比率制动差动保护
比率制动式差动保护

比率制动式差动保护变压器差动保护:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动);二:差动保护的定义由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述:1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高=220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KVA,11'流过变压器高压侧的一次电流;I ” :流过变压器低压侧的一次电流;12'流过变压器高压侧所装设电流互感器即CT1的二次电流;I2 ”:流过变压器低压侧所装设电流互感器即CT1的二次电流;nh:高压侧电流互感器CT1变比;nl:低压侧电流互感器CT2变比;nB:变压器的变比;各参数之间的关系:11'12 ' nh I”/12 ”= nl I2 ' I2 ” I1'/l”= nh/ n 1=1/ nB2、区内:CT1到CT2的范围之内;3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地)单相接地故障以及匝间、层间短路故障;四:差动的特性1、比率制动:如图二所示,为差动保护比率特性的曲线图:动作电流lop 4dIopo下面我们就以上图讲一下差动保护的比率特性:o:图二的坐标原点;f:差动保护的最小制动电流;d:差动保护的最小动作电流;P:比率制动斜线上的任一点;e: p点的纵坐标;b: p点的横坐标;动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此,图中阴影部分,即差动保护的动作区;制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区;比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算岀此斜线的斜率,就等于算出了比率制动系数。
变压器 故障分量比率制动式差动保护

变压器故障分量比率制动式差动保护
变压器故障分量比率制动式差动保护是电力系统中常用的保护手段之一。
本文将针对该保护手段的原理、应用及维护进行详细介绍。
一、原理
变压器故障分量比率制动式差动保护的原理是根据差动电流反映出变压器绕组短路故障的情况。
如果两端绕组的电流相差较大,则判断为故障发生。
该保护的启动条件主要是满足两端绕组电流的不平衡性,即有一定的差动电流,从而实现对变压器的保护。
二、应用
变压器故障分量比率制动式差动保护主要适用于高压变压器和大型变电站中。
其主要优势是灵敏度高、可靠性好、操作简单等特点,使得它成为了电力系统中不可缺少的保护手段。
在实际应用中,该保护还有以下优势:
1、提高系统的可靠性和稳定性;
2、减少电压的不稳定性和电压剧烈跳动;
3、缩短了故障处理时间,降低了故障对电网的影响。
三、维护
变压器故障分量比率制动式差动保护在安装和使用过程中需要进
行一定的维护。
以下是保护维护的几点注意事项:
1、定期对保护器、终端设备和整个保护系统进行检查和维护;
2、必要时更换故障分量比率电流互感器、CT等零部件;
3、要确保差动电流的准确测量,保护器的精度要达到要求;
4、变压器故障分量比率制动式差动保护与其他保护和自动装置间
的配合一定要协调。
总之,变压器故障分量比率制动式差动保护是电力系统中不可缺
少的一种保护手段。
在实际应用中,需要注意差动电流的准确测量和
保护器的精度,确保保护系统正常运行,提高系统的可靠性和稳定性。
差动保护比率制动计算

差动保护比率制动计算差动保护是电气系统中常见的一种保护方式,用于检测电气设备中的相间故障。
差动保护的比率制动是一种常见的差动保护的制动方式,它通过设置一个比率制动阀值来判断差动电流是否超过了正常范围,超过则认定为故障,触发保护动作。
下面将详细介绍差动保护比率制动的计算方法。
1.计算差动保护的比率制动系数:根据差动保护的设定参数,计算差动保护的比率制动系数。
差动保护的比率制动系数是一个常数,用于判断差动电流是否超过了设定的故障电流。
比率制动系数Kd=(200%-设备的检测误差-保护的纵联延时误差)/(2x√3x设备的额定电流)其中,设备的检测误差通常是根据设备参数中的检测误差给出的;保护纵联延时误差是差动保护的一个参数,代表保护的纵联延时误差值;√3代表三相系统中的相电压之间的关系。
2.计算最小故障电流:最小故障电流是指能够触发差动保护的最小故障电流值。
它是根据设备的额定电流和差动保护的比率制动系数计算得出的。
最小故障电流=差动保护的比率制动系数x设备的额定电流最小故障电流是一个参考值,如果差动电流超过了最小故障电流,就可能发生故障,触发差动保护。
3.判断差动电流是否超过最小故障电流:根据差动保护的设定参数和当前的差动电流数据,判断差动电流是否超过最小故障电流。
如果差动电流超过了最小故障电流,则认为发生了故障,触发差动保护,进行相应的保护动作。
差动保护比率制动的计算方法是一种常见的差动保护计算方式,通过设定比率制动系数来提高差动保护的灵敏度和可靠性。
需要注意的是,差动保护的设定参数应根据具体的电气设备情况和系统要求进行设定,以保证差动保护的准确性和可靠性。
差动保护和比例差动保护原理(含图)

1.比率差动是差动电流和制动电流的制约,要考虑到励磁涌流的影响;2.差流速断是当差流过定值后不考虑制动电流直接出口跳闸,在整定时就躲过励磁涌流。
3.变压器在正常负荷状态下,差动保护的最小动作电流大于额定电流下流入差动回路的不平衡电流,保护不会误动。
随着外部短路电流的增大,电流互感器可能饱和,误差随之增大,不平衡电流也就不断增大。
为防止差动保护误动作,引入比率差动保护。
其能可靠地躲过外部故障时的不平衡差动电流。
1.差动速断保护反映变压器内部或引出线严重短路故障,任一相电流大于整定值,保护跳闸并发信号,其动作方程为:Id>I1式中,Id为短路电流,I1差动保护定值。
Ih为高压侧电流,Il为低压侧电流TAP=(VWDG2×CT2×C)/(VWDG1×CT1)式中:VWDG1为高压侧线电压;VWDG2为低压侧线电压;CT1为高压侧CT变比;CT2为低压侧CT变比。
当相位调整选择“退”时,为外部接线补偿,C=3。
差动电流的计算方法为:Id=|Ih+ Il*TAP| ,其中Idh、Idl都为矢量。
制动电流的计算方法为:Ir= Imax |Ih、Il*TAP|。
(表示选择其中最大相)当相位调整选择“投”时,为内部软件补偿,。
C=1单加高压侧形成的差动电流的计算方法为:Idh=Ih线/3;单加低压侧形成的差动电流的计算方法为:Idl=Il*TAP;高压侧和低压侧同时施加,各相差动电流的计算方法为:Id=|Idh +Idl| ,其中Idh、Idl都为矢量。
高压侧和低压侧同时施加,各相制动电流的计算方法为:Ir=Imax |Idh、Idl|。
差动速断保护原理逻辑图如下:图6-1 差动速断保护原理逻辑图2.比率差动保护变压器在正常负荷状态下,差动保护的最小动作电流大于额定电流下流入差动回路的不平衡电流,保护不会误动。
随着外部短路电流的增大,电流互感器可能饱和,误差随之增大,不平衡电流也就不断增大。
比率制动式差动保护原理

比率制动式差动保护原理
比率制动式差动保护是一种常见的电力系统保护方式,其主要原理是基于比率差动电流的变化来进行故障检测和保护。
这种保护方式适用于高压输电线路和变电站等电力系统的保护。
比率制动式差动保护的基本结构包括绕组、比率制动器和继电器三部分。
绕组是差动保护的检测部分,通过测量绕组上的电流来得到比率差动电流。
比率制动器是控制部分,通过对比率差动电流进行调整和控制,使保护系统具备一定的灵敏性和可靠性。
继电器是保护系统的核心部分,负责检测比率差动电流,并在检测到异常情况时进行判断和响应。
比率制动式差动保护的原理是基于比率差动电流的变化来进行保护的。
在正常操作情况下,绕组上的电流总是满足一定的比率关系,也就是所谓的“常规关系”。
当电路发生故障时,比率关系将发生改变。
此时,比率制动器将对比率差动电流进行调整,使其保持在一定的范围内。
如果比率差动电流超过了预设的阈值,继电器将触发故障报警或机械切断。
比率制动式差动保护主要有两种额定方式,即定常式和逆变式。
定常式比率制动器的额定比率是固定的,通常使用在负载变化范围较小的电路中。
而逆变式比率制动器具有更广泛的适用性,其额定比率可以根据不同的负载情况进行自适应调整。
比率制动式差动保护的优点包括响应速度快、精度高、适用性广等,使其成为电力系统保护中的重要手段。
然而,该保护方式也存在一些局限性,如对于大电流的跨越和复杂的电路拓扑结构的保护,可能需要使用其他保护方式来进行补充。
总之,比率制动式差动保护是一种基于比率差动电流变化来进行故障检测和保护的电力系统保护方式,其优点包括响应快、精度高和适用性广,但也存在一定的局限性。
比率制动式差动保护

变压器差动保护一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动);二:差动保护的定义由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述:1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高=220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KVA,I1’:流过变压器高压侧的一次电流;I”:流过变压器低压侧的一次电流;I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流;I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流;nh:高压侧电流互感器CT1变比;nl:低压侧电流互感器CT2变比;nB:变压器的变比;各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2”I1’/ I”= nh/ nl=1/ nB2、区内:CT1到CT2的范围之内;3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地)单相接地故障以及匝间、层间短路故障;四:差动的特性1、比率制动:如图二所示,为差动保护比率特性的曲线图:下面我们就以上图讲一下差动保护的比率特性:o:图二的坐标原点;f:差动保护的最小制动电流;d:差动保护的最小动作电流;p:比率制动斜线上的任一点;e:p点的纵坐标;b:p点的横坐标;动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时,由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此,图中阴影部分,即差动保护的动作区;制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区;比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。
变压器差动保护比率制动系数校验的程序

变压器差动保护比率制动系数校验的程序变压器差动保护比率制动系数校验的程序主要包含以下步骤:
1.获取变压器参数和保护装置的相关设置,包括变压器型号、额定容量、高
低压侧电流互感器变比、差动保护装置的制动特性曲线等。
2.计算差动保护的动作电流值,这是基于变压器高低压侧的电流值、变压器
变比和差动保护装置的制动特性曲线来确定的。
3.模拟变压器正常运行和异常运行状态下的电流情况,以验证差动保护装置
在不同情况下的动作性能。
4.校验差动保护装置的比率制动系数,检查其是否满足规程要求。
比率制动
系数是根据差动保护装置的动作电流值和变压器高低压侧的电流值计算得出的。
5.如果发现差动保护装置的比率制动系数不满足规程要求,需要对装置进行
调整或重新配置,以确保其性能符合要求。
总的来说,变压器差动保护比率制动系数校验的程序主要是为了确保变压器差动保护装置在不同运行状态下能够正确、可靠地动作,从而保障变压器的安全稳定运行。
这一过程需要综合考虑变压器参数、保护装置配置以及各种运行工况,通过模拟和计算来验证保护装置的性能,并对其进行必要的调整和优化。
主变差动保护比率制动系数的校验方法

深圳供电局
继电保护测试技术
三侧加量校验比率制动系数
1、题目要求 比率差动保护(高、中、低压侧试验,K=0.5)制动曲线测试,分别试验制动值为 0.5Ie、2.5Ie、4.5Ie三个点 主变参数: 220kV主变为三卷变,接线方式为Y12/Y12/△11,Se=240MVA,高压侧: Ue=230 kV,CT变比600/1;中压侧Ue=115 kV ,CT变比1200/1;低压侧: Ue=11.5 kV,CT变比6000/1。
折算为有名值: I1 2.3751 2.3750
I2 3.3131 3.3130 I3 5.737 2 11.47180
深圳供电局
6、实验步骤(状态序列)
状态1
实
I A 0.4750
验
IB 0.2630
仪
IC 0.909180
按键控制
保
差动电流略小于
护
动作门槛
状态4
实
I A 1.5750
深圳供电局
继电保护测试技术
计算差动动作电流临界值:Icd (4.5 0.5) 0.5 0.5 0.2 Icdqd 2.5Ie
a)计算0.95倍动作值: I1 0.95 2.5Ie 2.375Ie0
I2
2 4.5 2
2.375
3.313Ie0
I3
2
4.5 2
2.375
3 5.737Ie180
深圳供电局
继电保护测试技术
计算差动动作电流临界值:Icd (2.5 0.5) 0.5 0.5 0.2 Icdqd 1.5Ie
b)计算0.95倍动作值: I1 1.051.5Ie 1.425Ie0
2 2.5 1.425
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 比率制动差动保护特性
随着计算机技术在继电保护领域日益广泛的应用,比率制动特性的差动保护作为双圈及三圈变压器的
主保护具有动作可靠,实时数据采集、计算、比较、判断等较为方便简单等优点,得到用户的认可。
所谓比率制动特性差动保护简单说就是使差动电流定值随制动电流的增大而成某一比率的提高。
使制
动电流在不平衡电流较大的外部故障时有制动作用。
而在内部故障时,制动作用最小。
图1
图1中曲线1为差动回路的不平衡电流,它随着短路电流的增大而增大。
根据差动回路接线方法的不同,在整定时,通过调整不平衡比例系数使得计算机在实时计算时的Ibp最小。
曲线2是无制动时差动保护的整定电流,它是按躲过最大不平衡电流Ibpmax来整定的。
曲线3为变压器差动保护区内短路时的差电流,它随短路电流的增大而线性的增大。
曲线4为具有制动特性的差动继电器的差动保护特性。
在无制动时,曲线3与曲线2相交于B点,这时保护的不动作区为OB′,即保护区内短路时的短路电流必须大于OB′所代表的电流值时,保护才能动作。
在有制动时,曲线3与曲线4相交于A点,短路电流只要大于OA′所代表的电流值,保护即能动作。
OA′<OB′,这说明在同样的保护区内短路状态下,有制动特性的差动保护比无制动特性的差动保护灵敏度要高。
在实际的变压器差动保护装置中,其比率制动特性如下图2所示:
图2
图2中平行于横坐标的AB段称为无制动段,它是由启动电流和最小制动电流构成的,动作值不随制动电流变化而变化。
我们希望制动电流小于变压器额定电流时无制动作用,通常选取制动电流等于被保护变压器高压侧的额定电流的二次值。
即: Izd=Ie/nLH
图2中斜线的斜率为基波制动斜率,当区外故障时短路电流中含有大量生产非周期分量,制动Izdo增大,当动作电流Idzo大于启动电流时,制动电流和动作电流的交点D必落在制动区内。
当区内故障时,差电流即动作电流为全部短路电流,制动电流则为流过非电源侧的短路电流,数值较小,平行于纵、横轴的二直线交点必落在动作区内,差动保护可靠动作。
2 比率制动式差动保护的整定
在比率制动式差动保护的整定计算时,通常按以下原则选取:
Icdsd即差动速断电流
当变压器空载投入或变压器外部故障切除后电压恢复时,励磁涌流高达额定电流的6~8倍,当差动保护电流互感器选择合适时,变压器外部短路流过差动回路的不平衡电流小于变压器空载投入时的励磁涌流。
因此,在整定时可只考虑躲过变压器空载投入电网时励磁涌流。
在整定时可只考虑躲过变压器空载投入电网时励磁涌流,即:
Icdsd=(6~8)Isb/nLH
式中Isb——变压器的额定电流(基本侧);
nLH——变压器基本侧电流电流互感器的变流比。
Kph即平衡系数
用来对主变各侧因CT变比不同引起的误差进行校正,以变压器副边电流的二次值为基准,将变压器原边电流二次值乘以Kph来进行差流判断。
Kph=I2nL/I2nH
式中I2nL——流入保护装置低压侧二次电流;
I2nH——流入保护装置高压侧二次电流。
Icdqd差动启动电流
应躲过变压器最大负荷情况下的不平衡电流,并要保证变压器内部故障时有足够的灵敏度,一般为~倍的额定电流值。
即:
Icdqd=~
Izd最小制动电流
一般取变压器高压侧额定电流的二次值。
Izd=In/nLH
In——变压器高压侧额定电流;
nLH——变压器高压侧电流互感器变流比。
Kjzd 基波制动斜率(既比率制动系数),可按下式计算:
Kjzd=Kk(ktx×Fi+ΔU+
Kk——可靠系数,取~;
Ktx——电流互感器同型系数,取1。
Fi——电流互感器10%误差曲线。
满足误差取。
ΔU——变压器调压引起的相对误差,一般取相邻二档变压比的百分数。
Kxzd谐波制动系数
根据变压器涌流的大小及系统中二次谐波在基波中的含量来整定。
一般在10%~25%之间选取。
Kxzd=~
比率制动系数的选取为比率制动式差动保护动作可靠性的关键。
因不同容量、不同型号变压器的铁心,励磁特性也不同,故由Kk、Izd min等决定的差动特性不同,还要根据各自的运行经验及厂家设备说明书中的整定范围内来选项取。
⊙。