比率制动式差动保护
比率制动差动保护

1 比率制动差动保护特性随着计算机技术在继电保护领域日益广泛的应用,比率制动特性的差动保护作为双圈及三圈变压器的主保护具有动作可靠,实时数据采集、计算、比较、判断等较为方便简单等优点,得到用户的认可。
所谓比率制动特性差动保护简单说就是使差动电流定值随制动电流的增大而成某一比率的提高。
使制动电流在不平衡电流较大的外部故障时有制动作用。
而在内部故障时,制动作用最小。
图1图1中曲线1为差动回路的不平衡电流,它随着短路电流的增大而增大。
根据差动回路接线方法的不同,在整定时,通过调整不平衡比例系数使得计算机在实时计算时的Ibp最小。
曲线2是无制动时差动保护的整定电流,它是按躲过最大不平衡电流Ibpmax来整定的。
曲线3为变压器差动保护区内短路时的差电流,它随短路电流的增大而线性的增大。
曲线4为具有制动特性的差动继电器的差动保护特性。
在无制动时,曲线3与曲线2相交于B点,这时保护的不动作区为OB′,即保护区内短路时的短路电流必须大于OB′所代表的电流值时,保护才能动作。
在有制动时,曲线3与曲线4相交于A点,短路电流只要大于OA′所代表的电流值,保护即能动作。
OA′<OB′,这说明在同样的保护区内短路状态下,有制动特性的差动保护比无制动特性的差动保护灵敏度要高。
在实际的变压器差动保护装置中,其比率制动特性如下图2所示:图2图2中平行于横坐标的AB段称为无制动段,它是由启动电流和最小制动电流构成的,动作值不随制动电流变化而变化。
我们希望制动电流小于变压器额定电流时无制动作用,通常选取制动电流等于被保护变压器高压侧的额定电流的二次值。
即: Izd=Ie/nLH图2中斜线的斜率为基波制动斜率,当区外故障时短路电流中含有大量生产非周期分量,制动Izdo增大,当动作电流Idzo大于启动电流时,制动电流和动作电流的交点D必落在制动区内。
当区内故障时,差电流即动作电流为全部短路电流,制动电流则为流过非电源侧的短路电流,数值较小,平行于纵、横轴的二直线交点必落在动作区内,差动保护可靠动作。
变压器 故障分量比率制动式差动保护

变压器故障分量比率制动式差动保护
变压器故障分量比率制动式差动保护是电力系统中常用的保护手段之一。
本文将针对该保护手段的原理、应用及维护进行详细介绍。
一、原理
变压器故障分量比率制动式差动保护的原理是根据差动电流反映出变压器绕组短路故障的情况。
如果两端绕组的电流相差较大,则判断为故障发生。
该保护的启动条件主要是满足两端绕组电流的不平衡性,即有一定的差动电流,从而实现对变压器的保护。
二、应用
变压器故障分量比率制动式差动保护主要适用于高压变压器和大型变电站中。
其主要优势是灵敏度高、可靠性好、操作简单等特点,使得它成为了电力系统中不可缺少的保护手段。
在实际应用中,该保护还有以下优势:
1、提高系统的可靠性和稳定性;
2、减少电压的不稳定性和电压剧烈跳动;
3、缩短了故障处理时间,降低了故障对电网的影响。
三、维护
变压器故障分量比率制动式差动保护在安装和使用过程中需要进
行一定的维护。
以下是保护维护的几点注意事项:
1、定期对保护器、终端设备和整个保护系统进行检查和维护;
2、必要时更换故障分量比率电流互感器、CT等零部件;
3、要确保差动电流的准确测量,保护器的精度要达到要求;
4、变压器故障分量比率制动式差动保护与其他保护和自动装置间
的配合一定要协调。
总之,变压器故障分量比率制动式差动保护是电力系统中不可缺
少的一种保护手段。
在实际应用中,需要注意差动电流的准确测量和
保护器的精度,确保保护系统正常运行,提高系统的可靠性和稳定性。
浅谈比率制动式差动保护在变压器保护中的应用

浅谈比率制动式差动保护在变压器保护中的应用摘要:作为变压器保护的有效手段,比率制动式差动保护能在消除变压器的励磁涌流的基础上,减少最大不平衡电流对纵联差动保护动作的影响。
本文在阐述变压器故障类型的基础上,就其比率制动式差动保护的原理展开分析,并就比率制动式差动保护模式下变压器保护常见问题处理对策展开分析,期望能进一步提升比率制动式差动保护效果,确保变压器运行的可靠性和灵活性关键词:变压器;保护;比率制动;差动保护变压器是电力系统中重要的电气设备,其不仅具有电压、电流变换的功能,而且阻抗变换、隔离、稳压效果较为突出,有效地满足了电力供配电工作开展需要。
现阶段,除发电厂、变电站外,变压器在换流站及、城乡配电柱等场所具有广发应用。
为确保变压器功能发挥,提升变压器使用的稳定性、安全性,需重视变压器应用过程的差动保护。
比率制动式差动保护是变压器保护的有效手段,其就对于变压器的安全稳定运行具有积极作用。
一、变压器故障类型变压器故障大致可分为两种类型,一是本体故障,二是油箱外部故障[1]。
其中变压器本体故障表现形式多样,其不仅包含变压器各绕组间短路,而且涉及中性点直接接地,此外受铁心或外壳影响,变压器绕组出现单相接地短路等都是变压器本体故障的常见类型。
从本体故障危害来看,当变压器本体故障较为严重时,故障短路会产生一定的电弧,这些电弧会对变压器绕组的绝缘性能造成影响;同时故障问题还会导致变压器油受热分解,并由此产生大量的气体,当这些受热气体迅速膨胀时,变压器有发生爆炸的风险。
对于变压器油箱外故障言,其包含了箱体外的绝缘套管故障、引出线故障等类型,这些故障对于变压器使用的安全性、稳定性具有较大危害,有必要在变压器设计、安装及使用阶段,做好变压器的保护处理,预防变压器故障发生。
二、比率制动式差动保护的基本原理1、纵联差动保护原理变压器使用过程中,纵联差动保护不仅需要考虑被保护元件两侧电流的大小,而且需对被保护元件电流相位进行有效分析。
差动保护比率制动计算

差动保护比率制动计算差动保护是电气系统中常见的一种保护方式,用于检测电气设备中的相间故障。
差动保护的比率制动是一种常见的差动保护的制动方式,它通过设置一个比率制动阀值来判断差动电流是否超过了正常范围,超过则认定为故障,触发保护动作。
下面将详细介绍差动保护比率制动的计算方法。
1.计算差动保护的比率制动系数:根据差动保护的设定参数,计算差动保护的比率制动系数。
差动保护的比率制动系数是一个常数,用于判断差动电流是否超过了设定的故障电流。
比率制动系数Kd=(200%-设备的检测误差-保护的纵联延时误差)/(2x√3x设备的额定电流)其中,设备的检测误差通常是根据设备参数中的检测误差给出的;保护纵联延时误差是差动保护的一个参数,代表保护的纵联延时误差值;√3代表三相系统中的相电压之间的关系。
2.计算最小故障电流:最小故障电流是指能够触发差动保护的最小故障电流值。
它是根据设备的额定电流和差动保护的比率制动系数计算得出的。
最小故障电流=差动保护的比率制动系数x设备的额定电流最小故障电流是一个参考值,如果差动电流超过了最小故障电流,就可能发生故障,触发差动保护。
3.判断差动电流是否超过最小故障电流:根据差动保护的设定参数和当前的差动电流数据,判断差动电流是否超过最小故障电流。
如果差动电流超过了最小故障电流,则认为发生了故障,触发差动保护,进行相应的保护动作。
差动保护比率制动的计算方法是一种常见的差动保护计算方式,通过设定比率制动系数来提高差动保护的灵敏度和可靠性。
需要注意的是,差动保护的设定参数应根据具体的电气设备情况和系统要求进行设定,以保证差动保护的准确性和可靠性。
发电机差动保护原理

发电机差动保护原理 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT发电机比率制动式差动保护比率制动式差动保护是发电机内部相间短路故障的主保护。
5.1.1保护原理5.1.1.1比率差动原理。
差动动作方程如下:I op ? ( I res ? 时)I op ? + S(I res – ( I res > 时)式中:I op 为差动电流,为差动最小动作电流整定值,I res 为制动电流,为最小制动电流整定值,S 为比率制动特性的斜率。
各侧电流的方向都以指向发电机为正方向,见图5.1.1。
差动电流: N T op I I I ⋅⋅+=制动电流: 2N T res I I I ⋅⋅-= 式中:I T ,I N 分别为机端、中性点电流互感器(TA)二次侧的电流,TA 的极性见图5.1.1。
图5.1.1 电流极性接线示意图(根据工程需要,也可将TA 极性端均定义为靠近发电机侧)5.1.1.2 TA 断线判别当任一相差动电流大于倍的额定电流时启动TA 断线判别程序,满足下列条件认为TA 断线:a. 本侧三相电流中至少一相电流为零;b. 本侧三相电流中至少一相电流不变;c. 最大相电流小于倍的额定电流。
发电机匝间保护发电机匝间保护作为发电机内部匝间短路的主保护。
根据电厂一次设备情况,可选择以下方案中的一种:5.2.1故障分量负序方向(ΔP 2) 匝间保护该方案不需引入发电机纵向零序电压。
故障分量负序方向(ΔP 2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。
5.2.1.1保护原理当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障时,在故障点出现负序源。
故障分量负序方向元件的2.U ∆和2.I ∆分别取自机端TV 、TA ,其TA 极性图见图5.2.1.1,则故障分量负序功率?P 2为:式中2Λ∆I 为2•∆I 的共轭相量,?sen 。
比率制动式差动保护

变压器差动保护一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动);二:差动保护的定义由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述:1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高=220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KVA,I1’:流过变压器高压侧的一次电流;I”:流过变压器低压侧的一次电流;I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流;I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流;nh:高压侧电流互感器CT1变比;nl:低压侧电流互感器CT2变比;nB:变压器的变比;各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2”I1’/ I”= nh/ nl=1/ nB2、区内:CT1到CT2的范围之内;3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地)单相接地故障以及匝间、层间短路故障;四:差动的特性1、比率制动:如图二所示,为差动保护比率特性的曲线图:下面我们就以上图讲一下差动保护的比率特性:o:图二的坐标原点;f:差动保护的最小制动电流;d:差动保护的最小动作电流;p:比率制动斜线上的任一点;e:p点的纵坐标;b:p点的横坐标;动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时,由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此,图中阴影部分,即差动保护的动作区;制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区;比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。
微机变压器差动保护功能及定值计算

某35kV变电站,主变为SZq-5000/35,额定电压比为35/10.5kV。35kV侧额定电流I1e=82.5A,10.5kV侧额定电流I2e=275A。经计算系统最小运行方式下35kV母线三相短路电流I(3)D1min=970A,两相短路电流I(2)D1min=840A。10kV母线三相短路电流I(3)D2max=460A,主变35kV变流器变比NCH=30,10kV侧TA变NCL=60,试计算保护定值。
Icdset=K1Izdset, 当Izd≤Izdset时,
Icd≥Icdset+K1(Izd-Izdset),当Izd>Izdset时
2.1.4二次谐波制动系数
为了防止变压器空载投入时,励磁涌流导致差动保护误动作,要适当选择二次谐波制动系数K2、K2一般在(0.1~0.4)范围内选,本例K2选0.15。
2.1.1差动保护最小动作电流和突变量电流
在最大负荷下,差动保护不应误动作,应大于最大负荷时差动回路不平衡电流,不平衡二次电流按下式计算:
√3KK[Ktxfwc+△U+△fpn]Ie1
IPDfh=
NCH
1.73×1.5(0.1+0.05+0.1)82.5
= = 1.8 (A)
30
=0.375
计算比率制动系数K1′,是保护避越区外故障不平衡电流的制动特性曲线在制动电流门槛值Izdset转折点的斜率, 即K1′=tgψ1′0.375,ψ1′= 22.8°。一般选择K1> K1′,本例K1选0.5,K1=tgψ1′=0.5,ψ1′= 29.5°
比率制动系数K1与差动保护动作电流、制动电流门槛值的关系为:
2.1.8保护灵敏度校验
比率制动式差动保护原理

比率制动式差动保护原理比率制动式差动保护是电力系统中常用的一种保护方式,其原理是根据电力系统中不同位置的电流差值来判断系统中是否存在故障。
本文将从差动保护的基本原理、比率制动式差动保护的工作原理、实际应用中的优点和缺点以及未来的发展方向等方面对比率制动式差动保护原理进行详细阐述。
一、差动保护的基本原理差动保护是一种根据系统不同位置的电流值之差来判断系统中是否存在故障的保护方式。
其基本原理是通过比较系统两个端点的电流值来判断系统中是否存在故障,当电流值之差超过一定的阈值时触发保护动作,以保护系统正常运行。
在电力系统中,通常使用差动保护来保护变压器、发电机和输电线路等重要设备。
差动保护的工作原理是通过测量不同位置的电流值,然后将这些电流值进行比较,当存在差值超出一定范围时,即判断系统中存在故障,并触发相应的保护动作,以确保系统的安全运行。
二、比率制动式差动保护的工作原理比率制动式差动保护是一种常用的差动保护方式,其工作原理是通过测量系统中不同位置的电流值,并根据设定的比率进行差值比较,当电流差值超出设定的范围时,触发保护动作。
比率制动式差动保护可以根据系统的特点和要求进行定制,以满足不同系统的保护需求。
比率制动式差动保护的工作原理主要包括以下几个方面:1.电流测量:比率制动式差动保护通过电流互感器或电流变压器等设备对系统中不同位置的电流进行测量,然后将这些电流值输入到保护装置中进行比较。
2.比率设定:根据系统的特点和要求,设定差动保护的比率范围,当系统中的电流差值超出这一范围时触发保护动作。
3.差动比较:比率制动式差动保护将系统中的电流值进行比较,当存在差值超出设定范围时,即判断系统中存在故障,触发保护动作。
4.动作信号输出:当差动保护判断系统中存在故障时,输出相应的动作信号,触发保护设备进行相应的动作,以保护系统正常运行。
通过以上几个方面的工作原理,比率制动式差动保护可以对系统中的故障进行及时有效的保护,确保电力系统的安全稳定运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比率制动式差动保护变压器差动保护:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动);二:差动保护的定义由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述:1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高=220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KVA,11'流过变压器高压侧的一次电流;I ” :流过变压器低压侧的一次电流;12'流过变压器高压侧所装设电流互感器即CT1的二次电流;I2 ”:流过变压器低压侧所装设电流互感器即CT1的二次电流;nh:高压侧电流互感器CT1变比;nl:低压侧电流互感器CT2变比;nB:变压器的变比;各参数之间的关系:11'12 ' nh I”/12 ”= nl I2 ' I2 ” I1'/l”= nh/ n 1=1/ nB2、区内:CT1到CT2的范围之内;3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地)单相接地故障以及匝间、层间短路故障;四:差动的特性1、比率制动:如图二所示,为差动保护比率特性的曲线图:动作电流lop 4dIopo下面我们就以上图讲一下差动保护的比率特性:o:图二的坐标原点;f:差动保护的最小制动电流;d:差动保护的最小动作电流;P:比率制动斜线上的任一点;e: p点的纵坐标;b: p点的横坐标;动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此,图中阴影部分,即差动保护的动作区;制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区;比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算岀此斜线的斜率,就等于算出了比率制动系数。
以p点为例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2撮小制动电流Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流Il=6A,180度,低压侧电流I2=6A,0度,固定II升12,当12升到9.4A的时候保护动作,计算一下此时的比率制动系数。
由于两圈变差动的制动电流为(11+12) /2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)= 1.4/2.7=0.52;2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就f Ires,o 图二b 制动电流Ires判此电流为非故障电流,进行谐波闭锁。
500kv —下等级的变压器之进行二次谐波判别,500kv及以上变压器,则还需进行5次谐波判别。
以二次谐波为例:二次谐波系数=差电流中的二次谐波分量与基波分量的比值。
当谐波系数大于整定值时,保护被闭锁;小于整定值时,保护被开放;根据经验,二次谐波制动比可整定为0.15~0.2;五、不平衡电流实际上,差动保护比率制动也好,谐波制动也好,归根结底都是要躲过变压器的不平衡电流,而不平衡电流,也正是可能引起差动保护误动的最重要因素之一。
产生变压器不平衡电流有以下几个重要的原因:1、由变压器励磁涌流lly所产生的不平衡电流;励磁涌流主要是由于在变压器空投时产生的含有大量高次谐波含量的电流,其中以2次谐波为主。
我们的800变压器差动保护中有“二次谐波制动系数”一项定值,用来防止此原因造成的差动误动。
二次谐波制动系数:差电流中的二次谐波分量与基波分量的比值;根据经验,此系数可整定为15%~25%2、由于变压器两侧电流相位不同而产生的不平衡电流;由于变压器常采用丫,d11的接线方式,因此,如果两侧的电流互感器仍采用通常的接线方式,则二次侧电流由于相位不同,也会有一个差电流流入我们的保护装置。
为了消除这种不平衡电流的影响,通常都是将变压器星星侧的三个电流互感器接成三角形,而将变压器三角形侧的三个电流互感器接成星形,并适当考虑联结方式后即可把二次电流的相位校正过来。
但我们的保护要求现场二次侧电流互感器的接线都接为星形接线,因此,一次侧为丫,d11的接线方式的变压器将产生差流,差动保护靠程序将此不平衡电流补偿掉,具体方法如下:如图所示为丫,d11两卷变压器两侧绕组及电流互感器接线方式及其中通过的一次、二次电流流向:(各电流均为向量值)其中:IA,IB,IC 表示流过变压器高压侧一次 绕组的电流;la,lb,lc 表示流过变压器低压侧一次绕组的电流;lA Y' ,lB Y' ,IC Y'表示流过变 压器高压侧电流互感器二次侧 的电流;la △ ,lb △ ,lc △表示流过变压器低 压侧电流互感器的一次侧电 流;各电流关系如下:la= la △ + lb<=>la △ = la- lblb= lb △ + lc<=> lb △ = lb- Ic 1 la ■ 1 1 lb / t 7l c I c 1_^57 J . ( la 11 Jla lb I cJ ABCABCIA IB IC./I 1 la lb Ic IIc= Ic △ + Ia<=> Ic △ = Ic- la向量图:Iah ' :IA Y - IB Y Ibh ' =IB Y - IC Y Ich ' IC Y -IA Y为了消除幅值上带来的差异: Iah= Iah '1.732= (IA Y -IB Y)lbh= Ibh '1.732=( IB Y - IC Y)lch= Ich '1.732= (IC Y - IA Y)而低压侧电流保持不变Ial= Ia △Ibl=Ib △ Icl= Ic △I为了消除相位上带来的差异:----- 其中:lah , Ibh , Ich表示保护装置中实际采到的高压侧电流;Ial , Ibl , Icl表示保护装置中实际采到的高压侧电流;向量图Ic X因此,差动保护的高、低压侧电流相位一致,高压侧电流幅值不变。
3、由计算变比与实际变比不同而产生的不平衡电流由于两侧的电流互感器都是根据产品目录选取标准的变比,而变压器的变比也是一致的,因此,三者的关系很难满足nl2/nl1=n B的要求,此时差动回路中将有电流流过。
当采用具有速饱和铁心的差动继电器时,通常都是利用它的平衡线圈Wph来消除此茶电流的影响。
4、由两侧电流互感器型号不同而产生的不平衡电流由于两侧电流互感器型号不同,他们的饱和特性、励磁电流(归算置同一侧)也就不同,因此,在差动回路中所产生的不平衡电流也就较大。
此时应采用电流互感器的通行系数。
5、由变压器带负荷调整分接头而产生的不平衡电流带负荷调整变压器的分接头,是电力系统中采用带负荷调压的变压器来调整电压的方法,实际上改变分接头就是改变变压器的变比n B。
如果差动保护已按照某一变比调整好,则当分接头改换时,就会产生一个新的不平衡电流流入差动回路。
对由此而产生的不平衡电流,应在总差动保护的整定值中予以考虑。
六、整定计算差动电流的定值整定比较复杂,需要考虑的各种因素很多,这里只对一些定值做一个简单的介绍,仅作参考:1、最小动作电流的整定差动最小动作电流应大于变压器额定负载时的不平衡电流,即I op.min = K rel (K er+ △ U+ △ m)I N/n a(87)式中:I N----- 变压器额定电流;na——电流互感器的变比;K rel ----- 可靠系数,取1.3〜1.5;K er 电流互感器的比误差,10P型取0.03X 2, 5P 型和TP 型取0.01 X 2;△ U 变压器调压引起的误差,取调压范围中偏离额定值的最大值(百分值);△m ---- 由于电流互感器变比未完全匹配产生的误差,初设时取0.05。
在工程实用整定计算中可选取I op.min =(0.2〜0.5)1 N/n a。
一般工程宜采用不小于0.31 N/n a的整定值。
根据实际情况(现场实测不平衡电流)确有必要时也可大于0.51 N/n a。
2、最小制动电流l res.0的整定最小制动电流宜取l res.0 = (0.8 〜1.0)I N/n a。
3、不平衡系数的整定_____ 平衡系数通常是以高压侧为基准尽心计算的。
Kph=1 Kpm=lh/lm Kpl=lh/ll式中:Kph――高压侧平衡系数Kpm ――中压侧平衡系数Kpl ――低压侧平衡系数Ih 高压侧二次额定电流Im --- 中压侧二次额定电流Il --- 低压侧二次额定电流F面以一实例计算一下变压器的平衡系数:一电厂主变各侧参数如下:高压侧电压等级110KV,变比600/5,电抗器侧电压等级6.3KV, 变比1000/5,机尾侧电压等级6.3KV,变比4000/5,则各侧平衡系数计算如下:高压侧二次电流i1=Sn/(1.732X 110X 600/5 )A电抗器侧二次电流i2=Sn/(1.732X 6.3X 1000/5)A机尾侧二次电流i3=Sn/(1.732X 6.3X 4000/5)A高压侧平衡系数k1定为1,则电抗器侧平衡系数k2为:i1/i2=0.095机尾侧平衡系数k3为:i1/i3=0.38由于我们差动保护定值平衡系数的整定范围为0.1 ――4,电抗器侧的平衡系数超范围,因此三侧平衡系数可同时乘以3,得出k仁3,k2=0.285, k3=1.14.。