:原理是利用在塑料中加入化学发泡剂产生化学反应放出气体而发泡。
取向: 聚合物分子或纤维状填料在很大程度上顺着流动的方向作平行排列,这种排列常称为定向作用。又叫取向。 粘性流动与弹性流动: 熔体受应力作用产生变形,当应力解除后其变形不能完全恢复原状的称为粘性变形。其流动称为粘性流动。熔体受应力作用产生变形,当应力解除后其变形能完全恢复原状的称为弹性变形。其流动称为弹性流动。 一次成型与二次成型: 一次成型指的是将高聚物加热熔融成粘流态,利用其粘性流动直接成型产品。 二次成型是指将一次成型后的产品(板、片材)将其加热到高弹态,利用其弹性形变成型产品。
焦烧与焦烧时间: 加工过程中的操作温升而产生硫化现象称为焦烧。硫化时硫化诱导期所经历的时间称为焦烧时间,分为(加工操作过程中的温升时间称为)操作焦烧时间和剩余焦烧时间两个部分。 剪切流动与拉伸流动: 由剪切应力引起流动称为剪切流动;由于拉伸力的作用使A、B间的距离变大的过程称为拉伸流动。
塑炼与塑化: 将生胶在低于熔点的温度下和较大机械力作用下(有时可加入塑解剂)制成性能均一、具有一定可性的塑炼胶的过程称为塑炼。将塑料在高于粘流态转变温度下和较小机械力作用下熔融成性能均一、具有一定流动性的塑料熔体的过程称为塑化。 热定形:将塑料制品在低于热变形温度下的适当介质中停放一定时间,消除内应力、减少收缩性,使制品尺寸稳定的过程称为热定形。 注射成型周期:是指完成一次注射成型产品的全部时间。
第七至十二章各章要点
1、挤出管材生产工艺过程主要控制因素 挤出管材生产工艺控制因素主要有: 螺杆转速、牵引速度 、定径温度和压力、料筒加热温度、(分区控制)冷却水温。 同时要掌握挤出生产过程各控制点的温度控制的一般规则: 加料段控制在熔点以下,熔化段控制在粘流温度,计量段控制在粘流温度。模头温度控制在低于计量段温度。塑料的干燥温度控制在软化温度以下,塑件的热定型温度控制在热变形温度以下。 2、注塑生产工艺过程的控制因素 控制的因素有:塑化温度、喷嘴温度、模具温度、后处理温度、螺杆转速、塑化背压、注射压力、锁模力、保压压力、冷却时间等
塑料成型工艺与模具设计复习资料

《塑料成型工艺与模具设计》期末复习资料1. 热固性塑料经加热后可以反复塑造成型。
(×)2. 在注射成型中需要控制的温度有料筒温度﹑喷嘴温度和模具温度。
(√)3.不同的热塑性塑料其流动性不同,同一种塑料流动性是相同的。
(×)4. 浇口的位置应开设在塑件截面较厚处,以利于塑料熔体填充及补料。
(√)5. 为了便于塑件脱模,一般情况下使塑料在开模时留在定模上。
(×)6. 牵引比是指牵出速度与挤出速度的比值,其值必须大于或等于1。
(√)1.热塑性塑料在受热的过程中会出现三种物理状态:玻璃态、高弹态、粘流态。
2.温度、压力和时间是影响注射成型工艺的重要参数。
3.塑料对水分的亲疏程度称为吸湿性。
4.根据塑料的特性和使用要求,塑件需进行后处理,常进行退火处理和调湿处理。
5.螺纹型芯和螺纹型环是分别用来成形内螺纹和外螺纹的活动镶件。
6.注射模的浇注系统一般由主流道、分流道、浇口和冷料穴等四部分组成。
7.合模导向机构主要有导柱、导套导向和锥面定位两种形式。
8.常用的推出零件有推杆、推管和推件板。
1.以下几幅图中为多型腔平衡设计的是(A)2.以下是三种浇口的图形,其中名称对应正确的是(B)CBA321A 1环形浇口;2侧浇口;3点浇口B 1侧浇口;2潜伏浇口;3轮辐浇口C 1环形浇口;2潜伏浇口;3轮辐浇口3.试分析下图两种分型面的选择对塑件的外观质量的影响答:选择分型面时应避免对塑件的外观质量产生不利的影响,同时考虑分型面处所产生的飞边是否容易清除。
如图a所示,圆弧处产生的飞边不易清除,即使清除后也会影响塑件的外观质量,且模具的动、定模加工都很困难;如图b所示,产生的飞边易清除,飞边清除后也不会影响塑件的外观质量,而且模具的动、定模加工相对容易些。
(a) (b)1.高分子与低分子的区别?答:高分子与低分子显著区别表现在:(1)一个分子所包含的原子个数,低分子含有几个到几百个,高分子含有几千个到几百万个;(2)相对分子量,低分子的相对分子量从几到几百,高分子的相对分子量从几万到上千万;(3)分子长度,低分子的分子长度很小很小,高分子的分子长度可达到几微米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论1、国内外塑料和聚合物工业发展概况(综述)2、建筑塑料及化学建材的发展3、塑料在各技术领域的应用第二章聚合物成型的理论基础1、非牛顿流体的类型和特征?答:(1)粘性系统在受到外力作用而发生流动时的特性是:其剪切速率只依赖于所施加剪切应力的大小。
根据其剪切应力和剪切速率的关系。
又可分为宾哈(汉) 流体、假塑性流体和膨胀性流体三种。
特征:<1>宾哈流体:与牛顿流体相比,剪切应力与剪切速率之间也呈线性关系。
但此直线的起始点存在屈服应力τу,只有当剪切应力高于τу时,宾哈流体才开始流动。
宾哈流体因流动而产生的形变完全不能恢复而作为永久变形保存下来,即这种流动变形具有典型塑性形变的特征,故又常将宾哈流体称为塑性流体。
<2>假塑性流体:非牛顿流体中最为普通的一种。
流动曲线不是直线,而是一条斜率先迅速变大而后又逐渐变小的曲线,而且不存在屈服应力。
流体的表观粘度随剪切应力的增加而降低。
即:剪切变稀。
<3>膨胀性流体:流动曲线非直线的,斜率先逐渐变小而后又逐渐变大的曲线,也不存在屈服应力。
表观粘度会随剪切应力的增加而上升。
即:剪切变稠。
(2)有时间依赖性的系统:这类液体的流变特征除与剪切速率与剪切应力的大小有关外,还与施加应力的时间长短有关,即在恒温、恒剪切力作用下,表观粘度随所施应力持续时间而变化(增大或减小,前者为震凝液体,后者为触变性液体),直至达到平衡为止。
特征:<1>摇溶性(或触变性)流体:表观粘度随剪切应力持续时间下降的流体。
如:涂料、油墨。
<2>震凝性流体:表观粘度随剪切应力持续时间上升的流体。
如:石膏水溶液。
2、假塑性流体指数定律的几种表达式(课本P10)3、聚合物熔体的黏度的影响因素?答:温度、压力、剪切速率。
4、符合指数定律流体在圆形流道中的流动方程(推导流量、压力、几何参数之间的关系)?(P18)5、符合指数定律流体在狭缝(h/w>20)流道中的流动方程(推导)?(P21)6、聚合物成型的流动缺陷的种类及产生的原因?答:(1)管壁上的滑移:塑料熔体在高剪切力下流动,贴近管壁处的一层流体会发生间断的流动,称为滑移。
滑移产生原因:①剪切速率的径向不均匀分布(靠管壁附近剪切速率最大);②流动中出现分级效应(即相对分子质量低的级分较多地集中在管壁附近);③管壁附近的弹性形变的不均匀性(管壁处弹性形变大)。
(2)端末效应:不管是那种截面流道的流动方程,都只能用于稳态流动的流体,但总有不稳态流动。
(包括入口效应和离模膨胀)末端效应产生原因:①入口效应:1>.物料从料筒进入口模时由于熔体粘滞流动,流线在入口处产生收敛所引起的能量损失;2>.在入口处由于聚合物熔体产生弹性变形,因弹性能的贮蓄所造成的能量损失;3>.熔体流经入口时,由于剪切速率的剧烈增加所引起的速度的激烈变化,为达到流速分布所造成的。
②离模膨胀:1>取向效应:聚合物熔体流动期间处于高剪切场内,其大分子在流动方向取向,但在口模处发生解取向。
2>记忆效应:当聚合物熔体由大直径的料筒进入小直径的口模时,产生了弹性形变,而熔体离开口模时,弹性变形获得恢复。
3>正应力效应:由于粘弹性流体的剪切变形,在垂直于剪切方向上引起了正应力的作用。
(3)弹性对层流的干扰:产生原因:塑料熔体在管内流动时,其可逆的弹性形变是逐渐回复的,如果恢复太大或过快,则流动单元的运动就不会限制在一个流动层从而会引起湍流。
(4)“鲨鱼皮”症:产生原因:挤压口模对挤出物表面所产生的周期性的张力和流体在管壁上的滑移(时粘时结的间断性流动)的结果。
(5)熔体破裂:产生原因:熔体在导管(流道)内流动时,各点所受应力作用的经历不尽相同,因此在离开导管后所出现的弹性恢复就不可能一致,如果弹性恢复的力不为熔体强度所容忍,则挤出物就会出现表面毛糙、螺旋型的大规则性、细微而密集的裂痕,一致成块地断裂。
7、聚合物加热和冷却的传热特点?答:(1)各种聚合物由玻璃态至熔融态的热扩散系数是逐渐下降的,但是在熔融状态下的较大温度范围内却几乎保持不变。
(2)聚合物热传导的传热速率很小,冷却和加热都不容易;其次,黏流态聚合物由于粘度很高,对流传热速率也很小。
(3)聚合物加热时有一项限制,不能将推动传热速率的温差提得过高。
8、聚合物结晶的影响因素?答:(1)化学结构的规整性有利于高聚物结晶;(2)分子链节小和柔顺性适中有利于结晶;(3)分子间作用力越强,结晶结构越稳定,而且结晶度和熔点越高。
9、结晶度和性能之间的关系?答:结晶态聚合物抵抗形变的能力优于非晶态下的同一聚合物。
结晶度高的优于低的。
绝大多数结晶聚合物,在其Tg~Tm之间,出现屈服点。
10、分子定向程度和制品性能之间关系?答:定向的单元如果存在于制品中,则制品的整体就会出现各向异性。
各向异性有时会在制品中特意形成,这样就能使制品沿拉伸方向的拉伸强度和抗蠕变性能得到提高。
但在制造许多厚度较大的制品时,又力图消除这种现象。
因为制品存在的定向现象不仅定向不一致,而且各部分的定向程度也有差别,这样会使制品在有些方向上的力学强度得到提高,而在另外一些方向上必会变劣,甚至发生翘曲或裂缝。
11、聚合物降解的实质及降解方式?答:(1)降解实质:断链、交联、分子链结构的改变、侧基的改变、以上四种作用的综合。
(2)降解方式:热降解、力降解、氧化降解、水降解。
12、成型操作过程中,仅凭增加温度来增加流动性,是否适合于任何聚合物?答:不是,用升高温度增加流动性,只适用于对粘度的温度敏感性大的聚合物,即刚性聚合物,而不适合于对温度敏感性较小的热塑性聚合物。
13、压力对聚合物熔体和聚合物分散体黏度的影响,那一种更显著?答:聚合物熔体加工压力通常都比较高。
压力对分散体的粘度影响比较小,因为分散体中有一部分属于低分子物。
14、聚合物熔体弹性变形的实质?答:大分子长链的弯曲和延伸,应力解除后,这种弯曲和延伸部分的回复需要克服内在的粘性阻滞。
15、成型过程中聚合物熔体发生的主要变形是粘性变形还是弹性变形?答:与聚合物的松弛时间有关,松弛时间大的,弹性形变明显。
16、熔体在一个锥型流道中流动发生了那些变形?答:拉伸变形、剪切变形17、同种聚合物结晶度的变化如何影响熔点、弹性模量、密度、透明度?答:结晶度增加熔点上升、弹性模量增加、密度增加、透明度降低第三章成型用物料极其配制1、聚合物成型用物料的形态类型?答:•粉料:主要用于双螺杆挤出机的挤出成型,压延成型,滚塑。
•粒料:主要用于单螺杆挤出机的挤出成型,注射成型。
•分散体:主要用于涂覆成型,搪塑。
•溶液:主要用于流涎成型,浇铸成型。
2、成型用粉料与粒料的组成?答:由聚合物和助剂两类物质组成,聚合物为主要成分。
聚合物助剂:助剂是为了使复合物或制品具有某种特性所加入的物质。
常用的助剂有:增塑剂、稳定剂、填充剂、增强剂、着色剂、润滑剂、防静电剂、防火剂、防静电剂等二十多类。
3、增塑剂的作用机理和种类?答:(1)作用机理:聚合物分子链常会以次价键力而彼此形成聚合物-聚合物联结点,从而使聚合物具有刚性,这些联结点在分子热运动中会解而复结的,但是在一定温度下,联结点的数目却相对稳定,所以是一种动平衡。
加入增塑剂后,增塑剂的分子因溶剂化及偶极力等作用而“插入”聚合物分子之间并与聚合物分子的活性中心发生时解时结的联结点。
这种联结点也处于一种动平衡。
但是聚合物-增塑剂联结点会使聚合物原有的联结点减少,从而使分子间的力减弱,导致聚合物材料性能改变。
(2)种类:①按化学组成分为:邻苯二甲基酸酯、脂肪族二元酸酯、石油磺酸苯酯、磷酸酯、环氧化合物等。
②按相容性分为:主增塑剂和次增塑剂。
③按结构分为:单体型和聚合体型。
④按用途分为:耐热、耐寒、电绝缘等增塑剂。
4、内外润滑剂的作用机理和种类?答:将聚合物分为内外两类是根据润滑剂与聚合物之间的相容性。
(1)作用机理:<1>内润滑剂:内润滑剂与聚合物有一定的相容性,加入后可减少聚合物分子间的内聚力,降低其熔体粘度,减少聚合物分子间的内摩擦;如硬脂酸及其盐类。
<2>外润滑剂:外润滑剂与聚合物仅有很低的相容性,故能保留在聚合物的表面,降低塑料与设备的摩擦。
石蜡、矿物油、硅油等。
(2)种类:脂肪酸及其皂类、脂肪酸酯类、脂肪醇类、酰胺类、石蜡、低分子量PE、合成蜡、丙烯酸酯类、某些有机硅化合物。
5、稳定剂的类型?答:按所发挥的作用:热稳定剂、光稳定剂(紫外线吸收剂、紫外线猝灭剂、光屏蔽剂)、及抗氧剂等。
按作用原理:紫外线抗御剂、抗氧剂、转变降解催化的物质、去除活性中心的物质。
6、润性物料的混合方法?答:润性物料的初混合工艺步骤:①将聚合物加入设备内,同时开始混合加热,物料的温度应不超过l 00℃。
②用喷射器将预先混合并热至预定温度的增塑剂混合物喷到翻动的聚合物中。
③加入由稳定剂,染料和增塑剂(所用的数量应计入规定的用量中)调制的浆料。
④加入颜料、填料以及其它助剂(其中润滑剂最好也用少量的增塑剂进行调制,所用数量也应并入规定用量内计算)。
⑤混合料达到质量变求时,即行停车出料。
7、初混合设备?答:转鼓式混合机、螺带式混合机、捏合机、高速混合机。
8、粒料的制造设备?答:(1)塑炼:双辊机、密炼机、挤出机。
(2)造粒:成粒机、切粒机。
9、成型用物料的工艺性能?(P71)答:收缩率、流动性、水分与挥发分、细度与均匀度、压缩率、硬化速率10、混合作用的机理?答:混合一般是靠扩散、对流、剪切三种作用来完成的。
(1)扩散:利用物料各组分的浓度差,推动构成各组分的微粒,从浓度较大的区域中向较小的区域迁移,以达到组成均一。
(2)对流:靠各组分在外界因素下向其它组分所占空间流动,达到各组分在空间上的均匀分布(主要手段为机械搅拌)。
(3)剪切:依靠机械的作用产生的剪切力,促使物料组分均一的混合过程。
11、常用的通用塑料和工程塑料(简述)答:(1)通用塑料:聚乙烯、聚丙烯、聚氯乙烯、苯乙烯系树脂、酚醛树脂与氨基树脂、环氧树脂、聚氨酯、丙烯酸树脂、有机硅树脂、不饱和聚酯树脂。
(2)工程塑料:聚酰胺、聚碳酸酯、聚甲醛、聚苯醚、聚酯类树脂、聚酰亚胺类、聚苯硫醚、聚砜类、聚芳醚酮类、氟塑料。
12、聚氯乙烯加热条件下,由白色变成为黄色、红色、棕色、黑色时,发生了何种结构改变?答:聚氯乙烯树脂脱去HCl后,在主链上产生了共轭双链,颜色也会改变。
而随着氯化氢分解的数量增加,聚氯乙烯树脂则由原来的白色变为黄色、玫瑰色、红色、棕色以至黑色。
第四章压缩模塑1、热固性塑料的模压过程?答:加热加压,熔融流动,充模,交联固化,开模取出制品。
2、为何要进行预压和预热?答:(1)预压优点:①加料快、准确而简单,从而避免了加料过多或不足时造成的废次品。