(完整版)基于plc的机械手控制系统设计

合集下载

基于PLC的机械手控制设计

基于PLC的机械手控制设计

基于PLC的机械手控制设计基于PLC的机械手控制设计,是一种智能化的机械手控制方法,它利用PLC 控制器进行逻辑控制,使机械手能够自主地完成多种工作任务。

本文将介绍本方法的具体实现过程,包括机械结构设计、PLC程序设计以及控制算法设计。

一、机械结构设计机械结构是机械手的核心,合理的机械结构设计将为实现机械手的自主运动提供必要的保障。

机械手一般由控制系统、机械部分和执行机构三部分组成。

机械部分一般包含基座和移动结构,执行机构包括手臂和手指。

这里我们以一款三轴机械手为例进行介绍。

1. 机械手构造机械手采用了一种比较简单的三轴结构,主要有三个关节——一个旋转关节和两个平移关节。

机械手的底座固定在工作台上,三个关节通过模拟伺服电机的方式进行控制。

2. 机械手控制器机械手采用PLC控制器进行逻辑控制,PLC控制器由三个部分组成:输入接口、中央处理器和输出接口。

输入接口用于读取传感器信号,输出接口用于控制执行机构,中央处理器则用于控制机械手的运动。

二、PLC程序设计机械手的PLC程序设计主要分为四个部分:程序初始化、数据采集、运动控制和异常处理。

1.程序初始化机械手程序初始化主要包括程序开头的自诊断和状态检测,并根据检测结果自动执行不同的控制程序。

自诊断可以避免因器件故障等原因引起的机械手操作异常。

2.数据采集机械手需要收集外部环境数据和操作数据。

外部环境数据包括工作物品的坐标、大小、形状等信息,操作数据包括机械手应该执行的命令。

在采集数据时,机械手需要通过传感器或外部设备接口实现。

3.运动控制机械手的运动控制分为机械手移位运动和执行机构运动两个部分。

机械手移位运动需要根据采集到的工作物品信息以及执行机构的操作命令来控制机械手的运动轨迹。

执行机构运动控制则是将机械手的控制信号转换为电机运动信号。

4.异常处理机械手运动过程中可能会出现异常情况,例如碰撞、误差等,需要通过对异常情况的处理来保证机械手的安全和可靠性。

基于PLC机械手控制系统设计

基于PLC机械手控制系统设计

基于PLC机械手控制系统设计工业机械手是一种高科技自动化生产设备,也是工业机器人的一个重要分支。

它通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。

机械手作业的准确性和在各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。

机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。

通用机械手是一种能够独立按程序控制实现重复操作的机械手,适用范围比较广。

由于通用机械手能够很快地改变工作程序,适应性较强,因此在不断变换生产品种的中小批量生产中得到了广泛的应用。

机械手的发展得益于其积极作用:一方面,它能够部分代替人工操作;另一方面,它能够按照生产工艺的要求,遵循一定的程序、时间和位置来完成工件的传送和装卸;还能够操作必要的机具进行焊接和装配,从而改善了工人的劳动条件,显著提高了劳动生产率,加快了实现工业生产机械化和自动化的步伐。

因此,机械手受到了很多国家的重视,投入了大量的人力物力来研究和应用。

尤其是在高温、高压、粉尘、噪音以及带有放射性和污染的场合,机械手的应用更为广泛。

近年来,在我国也有较快的发展,并取得了一定的效果,受到了机械工业的关注。

机械手是一种能够自动控制并可重新编程以变动的多功能机器,具有多个自由度,可以搬运物体以完成在不同环境中的工作。

随着工业技术的发展,机械手的结构形式开始比较简单,专用性较强。

但现在,制成了能够独立按程序控制实现重复操作,适用范围比较广的通用机械手。

本文介绍了机械手的分类和应用,其中第一类是通用机械手,可以根据任务需要编制程序完成各项规定工作。

本项目要求设计的机械手模型也属于这一类,通过设计可以增强对工业机械手的认识,并熟悉掌握PLC技术、位置控制技术、气动技术等工业控制常用的技术。

机械手控制系统的设计步骤包括确定被控系统必须完成的动作和它们之间的关系、分配输入输出设备、设计PLC用户程序、对程序进行调试和修改,最后保存已完成的程序。

基于PLC的机械手控制系统设计任务书

基于PLC的机械手控制系统设计任务书

基于PLC的机械手控制系统设计任务书任务书设计目标:设计一个基于PLC的机械手控制系统,能够实现对机械手的精确控制和操作。

系统能够完成各种复杂的任务,如物料的搬运、装配和堆垛等。

设计要求:1.系统应具备自动化控制功能,能够通过PLC对机械手进行控制。

2.系统应支持多种控制模式,如手动控制、自动控制和远程控制等。

3.系统应能够实现对机械手各个关节的精确控制,保证操作的准确性和稳定性。

4.系统应具备自诊断和故障检测能力,能够对机械手的状态进行实时监测和报警。

5.系统应具备良好的反应速度,能够快速响应用户的指令和要求。

6.系统应采用可靠的通信协议和接口,能够与其他设备和系统进行数据交互。

7.系统应具备良好的人机交互界面,易于操作和使用。

8.系统应具备扩展性和可升级性,能够满足未来的需求和变化。

设计内容:1.系统硬件设计:a)选择适合的PLC控制器和电机驱动器,满足系统要求。

b)设计机械手的结构和传动装置,考虑机械手的工作范围和载荷要求。

c)选择合适的传感器和执行器,用于机械手的位置检测和动作执行。

d)设计电源和电气控制部分,提供稳定可靠的电力供应。

e)设计安全保护装置,确保系统和人身安全。

2.系统软件设计:a)编写PLC控制程序,实现机械手的各种动作和控制模式。

b)设计人机交互界面,使操作人员能够方便地对机械手进行控制和监测。

c)实现系统的自诊断和故障检测功能,能够及时发现和排除故障。

d)设计远程控制和数据交互功能,使系统能够与其他设备和系统进行联动。

3.系统测试和验收:a)对系统进行各种功能和性能测试,确保系统能够满足设计要求。

b)进行系统集成测试,验证系统与其他设备和系统的接口和兼容性。

c)完成系统的文档编写和培训,使用户能够方便地使用和维护系统。

d)按照用户需求和要求进行现场验收和调试,确保系统正常运行。

4.系统实施和推广:a)根据用户需求和场地情况,对系统进行布局和安装。

b)组织人员进行系统使用和维护培训,使用户能够熟练使用系统。

基于PLC机械手控制系统设计

基于PLC机械手控制系统设计
基于PLC的机械 手控制系统设计
2024-04-29
• 项目背景与意义 • 整体方案设计 • 硬件选型 • 程序设计 • PLC仿真 • 项目总结与展望
目录
Part
01
项目背景与意义
机械手控制系统优势
效率高、准确高
高生产自动化程度,有利于 提高材料的传送、工件的装 卸、刀具的更换以及机器的 装配等的自动化程度,提高 生产效率,降低生产成本
改善劳动条件
避免人身事故,代替人安全 地在高温、高压、低温、低 压、有灰尘、噪声、臭味、 有放射性或有其它毒性污染 以及工作空间狭窄等场合中 完成工作。
自动化程度高,成本低
采用PLC控制系统,实现远 程监控和自动调节,提高运 维效率,降低了人工成本。
Part
02
整体方案设计
系统硬件设计
plc选型 机械手的位置反馈是开关量控制,所需的I/0点数量并不多,所以使用一般 的小型plc的选择就可以了。由于所需要的 I/0 点数分别为 20 点和12 点, 因此本设计选用西门子S7-226来实现控制
2)通过下面一排拉杆模拟PLC输入信号,通过观察Q点输出亮灯情况检查程序。
组态制作
新建一个工程,触摸屏的类型选择TPC7062TD
2)制作主页面。
组态制作
在设备窗口中添加-通用串口父设备和西门子_S7200PPI
2)双击西门子_S7200PPI,增加设备通道,并且连接对应的数据库,是PLC与触摸屏互相通信。
Part
03
硬件选型
plc硬件接线图简图
选型与配置方案
PLC控制器
使用一般的小型plc的选择就可以 了。由于所需要的 I/0 点数分别 为 20 点和12 点,因此本设计选 用西门子S7-226来实现控制。

基于PLC的机械手控制设计

基于PLC的机械手控制设计

基于PLC的机械手控制设计机械手是由一组等效于人类手臂和手腕的机器人装置组成的机器人系统。

机械手广泛应用于生产线上的自动化生产中,能够执行各种任务,如抓取、搬运、装配和检测等。

在机械手系统中,控制系统是至关重要的组成部分,其中PLC控制系统是目前最常用的方案之一。

本文将介绍基于PLC的机械手控制设计方案,包括系统组成、工作原理、控制流程和注意事项等方面。

一、系统组成基于PLC的机械手控制系统包括以下几个组成部分:1. 机械手:包括机械臂、手腕、手指等组成部分,能够完成各种任务的工作。

2. 传感器:用于检测机械手的位置、速度、力量等参数,从而实现机械手的精确控制。

3. PLC:将传感器检测到的信号转换为数字控制量,控制机械手的移动和操作。

4. 电机驱动器:根据PLC信号控制电机的启停、速度和转动方向等。

5. 电源和通信线:为系统提供能量和通信所需的线路。

二、工作原理1. 将任务输入PLC系统:首先,将需要完成的任务输入PLC控制系统,如要求机械手从A点移动到B点,然后从B点抓取物品,最终将物品运输到C点等。

2. PLC分析任务并发出指令:PLC会根据输入的任务信息,分析机械手的当前位置和运动状态,并给出相应的指令,控制机械手的行动。

3. 传感器感知机械手状态变化:在机械手移动过程中,传感器会感知机械手的位置、速度和力量等参数,并反馈给PLC系统。

4. PLC根据传感器反馈调整控制策略:PLC会根据传感器反馈的信息,调整机械手的控制策略,保证机械手能够准确地完成任务。

5. 电机驱动器控制电机运动:PLC通过控制电机驱动器对电机进行启停、转速和转向等操作,从而控制机械手的移动和抓取等操作。

6. 任务完成反馈:当任务完成后,PLC会发出相应的反馈信息,以说明任务已经顺利完成。

三、控制流程1. 确定任务:首先需要确定需要机械手完成的任务,并将任务信息输入PLC系统。

2. 置初值:设置机械手的起始位置和状态,并将其作为控制的初始状态。

基于PLC的机械手控制系统设计

基于PLC的机械手控制系统设计

基于PLC的机械手控制系统设计摘要本文基于PLC的机械手控制系统设计实现了对机械手的自动控制,为机械手的工业应用提供了强有力的支撑。

文章首先介绍了机械手的概念、类型和特点,然后详细讲述了机械手控制系统的工作原理和设计实现。

通过实验验证,本文所设计的机械手控制系统可以实现对机械手的自动化控制和动作规划,具有较高的安全性和稳定性,同时具有广泛的适用性和可扩展性。

本文的研究成果对机械手的应用推广具有较大的意义。

关键词:PLC,机械手,控制系统,自动化控制,动作规划AbstractThis paper designs a mechanical arm control system based on PLC, which realizes the automatic control of the mechanical arm and provides strong support for the industrial application of the mechanical arm. This paper first introduces the concept, types and characteristics of mechanical arms, and then describes in detail the working principle and design implementation of mechanical arm control systems.Through experimental verification, the mechanical arm control system designed in this paper can achieve the automatic control and motion planning of the mechanical arm, with high safety and stability, as well as wide applicability and scalability. The research results of this paper have great significance for the application promotion of mechanical arms.Keywords: PLC, mechanical arm, control system, automaticcontrol, motion planning第一部分:引言随着工业无人化趋势的深入发展,机械手作为工业自动化的重要机器人之一,已经被广泛应用于工业制造、装配、取料、搬运等场景中。

基于plc控制的机械手设计

基于plc控制的机械手设计

基于PLC控制的机械手设计引言PLC(可编程逻辑控制器)是一种被广泛应用于工业自动化系统的控制器。

它以可编程的方式控制工业过程中的各种设备和机械。

机械手是一种常见的自动化设备,广泛应用于工业领域。

本文将介绍基于PLC控制的机械手设计,包括系统的硬件组成、PLC程序设计和系统的工作原理。

硬件组成基于PLC控制的机械手系统包括以下硬件组成部分:1.PLC控制器:PLC控制器是系统的核心部分,负责接收和处理输入信号,并控制输出设备的操作。

常见的PLC控制器有西门子、施耐德等品牌。

2.机械手:机械手是系统的执行部分,负责完成各种任务,如抓取、搬运等。

它通常由电动机、传动装置、执行器等组成。

3.传感器:传感器用于检测和监测系统的状态和环境变量。

常见的传感器有接近传感器、压力传感器、温度传感器等。

4.输入设备:输入设备用于向系统提供操作信号和参数设置,如按钮、开关等。

5.输出设备:输出设备用于显示系统状态或输出结果,如指示灯、显示屏等。

PLC程序设计PLC程序是由一系列指令组成的,用于控制PLC控制器。

以下是基于PLC控制的机械手系统的PLC程序设计步骤:1.确定系统的需求和功能:首先需要确定机械手的具体需求和功能,如抓取物体的方式、搬运的速度等。

2.设计输入和输出信号:根据系统需求,确定输入和输出信号的类型和数量。

输入信号可以是按钮的状态、传感器的检测结果等,输出信号可以控制机械手的运动和执行动作。

3.设计PLC程序逻辑:根据系统需求和硬件组成,设计PLC程序的逻辑。

逻辑可以使用Ladder Diagram、Function Block Diagram等可视化编程语言进行描述。

4.编写PLC程序:根据设计的逻辑,使用PLC编程软件编写PLC程序。

编写过程中需要考虑安全性、可靠性和性能等方面。

5.调试和测试:将编写好的PLC程序下载到PLC控制器中,并进行调试和测试。

调试过程中需要检查各个输入和输出设备是否正常工作,是否满足系统的需求和功能。

(完整版)基于PLC的搬运机械手控制系统设计112

(完整版)基于PLC的搬运机械手控制系统设计112

基于PLC的搬运机械手控制系统设计摘要随着工业自动化的普及和发展,控制器的需求量逐年增大,搬运机械手的应用也逐渐普及,主要在汽车,电子,机械加工、食品、医药等领域的生产流水线或货物装卸调运,可以更好的节约能源和提高运输设备或产品的效率,以降低其他搬运方式的限制和不足,满足现代经济发展的要求。

本机械手的机械结构主要是曲轴在两条生产线之间搬运任务的搬运机械手控制系统进行设计。

采用了电气一体化的设计方案,使用带自锁功能的气缸实现了机械手对工件的抓放和保证了在断气状态下机械手状态的保持,通过伺服电机来实现机械手在水平、竖直方向快速精确的移动。

采用SIEMENS公司的SIMATIC S7-200系列PLC 作为核心控制器,外扩定位模块EM253模块对伺服电机进行精确的定位控制,从硬件和软件两个方面进行设计,完成了PLC在搬运机械手中硬件连接,I/O点分配和应用程序的设计,实现了机械手的上电初始化、零点复位、故障报警、手动运行、半自动运行和在无人看守时的自动运行。

最终达到设计要求,完成搬运目的。

关键词搬运机械手定位模块EM2253控制系统可编程PLC SIMATIC S7-200 系列PLC 核心控制器。

目录目录 (2)1引言 (1)1.1 搬运机械手的应用简况 (1)1.2机械手的应用意义 (2)2系统设计 (2)2.1系统结构及流程 (2)2.2系统主要部件选择 (4)2.2.1气缸的选择 (5)2.2.2阀门的选择 (6)2.2.3行程开关的选择 (6)2.2.4接近开关的选择 (6)2.2.5驱动电机的选择 (6)3控制系统的硬件设计 (7)3.1控制系统功能 (7)3.2控制系统硬件结构 (8)3.2.1位控模块 (8)3.2.3控制系统硬件结构 (9)3.3操作面板的设计 (9)3.4 PLC系统设计 (11)3.4.1 PLC 的I/O 分配表 (11)3.4.2 PLC 的I/O 接线图 (11)3.5运动控制系统的实现 (12)3.6控制系统电路设计 (17)4系统软件的设计与实现 (19)4.1系统工作方式 (19)4.2程序设计 (19)4.2.1主程序设计 (19)4.2.2初始化子程序设计 (20)4.2.3复位子程序设计 (20)4.2.4报警子程序设计 (21)4.2.5手动运行子程序设计 (21)4.2.6半自动运行子程序 (22)4.2.7自动子程序设计 (23)5结束语 (25)致谢 (26)参考文献 (27)附录1系统配件清单 (28)附录2程序清单 (28)1引言1.1搬运机械手的应用简况在现代工业中,生产过程的机械化、自动化已成为突出的主题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言随着我国工业生产的飞跃发展,自动化程度的迅速提高,实现工件的装卸、转向、输送或操持焊枪、喷枪、扳手等工具进行加工、装配等作业的自动化,已愈来愈引起人们的重视。

机械手是在机械化、自动化生产过程中发展起来的一种新型装置。

近年来,随着电子技术特别是电子计算机的广泛应用,机器人的研制和生产已成为高技术领域内迅速发展起来的一门新兴技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。

机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。

在工业生产中应用的机械手被称为“工业机械手”。

机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动、不知疲劳、不怕危险、抓举重物的力量比人手大等特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用,生产中应用机械手可以提高生产的自动化水平和劳动生产率;可以减轻劳动强度、保证产品质量、实现安全生产;尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作,意义更为重大。

本文将通过西门子PLC控制机械手,PLC是可编程控制器(Programmable Logic Controller)的简称,是在继电顺序控制基础上发展起来的以微处理器为核心的通用的工业自动化控制装置。

随着电子技术和计算机技术的迅猛发展,PLC的功能也越来越强大,更多地具有计算机的功能。

目前PLC已经在智能化、网络化方面取得了很好的发展。

该系统利用西门子PLC,在步进电机驱动下,完成对机械手在搬运过程中的下降、夹紧、上升、右旋、下降、放松、上升、左旋等全过程自动化控制,并对非正常情况实行自动报警和自动保护,实现企业的机电一体化,提高企业的生产效率。

1机械手概述1.1机械手简介机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。

它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。

机械手是工厂企业高度自动化的标志,它能完成许多高技术难度和繁重的体力劳动,尤其对于高温、高压、高湿度、污染等不适宜人工工作的环境中,机械手起到了不可取代的作用。

1.2机械手组成机械手主要由手部、驱动系统、控制系统组成。

结构如图1-1所示:图1-1机械手结构图Fig. 1-1 Manipulator structure(1)手部即与物件接触的部件。

手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。

(2)驱动系统使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。

运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度。

为了抓取空间中任意位置和方位的物体,需有6个自由度。

自由度是机械手设计的关键参数。

自由度越多,机械手的灵活性越大,通用性越广,其结构也越复杂。

一般专用机械手有2~3个自由度。

1.3机械手的应用随着科学技术的发展,机械手也越来越多地被应用。

在机械工业中,铸、锻、焊、铆、冲压、热处理、机械加工、装配、检验、喷漆、电镀等工种都有应用的实例。

其它部门,如轻工业、建筑业、国防工业等工作中也均有所应用。

机械工业中,应用机械手的主要目的是:一、可以提高生产过程的自动化程度应用机械手,有利于实现材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化程度,从而可以提高劳动生产率和降低生产成本。

二、可以改善劳动条件、避免人身事故。

在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其它毒性污染以及工作空间狭窄等场合中,用人手直接操作时有危险或根本不可能。

而应用机械手即可部分或全部代替人安全的完成作业,使劳动条件得以改善。

在一些简单、重复,特别是较笨重的操作中,以机械手代替人手进行工作,可以避免由于操作疲劳或疏忽而造成的人身事故。

三、可以减少人力,并便于有节奏地生产应用机械手代替人手进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续地工作,这是减少人力的另一个侧面。

因此,在自动化机床和综合加工自动线上,目前几乎都设机械手,以减少人力和更准确地控制生产的节拍,便于有节奏进行生产。

由此可见,有效地应用机械手,是发展工业的必然趋势。

2 PLC的简介2.1 PLC的产生1968年美国通用汽车公司(GM)招标要求:软连接代替硬接线;维护方便;可靠性高于继电器控制柜;体积小于继电器控制柜;成本低于继电器控制柜;有数据通讯功能;输入115V;可在恶劣环境下工作;扩展时,原系统变更要少;用户程序存储容量可扩展到4K 。

核心思想:用程序代替硬接线,输入/输出电平可与外部装置直接相联,结构易于扩展,这是PLC的雏形。

1969年美国DEC公司研制出世界上第一台PLC(PDP-14),并在GM公司汽车生产线上应用成功。

2.2 PLC的定义和特点2.2.1PLC的定义美国电气协会制造商协会NEMA和国际电工委员会IEC对可编程控制器分别作了定义:可编程控制器是一种专门用于工业环境的、以开关量逻辑控制为主的自动控制装置。

它具有存储控制程序的存储器,能够按照控制程序,将输入的开关量(或模拟量)进行逻辑运算、定时、计数和算术运算等处理后,以开关量(或模拟量)的形式输出,控制各种类型的机械或生产过程。

早期的可编程控制器,主要用于开关量逻辑控制,所以称为可编程逻辑控制器,简称PLC,后来随着计算机技术不断发展,其功能已不仅限于开关逻辑控制,所以被称之为可编程控制器PC,但这很容易和个人计算机PC相混淆,因此,一般把PLC作为可编程控制器的简称。

2.2.2 PLC的特点可编程控制器之所以能够得到迅速发展和广泛应用,主要是由于它具有以下特点:(1)可靠性高,抗干扰能力强用软件实现大量的开关量逻辑运算,克服了因继电器触点接触不良而造成的故障;输入采用直流低电压,更加可靠、安全;面向工业环境设计,采取了滤波、屏蔽、隔离等抗干扰措施,适应各种恶劣的工作环境,远远地超过了传统的继电器控制系统和一般的计算机控制系统。

(2)编程简单,易于掌握 PLC采用梯形图方式编写程序,与继电器控制逻辑的设计相似,具有直观、简单、容易掌握等优点。

(3)功能完善,灵活方便随着PLC技术的不断发展,其功能更加完善,不仅具有开关量逻辑控制功能和步进、计算功能,而且还具有模拟量处理、温度控制、位置控制、网络通信等功能。

既可以单机使用、也可联网运行,既可集中控制、也可分布控制或者集散控制。

而且在运行过程中,可随时修改控制逻辑,增减系统的功能。

(4)体积小、质量轻、功耗低由于采用了单片机等集成芯片,体积小、质量轻、机构紧凑、功耗低。

2.3可编程控制器的主要性能指标可编程控制器的性能指标有很多,主要有以下几项指标。

(1)输入/输出点数(I/O) I/O点数是指可编程控制器外部输入、输出端子数的总和。

它标志着可以接多少个开关按钮和可以控制多少个负载。

(2)存储容量存储容量是指可编程控制器内部用于存放用户程序的存储容量。

(3)扫描速度一般以执行1000步指令所需的时间来衡量,单位为ms/千步,也有以执行一步指令所需来计算,单位us/步。

(4)功能扩展能力可编程控制器除了主模板块之外,通常都可配备一些可扩展模块,以适应各种特殊功能应用的需要。

如A/D模块、D/A模块、位置控制模块等。

(5)指令系统指令系统是指一台可编程控制器指令的总和,它是衡量可编程控制器功能强弱的主要指标。

2.4可编程控制器的分类通常PLC产品可按结构形式、控制规模等进行分类。

(1)按结构形式分类按结构形式不同,可分为整体式和模块式两类。

整体式的PLC是将电源、CPU、存储器、输入/输出单元等各个功能部件集成在一个机壳内,从而具有结构经凑、体积小、价格低等优点,许多小型PLC多采用这种机构。

模块式的PLC将各个功能部件做成独立模块,如电源模块、CPU模块、I/O模块等,然后进行组合。

(2)按控制规模分类按控制规模大小,可分为小型、中型和大型PLC三种类型。

1)小型PLC。

小型PLC的I/O点数在256点以下,存储容量在2KB以内,其中输入输出点数小于64点的PLC又称为超小型或微型PLC,具有逻辑运算、定时、计数、移位及自诊断、监控等基本功能。

2)中型PLC。

中型PLC的开关量I/O点数通常在256-2048点之间,用户程序存储器的容量为2-8KB,除具有小型机的功能外,还具有较强的模拟量I/O、数字计算、过程参数调节,如比例、积分、微分(PID)调节、数据传送与比较、数制转换、中断控制、远程I/O及通信联网功能。

3)大型PLC。

大型PLC也称为高档PLC,I/O点数在2048点以上,用户程序存储容量在8KB以上,其中I/O点数大于8192点的又称为超大型PLC,除具有中型机的功能外,还具有较强的数据处理、模拟调节、特殊功能函数运算、监视、记录、打印等功能,以及强大的通信联网、中断控制、智能控制和远程控制等功能。

2.5 PLC系统的组成PLC是一种以微处理器为核心的工业通用自动控制装置,其结构与微型计算机控制系统相似,也是有硬件系统和软件系统两大部分组成。

2.5.1PLC的硬件结构一套PLC系统在硬件上由以下几部分组成:(1)中央处理器(CPU) 与计算机一样,是PLC的核心部件。

(2)存储器 PLC配有两种存储器:系统存储器和用户存储器。

(3)输入/输出(I/O)接口电路。

(4)电源。

(5)扩展单元。

(6)外部设备。

其中,各部分通过总线(电源总线、控制总线、地址总线、数据总线)连接而成。

其结构简图如下:图2-1 PLC硬件结构图Fig. 2-1 PLC hardware structure2.5.2 PLC的软件PLC的软件是指PLC所使用的各种程序的集合。

它由系统程序(系统软件)和用户程序(用户软件)组成。

(1)系统程序系统程序包括监控程序,输入译码程序及诊断程序等。

(2)用户程序用户程序是用户根据控制要求,用PLC的编程语言(如梯形图)编制的应用程序。

2.6可编程控制器的工作方式可编程控制器在进入RUN状态之后,采用循环扫描方式工作。

从第一条指令开始,在无中断或跳转控制的情况下,按程序存储的地址号递增的循序逐条执行程序,即按顺序逐条执行程序直到程序结束。

然后再从头开始扫描,并周而复始地重复进行。

图2-2 PLC工作方式图Fig. 2-2 PLC work way figure可编程控制器工作的扫描过程包括五个阶段:内部处理、通信处理、输入扫描、程序执行、输出处理。

PLC完成一次扫描过程所需的时间成为扫描周期。

相关文档
最新文档