2016年10月学而思杯五年级数学解析.pdf
第一讲五年级学而思答案解析

第一讲 金字塔的影子
4 6 k 5 7 k 885 24 k 35k 885 59 k 885 k 15
5 2 k 4 3k 3 5k 91 10 k 12 k 15k 91 7 k 91 k 13
x 26 z 65
2 1 : 4:5 5 2 1 2 2 y, 5 14 5 , ; (2) 10 : 7 ; (3) 4 : 5 13 9
【例 4】 (难度等级 ※※※)
解下列方程 (1) x :111 99 : 37 (2) (2 x 3) : (4 x 5) 6 : 7 (3) (本题提高班、基础班选做)
第一讲 金字塔的影子
(3) 五年级一班的男生占一半, 五年级二班的男生占五分之二. 已知两个班男生人数相等, 那么一班和二班的总人数之比是________. 【答案】 (1)18,25,15,12.5, 【解析】 (1)略; (2)略; (3)设一班总人数为 x 人,二班总人数为 y 人,则可得: x 那么 x : y
【解析】 (1)
x :111 99 : 37 37 x 111 99 x 111 99 37 x 297
x 8 101 99 99 x 808 x 808 9
(2)
(2 x 3) : (4 x 5) 6 : 7 6(4 x 5) 7(2 x 3) 24 x 30 14 x 21 10 x 51 x 5.1 x y 78
(2)求比值
72 : 24 ________ 2.015 : 4.03 ________ 135 : 60 ________
6 8 : ________ 5 7
31 32 : ________ 32 33
学而思第十届综测素质测评五年级数学考试答案版

绝密★启用前第十届学而思综合考试时间:90分钟考生须知1.请考生务必认真2.请使用蓝色或黑色3.请将答案写在答题在此特别感谢:成康王申,张侠,一、填空题(每题5分,共50分)1.计算:(1+2+3+4+5+6+7+8+7+6+5【分析】考点:计算;原式28128=÷=2.一个三位数除以11余1,除以10【分析】考点:数论同余;根据题意,3.如图,长方形ABCD 上有三个点面积为________.【分析】考点:几何图形;割补法,面积4.十个足球队进行单循环比赛,每两个结束后,十个球队的总得分最多是【分析】考点:体育比赛;共要比赛453135⨯=分.5.如下左图,将110 这10个自然数质数.【分析】考点:数阵图;10的两侧只能是能是4和6(如下图,填出一组即可思综合素质测评—五年级数学(答案版考试科目:五年级数学总分:真填写试卷上的考生信息以方便正常通知;或黑色签字笔或者钢笔作答;在答题纸上,在试卷上作答无效;考试结束后需上交答题纸。
成康达,顾伯特,李行,秦祖梁,侍春雷,苏昊,,赵竞择,郑巍等老师为本卷所提供的试题!+6+5+4+3+2+1)128=÷________.1280.52=0也余1.这个数最小是________.,该数最小应为11110111+⨯=.,,E F G ,已知3DE AF ==,4CG =,BC EG =面积为58432232(45)52⨯-⨯÷-⨯÷-+⨯÷每两个队只比一场,规定胜者得3分,负者得0分,平局各多是________分.比赛109245⨯÷=场,若每场都决出胜负,则总得分然数填入圈中,其中1已经填好,要求使得任意相邻两只能是1和3,9的两侧只能是2和4,8的两侧只能是即可).答案版):100分。
,5G =,则三角形EFG 的8.5=平局各得1分.所有比赛得分就最多,最多得分两数之和都是小于16的能是3和5,7的两侧只或6.如上右图,这是一个333⨯⨯的立体的共可以构成________个三角形.【分析】考点:图形计数;我们知道,要构成一个三角形需要3个顶从图中33327⨯⨯=个点中任选3个点,但是如果三点共线的情况就不能构成三角从每个方向(上下、左右、前后)看去面对角线有23318⨯⨯=条;体对角线有4条;这样三点共线有2718449++=条.这些点“·”为顶点,一共可以构成292547.学学、思思、乐乐、康康四个大胃王要保证大家都能吃饱,大饼共有____【分析】考点:插板计数;每人先分每个人至少1张,插板法,共有36C =8.从1至30这30个自然数中取出若干个________个数.【分析】考点:抽屉原理;根据自然数被4个,余4共4个,余5共4个,余共和余6的数不能一起取;同理,余么最多可以取前3类的所有数字以及第或或立体的点阵(每条连线上相邻两个点的距离相等),以这个顶点;,有3272726252925321C ⨯⨯==⨯⨯种选法.成三角形,看去,都有9条平行的连线,共9327⨯=条;25492876-=个三角形.胃王喜欢吃大饼,现共有39张大饼,每人至少要吃________种分配方案.8张大饼,还剩39847-⨯=张大饼,问题转化为65420321⨯⨯=⨯⨯种.若干个数,使其中任意两个数的和都不能被7整除.请问然数被7除的余数,把130 分为7类,余1的有5个,64个,余0的有4个.为了让任意两个数的和不为2和余5的,余3和余4的不能一起取.而能被7整除的第7组的1个数字,共554115+++=个.以这些点“·”为顶点,一9张大饼才能吃饱.若为7张大饼分给四个人,请问:最多能取出,余2有5个,余3共不为7的倍数,那么余1整除的数只能取一个.那9.若“6433学而思”所代表的七位数是【分析】考点:数的整除;201331161=⨯⨯;如果一个数是2013的倍数,那么这个数一∵2013|6433学而思;∴33|6433学而思;33|6433106+++=+++学而思学而∵1063337÷= ,“学+而+思”最小∴33726=998++=-=+学而思经过试算,64839392013÷=649383920133227÷= 所以只有998=⎧⎪=⎨⎪=⎩学而思符合,即学而思10.一个101010⨯⨯的正方体由1000个小称一个1110⨯⨯的长方体为一个“101010⨯⨯的正方体中每个“条子写的正整数是3,现在我们把小正方体的总和是________.【分析】考点:容斥原理;20110⨯二、解答题(每题10分,共50分)11.以下小数按照一定规律排列:0.10.100,…,0.299,0.300,⑴这串数列的前9个数的和是多少⑵这串数列的前9个数的乘积化成最点后有多少位?【分析】考点:小数与数论;⑴这串数列的前9个数的和0.10.2+()0.100.110.990.100.99+++=+ 前100个数的和是()0.10.20.90++++ ⑵9514÷= ;129⨯⨯⨯ 的乘积中有1个因数5;129⨯⨯⨯ 的乘积的末尾有1个0;这串数列的前9个数的乘积化成最简小数300560÷=,60512÷=,125÷= 12300⨯⨯⨯ 的乘积中有60122++12300⨯⨯⨯ 的乘积的末尾有74个1~300一共有919022013792⨯+⨯+⨯前300个数的乘积化成最简小数,小数点数是2013的倍数,那么“学而思”所代表的三位数是_____个数一定是31133⨯=的倍数;思;最小是0000++=,最大是99927++=;+;322166 ,888,649393820133226÷=;998=.00个小正方体拼接而成,在每一个小正方体内部都填有条子”,我们称一个11010⨯⨯的长方体为一个“面子”中的数之和都是201.对于该正方体中的某个小正方正方体A 所在的“面子”全部去掉.那么余下的所有小正0102011032013314670⨯-⨯⨯+⨯-=.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.301,….请问:多少?前100个数的和是多少?化成最简小数,小数点后有多少位?前300个数的乘积化()0.90.10.992 4.5++=+⨯÷= .90249.05⨯÷=;()0.100.110.990.100 4.549.050.1++++=++ 简小数,小数点后918-=位.22;74=个因数5;0;=个数字;小数点后有79274718-=位.________.填有一个正整数.我们子”.现在已知这个小正方体A ,已知A 中填有小正方体里面的正整数0.10,0.11,…,0.99,乘积化成最简小数,小数53.65=.12.甲、乙两人骑自行车从环形公路上同一钟.如果第一次相遇时甲骑了1440【分析】考点:行程问题;因为()24006400/min V V m +=÷=甲乙,13.一个露天水池底部有若干同样大小的果打开24根进水管,5分钟能注满水多少分钟能将水池注满?【分析】考点:牛吃草问题;设1根进水管池容量为24585160⨯+⨯=,如果打开14.如图,长方形ABCD 的边AD 上有一于点N ,在AE 上取点G ,连接F 求阴影部分的面积.【分析】考点:等积变形;由割补法等积15.现有红、白、黑3种颜色的珠子足够多转或翻转后若相同,则看作同一种项【分析】考点:分类计数;进行分类讨论:1)1种颜色:3种;2)2种颜色:3618⨯=种;3)3种颜色(共18种):1红1白3黑(2红1白2黑(4种);综上:共有3181839++=种.上同一地点同时出发,背向而行.这条公路长2400米440米.问:乙骑一圈需要多少分钟?()240010240/min V m =÷=甲,所以1440t =相遇所以()400-240160/min V m ==乙,则乙骑行一圈需要大小的进水管.这天蓄水时恰好赶上下雨,每分钟注入水池注满水池;如果打开12根进水管,8分钟能注满水池;如果进水管1分钟进水1份,则雨水的注水速度为(24512⨯打开8根进水管160(88)10÷+=分钟能将水池注满.上有一点E ,BC 上有一点F ,连接,BE AF 交于点,BG FG ,在DE 上取点H 连接,CH FH ,若ABM S c ∆法等积变形得2235S cm =+=阴.足够多,以这些为原料做成有5颗珠子的项链,可做几种一种项链)(2种);1红2白2黑(4种);1红3白1黑(种2红2白1黑(4种);3红1白1黑(2种)0米,甲骑一圈需要10分()2406min ÷=,又因为需要()240016015min ÷=。
2016年10月学而思杯五年级数学样卷解析

数学样卷
考试时间:90 分钟 满分:150 分
第Ⅰ卷(填空题
一、 填空题 A(每题 5 分,共 50 分)
共 90 分)
1、 如下图所示,有 3 条对称轴的图形有__________个.
【考点】轴对称图形,几何 【难度】☆ 【答案】2 【分析】第一个图和第三个图都有 3 条对称轴,第二个图有 4 条对称轴.
【答案】 2009
4、 如下图,正方形 ABCD 的面积是 16,点 F 是 BC 上任意一点,点 E 是 DF 中点,则阴影 部分面积为__________.
A
B
F E D
【考点】几何,一半模型 【难度】☆☆ 【答案】4 【分析】三角形 ADF 的面积是正方形 ABCD 面积的一半,所以 SADF 16
1 1 是 DF 的中点,所以 S阴影 = SADF = 8=4 . 2 2
ቤተ መጻሕፍቲ ባይዱ
C
1 8 ,又因为 E 2
5、今天是 2016 年 10 月 7 日,如果要使八位数 2016107□ 恰好是 9 的倍数,那么 □ 内的数 应该填__________. 【考点】数论,整除特征 【难度】☆☆ 【答案】1 【分析】设 □ 填入 a,则八位数 2016107a 的数字和是 2 1 6 1 7 a=17 a
7、 图中有_________个正方形.
【考点】简单的几何计数 【难度】☆☆☆ 【答案】 27 【分析】5 5 的正方形 1 个;4 4 的正方形 4 个;3 3 的正方形 5 个; 2 2 的正方形 4 个; 1 1 的正方形 13 个.共 27 个.
8、一个三角形三条边的长度都是整数,如果它的周长是 16,那么,这三条边乘积的最大值 是_________. 【考点】组合,最值 【难度】☆☆ 【答案】150 【分析】设三条边分别为 a、b、c,则有 a b c 16 ,由和一定差小积大可知,当 a、b、 c 分别为 5、5、6 时, a b c 5 5 6 150 最大.
2016年10月学而思杯六年级数学试卷.pdf

2
二、 填空题(共 5 道小题,每题 8 分,共 40 分) 11. 如下图,正方形 ABCD 的面积是 40 cm2 ,E 是 AD 上的中点,F 是 CE 上的中点,
AG BF .如果 BF 5cm ,那么, AG __________ cm .
A
E
D
F G B C
12. 五位数 abcde 各位数字互不相同,且能被 11 整除,其中三位数 abc 是 9 的倍数,三位 数 cde 是 8 的倍数,那么,五位数 abcde 的最大值是__________.
4
五、 解答题(10 分) 18. 如图,三角形 ABC 的面积是 30,D、E 是 BC 上的三等分点,G、F 分别是 AB、AC 上的中点,请求出:
A
G M B
(1)三角形 ABD 的面积; (3 分)
H
O
J N E
F
D
C
(2)三角形 OBC 的面积; (3 分)
(3)五边形 OMDEN 的面积. (4 分)
__________.
4.
如下图,扇形 AOB 与扇形 DOC 的圆心角均为 90 度,且 OA : OD 1: 2 ,如果空白部 分的面积是 300 cm2 ,那么,阴影部分的面积是__________ cm2 .
D A
O
B
C
1
5.
从 1 开始的自然数按照如图所示的规律排列: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 那么,第 5 行第 3 个数是__________.
10 x
2
10 x 208 ,整理可得: 2 x 2 200 208 ,解得 x 2 ,所以这两个数分
学而思五年级计算拓展题目+解析

第7天
挑战时间 ______ 分钟 错 ______ 题 ★青铜新人★
7.8 + 2.3 = _________ 1.49 _ 1 = _________
5 × 0.8 = _________
0.3 × 0.078 = _________
35.92 + 1.357 = _________ 60 _ 13.46 = _________ 0.04 × 9 = _________
0.98 × 0.07 = _________
★★黄金高手★★
0.5 × 0.725 = _________ 0.35 × 0.03 = _________ 0.8 × 0.79 = _________ 0.392 ÷ 0.8 = _________
0.45 × 0.54 = _________ 0.08 × 0.09 = _________ 0.93 × 0.92 = _________ 0.51 ÷ 0.85 = _________
★★★王者大神★★★
4.9 + 5.9 _ 3.992 = _________
19.7 + 0.56 × 3.25 = _________
0.36 ÷ 0.72 × 2 = _________
解方程: x + 0.9 =
4.9
x = _________
27.4 _ 2.96 _ 5.004 = _________ 0.48 × 2.55 _ 0.33 = _________ 0.0943 ÷ 0.23 × 6 = _________ 解方程: 9 × x = 306
0.2 × 0.019 = _________
27.1 + 4.226 = _________ 65.99 _ 18.06 = _________ 0.61 × 9 = _________
学而思五年级数学教材

学而思五年级数学教材,小班上课的教材第1讲平均数专题简析把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的输就是平均数。
如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数例1某3个数的平均数是2,如果把其中一个数改为4,平均数就变成了3,被改的数原来是多少?分析解答:原来三个数的和是2×3=6,后来个数的和是3×3=9,9比6多出了3,是因为把那个数改成了4,因此,原来的数应该是4-3=1。
3×3-2×3=34-3=1答:被改的数原来是1。
随堂练习:1、已知九个数的平均数是72 ,去掉一个数后,余下数的平均数是78,去掉的数是多少?2、有五个数,平均数是9,如果把其中的一个数改为1,那么这五个数的平均数为8。
这个改动的数原来是多少?例2把五个数从小到大排列,其平均数时38,前三个数的平均数是27,后三个数的平均数是48,中间一个数是多少?分析解答:先求五个数的和:38×5=190。
在秋初前三个数的和:27×3=81,后三个数的和:48×3=144。
用前三个数的和加上后三个数的和,这样,中间的那个书就算了两次,必然比190多,而多出的部分就是所求的中间的一个数。
27×3+48×3-38×5=35答:中间一个数是35。
随堂练习:1、甲、乙、丙三人的平均年龄为22岁,如果甲乙的平均年龄是18岁,乙丙的平均年龄是25岁,那么乙的年龄是多少岁?2、十名参赛者平均分是82分,前6人的平均分是83分,后6人的平均分是80分,那么第5人和第6人的平均分是多少分?拓展训练1、化肥厂在一星期前3天平均每天生产化肥250吨,后4天共生产化肥1126吨,这个星期平均每天生产化肥多少吨?2、修一条渠,第一天修3小时,平均每小时修4.5千米;第二天修5小时,平均每小时修5.3千米,这两天平均每天修多少千米?平均每小时修多少千米?3、三个小组采集树种,第一小组10人,一天采集树种180千克;第二小组12人,一天采集树种240千克;第三小组13人,一天采集树种280千克.平均每人采集树种多少千克?4、张红前三次数学测验平均成绩是92分,第四次得了96分.他四次的平均成绩是多少分?5、下面是某小学五(1)中队第一小队向灾区捐款的情况统计表,请你算出平均每人捐多少元?6、兴华小学四年级有3个班,一、二班的平均人数是55人,二、三班的平均人数是56人,一、三班的平均人数是52人,问这三个班各有多少人?7、 15个同学分连环画,平均每人分到7本,后又来了若干个同学,大家重新分配,平均每人分到5本,问又来了几名同学?8、甲、乙两地相距161千米。
2022-2023学年小学五年级奥数(全国通用)测评卷02《等差数列》(解析版)

【五年级奥数举一反三—全国通用】测评卷02《等差数列》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共6小题,满分12分,每小题2分)1.(2分)(2011•其他模拟)有20个数,第一个数是9,以后每一个数都比前一个数大2,第20个数是()A.47 B.49 C.51 D.53【分析】由于第一个数是9,从第二个数起,每一个数都比前一个数大2,所以第20个数比9大19个2.【解答】解:9+(20﹣1)×2=9+19×2=9+38=47.答:第20个数是47.故选:A.2.(2分)下面一列数5、8、11、14、…、第()个数为2015.A.667 B.668 C.669 D.671【分析】此题首项是5,末项是2015,公差是3,求第几个数为2015,即求项数,根据等差数列的通项公式进行求解即可.【解答】解:首项是5,末项是2015,公差是3,(2015﹣5)÷3+1=2010÷3+1=671答:第671个数为2015.故选:D.3.(2分)(2015•创新杯)从小到大排列99个数,每两个相邻数的差都相等,第7个与第93个的和为262,则这列数的第50个数为()A.50 B.51 C.120 D.131【分析】因为一共有99个,所以正中间的一个数是50,这个数就是这个数列之和的平均数.第93个数是倒数第7个数,所以此题常采用画图的方法解决.【解答】解:262÷2=131故选:D.4.(2分)(2014•迎春杯)一个12项的等差数列,公差是2,且前8项的和等于后4项的和,那么,这个数列的第二项是()A.7 B.9 C.11 D.13【分析】找出前8项数字和与后4项数字和相等,列出关系式,求出其中一项即可.【解答】解:根据题意后4项和前8项数字和相等可知,这个数列是递增数列,(a1+a8)×8÷2=(a9+a12)×4÷2,因为a8=a1+14,a9=a1+16,a12=a1+22,所以代入得(a1+a1+14)×8÷2=(a1+16+a1+22)×4÷2,解得a1=5,所以a2=a1+2=7.故选:A.5.(2分)5个连续自然数的和是315,那么紧接在这5个自然数后面的5个连续自然数的和是()A.360 B.340 C.350 D.无法求出【分析】这些自然数是等差数列,紧接在这5个自然数后面的5个连续自然数的和比315多5×5,然后进一步解答即可.【解答】解:315+5×5=315+25=340故选:B.6.(2分)(2011•其他模拟)有10只盒子,44只羽毛球.能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球不相等?()A.能B.不能C.不确定【分析】这是一个等差数列的应用题,解题关键是由已知数列所有项的个数按最少量算出它们的总和,然后与题意中给的羽毛球的总数44相比较,如果相等,就说明能够将44只羽毛球放到10个盒子中去,且使各盒子里的羽毛球数不相等;否则就不能.【解答】解:由题意,要使10个盒子中羽毛球的数量不相等,最少的放法是:0,1,2…9.计算总和:0+1+2+…+9=9×5=45,因为45>44,所以原题不能.答:不能使各个盒子里的羽毛球数不相等.故选:B.二.填空题(共12小题,满分31分)7.(2分)(2017•走美杯)一箱苹果60个,第一天大家一起吃了17个,以后我每天吃1个,过了几天发现只剩下16个,苹果怎么少这么快?有人告诉我,小张每天都去偷偷地拿2个.请你算一算:这几天小张共拿了18个苹果.【分析】可以先用总数减去大家吃的苹果数和剩下的苹果数,再除以我每天吃的苹果数和小张偷的苹果数之和,就能求得天数,就能知道小张偷了几天,不难求得小张偷拿了多少苹果.【解答】解:根据分析,先求得小张偷拿苹果的天数,故有:(60﹣17﹣16)÷(2+1)=9(天),小张共偷了:9×2=18个.故答案是:18.8.(2分)(2016•学而思杯)表中每行,每列分别从左至右、从上至下构成等差数列,那么m×n=300.4 89 1512 nm25【分析】首先,确定第一行公差,填全第一行;从第二列确定公差,确定m;同样从第四列,确定n.【解答】解:第一行公差为(8﹣4)÷2=2,第一行数字为:4、6、8、10;确定第二列确定公差为12﹣9=3,确定m=12+3=15;同样确定n=20.m×n=300即:填3009.(2分)(2018•陈省身杯)小明去麦当当打暑期工,连续工作了5天后共挣了180元,如果这5天里他每一天所挣的钱都比前一天多6元.那么第1天小明挣了24元.【分析】根据等差数列的规律,第三天小明挣了180÷5=36元,公差是6,所以第一天小明挣了36﹣6×2=24元,据此解答即可.【解答】解:180÷5=36(元)36﹣6×2=24(元)故答案为:24.10.(2分)(2017•其他杯赛)小明希望通过做一些数学题目来巩固知识,他每天都会比前一天多做2道题目.如果小明第一天做了2道题目,那么前七天他共做了56道题目.【分析】首项是2,末项是2+(7﹣1)×2=14,然后利用等差数列求和公式:(首项+末项)×项数÷2求出结果.【解答】解:2+(7﹣1)×2=14(道)(2+14)×7÷2=56(道)故填56.11.(2分)(2017•小机灵杯)从1,2,3,4,…,50中取5个不同的数,使这5个数构成一个等差数列,那么,可以得到不同的等差数列的个数为576.【分析】根据题意,分析当得到的等差数列公差为1、2、3时,可以得到的等差数列的数目,依此类推,发现其数目的变化规律,进而根据等差数列的前n项公式计算可得答案.【解答】解:根据题意,当得到的等差数列公差为1时,有1、2、3、4、5,…,46、47、48、49、50,共46种情况;当其公差为2时,有1、3、5、7、9,…,42、44、46、48、50,共42种情况;…当其公差为12时,有1、13、25、37、49,2、14、26、38、50,共2种情况;综上所述,共有2+6+…+46==288种,考虑到等差数列也可以是从大到小,所以共有288×2=576种不同的等差数列,故答案为576.12.(2017•春蕾杯)九只小猴子依次去摘桃子,每一只都比前一只多摘2个桃子,摘得最多的一只猴子摘了25个桃子,那么这些猴子一共摘了153个桃子.【分析】九只小猴子摘桃子数,构成一个等差数列,公差是2,末项是25,那么首项是25﹣2×(9﹣1)=9,然后根据高斯求和公式解答即可.【解答】解:25﹣2×(9﹣1)=9(个)(9+25)×9÷2=153(个)故答案为:153.13.(2016•迎春杯)帅帅背了7天单词,从第2天开始每天都比前一天多背1个单词,且前4天所背单词个数的和等于后3天所背单词个数的和,那么帅帅这7天一共背了单词84个.【分析】首先表示出这7天的数量关系,然后根据前4天等于后3天的数量列出等式,求出每天的数量相加即可.【解答】解:依题意可知:设帅帅背单词的数量为:a,a+1,a+2,a+3,a+4,a+5,a+6共7天a+a+1+a+2+a+3=a+4+a+5+a+6解:a=9.共背9+10+11+12+13+14+15=84故答案为:8414.(2015•走美杯)梯形的上底、高、下底依次构成一个等差数列,其中高是12,那么梯形的面积是144.【分析】首先根据梯形的上底、高、下底依次构成一个等差数列,可得:上底+下底=高×2,据此求出梯形的上底和下底的和是多少;然后根据:梯形的面积=(上底+下底)×高÷2,求出梯形的面积是多少即可.【解答】解:(12×2)×12÷2=24×12÷2=288÷2=144答:梯形的面积是144.故答案为:144.15.(2018•迎春杯)四位同学一起讨论一个由无数个自然数组成的等差数列:小叶说:这个等差数列的第一项是个两位数.小刚说:数列中不大于215的数有20多个.小王说:数列的公差小于5.小红说:数列前两项的平均数是102.这四位同学的话中只有一句是错的,那么这个等差数列的第100项是496.【分析】如果小叶和小红说得对,那么前两项的和是102×2=204,根据小叶说的,可以确定第一个数最大是99,那第二个数就是105,说明公差至少是105﹣99=6,与小王说的相矛盾,因此可以判断出小叶、小红和小王三人之中肯定有一个是错的,那么小刚说的话肯定是对的.根据小刚说的,那说明公差一定不大于215÷20≈10,假设小王说的是错的,则说明公差大于或等于6,根据小叶和小红说的话可以确定公差是一个偶数,因此接下来验证公差是6、8、10的情况.如果公差是6,则第1项是99,第2项是105,那么第21项就是99+20×6=219,大于215,所以公差不是6;如果公差是8,那么第1项就是98,第21项就是98+20×8>215,所以公差也不是8,同样的道理公差也不是10,由此可以判断出小王说的话是对的.那只有小叶和小红两人有一个说错了.根据公差小于5,说明公差最大是4,那第一个数最大是215﹣28×4=103,最小是215﹣28×4﹣3=100,说明小叶说错了;同样根据公差是3、2、1,也能得出第一个数是三位数.根据前两项的和的平均数是102,说明这两个数可能是100和104,也可能是101和103,如果是100和104,那么第100项就是100+99×4=496;如果前两项是101和103,那么215之前就不止20多个数,故不对.【解答】解:根据上面的推理可以知道是小叶说错了.102×2=100+104=101+103如果公差是104﹣100=4,则第100项是100+99×4=496;如果公差是103﹣101=2,则第30项是101+29×2=159<215,与小刚说的话矛盾.故答案为:496.16.(2016•创新杯)已知数列a1,a2,…,a n为一等差数列,平均数为71,把相邻的4个数相加,其和为新的一列数,这新一列数的总和为28400,则n=103.【分析】由题意,a1+a2+…+a n﹣1+a n=71n①,a1+2a2+3a3+4a4+4a5+…+4a n﹣4+4a n﹣3+3a n﹣2+﹣2a n﹣1+a n=28400②,②﹣①可以得到a2+2a3+3a4+3a5+…+3a n﹣4+3a n﹣3+2a n﹣2+a n﹣1=28400﹣71n③,依次利用①式进行变换最后得出a4+a5+…+a n﹣4+a n﹣3=28400﹣71(3n﹣6)⑤,利用等差数列的求和公式,即可得出结论.【解答】解:由题意,a1+a2+…+a n﹣1+a n=71n①,a1+2a2+3a3+4a4+4a5+…+4a n﹣4+4a n﹣3+3a n﹣2+﹣2a n﹣1+a n=28400②,②﹣①可得a2+2a3+3a4+3a5+…+3a n﹣4+3a n﹣3+2a n﹣2+a n﹣1=28400﹣71n③,a2+a3+…+a n﹣2+a n﹣1=71(n﹣2)④,③﹣④可得a3+2a4+2a5+…+2a n﹣4+2a n﹣3+a n﹣2=28400﹣71(2n﹣2)⑤,a3+a4+…+a n﹣3+a n﹣2=71(n﹣4)④,⑤﹣④可得a4+a5+…+a n﹣4+a n﹣3=28400﹣71(3n﹣6)⑤,(n﹣3﹣4+1)×71=28400﹣71(3n﹣6),解得n=103,故答案为:103.17.(2014•其他模拟)艾丽斯工作5天后,共挣了65元,其中每一天所挣的都比前一天多2元.她第一天挣了9元.【分析】每天的钱数构成一个公差为“2”的等差数列,首项是要求的数,项数为5.因此本题根据高斯求和公式“S n=na1+n(n﹣1)÷2”进行计算即可:【解答】解:设她第一天挣了x元,5x+5×(5﹣1)×2÷2=655x+20=655x=45x=9故答案为:9.18.一个电影院的第一排有15个座位,以后每排都比前排多2个座位,最后一排有53个座位,这个电影院共有20排座位.【分析】把座位数可以看作是一个等差数列:首项是15,末项是53,公差是2,求这个电影院共有几排座位,就相当于等差数列的项数,列式是(53﹣15)÷2+1=20,然后解答即可求出一共有的排数.【解答】解:根据分析可得,(53﹣15)÷2+1,=38÷2+1,=20(排),答:这个电影院共有20排座位.故答案为:20.三.计算题(共1小题,满分3分,每小题3分)19.92+90+88+ (2)【分析】根据等差数列通项公式:项数=(末项﹣首项)÷公差+1,(首数+尾数)×项数÷2=和解答即可.【解答】解:(2+92)×[(92﹣2)÷2+1]÷2=94×46÷2=2162四.解答题(共12小题,满分54分)20.(4分)(2012•其他模拟)把一堆苹果分给8个朋友,要使每个人都能拿到苹果,而且每个人拿到苹果个数都不同的话,这堆苹果至少应该有几个?【分析】由题意可知,要使8个人中的每个人都能拿到苹果,而且每个人拿到苹果个数都不同,则分到苹果最少的应为1个,而其他人至少分别分到2,3…8个苹果.那么这堆苹果应有的个数为:1+2+3+…+8.计算这个公差为1的等差数列的和即可.【解答】解:1+2+3+4+5+6+7+8=(1+8)×8÷2=9×8÷2=72÷2=36(个).答:这堆苹果至少应有36个.21.(4分)小张看一本故事书,第一天看了25页,以后每天比前一天多看5页,最后一天看55页,刚好看完,这本故事书一共有多少页?【分析】根据题意,可得小红每天看故事书的页数是一个等差数列,数列的首项是25,末项是55,公差是5,所以求出等差数列的项数,即可求出这本故事书共多少页.【解答】解:(55﹣25)÷5+1=30÷5+1=7(25+55)×7÷2=80×7÷2=280(页)答:这本故事书一共有280页.22.(4分)已知一个等差数列第9项等于131,第10项等于137,这个数列的第1项是多少?第19项是多少?【分析】由题可知,本题是一个公差为137﹣131=6的等差数列,因此本题根据高斯求和的有关公式解答即可:末项=首项+(项数﹣1)×公差,首项=末项﹣(项数﹣1)×公差.【解答】解:公差:137﹣131=6第1项:131﹣(9﹣1)×6=131﹣48=83第19项:83+(19﹣1)×6=83+18×6=83+108=191答:这个数列的第1项是83,第19项是191.23.(4分)某电影院有26排座位,后一排比前一排多1个座位,最后一排有45个座位,求这个影院一共有多少个座位?【分析】因后一排在比前一排多1个座位,可看作是看作一个等差数列,末项是45,所以首项是45﹣26+1=20,本题可根据高斯求和公式解答即可.【解答】解:45﹣26+1=20(个)(20+45)×26÷2=845(个)答:这个影院一共有845个座位.24.(4分)有一堆粗细均匀的圆木,最上面一层有6根,每向下一层增加一根,如果最下面一层有98根,那么共堆了多少层?【分析】每层的根数构成了一个等差数列,首项是6,公差是1,末项是98,求项数,根据“项数=(末项﹣首项)÷公差+1”解答即可.【解答】解:(98﹣6)÷1+1=92+1=93(层)答:共堆了93层.25.(4分)求1,5,9,13,…,这个等差数列的第30项.【分析】首先求出1,5,9,13,…,这个等差数列的公差,然后根据:a n=a1+(n﹣1)d(a1、a n、d 分别是等差数列的第1项、第n项、公差),求出这个等差数列的第30项即可.【解答】解:1+(30﹣1)×(5﹣1)=1+29×4=1+116=117答:这个等差数列的第30项是117.26.(5分)(2012•其他杯赛)把90米长的一条绳子分成三段,要使后一段都比前一段多3米.三段绳子的长度各是多少?【分析】设第一段绳子长x米,那么第二段,第三段绳子的长度分别是:(x+3)米,(x+3+3)米,根据三段绳子的长度是90米列方程,依据等式的性质即可解答.【解答】解:设第一段绳子长x米,x+(x+3)+(x+3+3)=90,3x+9=90,3x+9﹣9=90﹣9,3x=81,3x÷3=81÷3,x=27,27+3=30(米),27+3+3,=30+3,=33(米),答:第一段绳子长27米,第二段绳子长30米,第三段绳子长33米.27.(5分)(2009•两岸四地)张师傅做一批零件,第一天做了20个,以后每天都比前一天多做2个,第30天做了78个,正好做完.这批零件共有几个?【分析】第一天20个,根据“以后每天都比前一天多做2个”,求得第二天是22个,第三天为24个,第30天为78个,设s=20+22+24+…+76+78 ①,则s=78+76+74+…+24+22+20 ②,①+②得,2s=(20+22+24+…+76+78)+(78+76+74+…+24+22+20 )=(20+78)+(22+76)+…+(76+22)+(78+20)=98×30,求得问题的答案.【解答】解:因为第一天20个,第二天是22个,第三天为24个,•,则第30天为78个,设s=20+22+24+…+76+78 ①,则s=78+76+74+…+24+22+20 ②,①+②得,2s=(20+22+24+…+76+78)+(78+76+74+…+24+22+20),=(20+78)+(22+76)+…+(76+22)+(78+20),=98×30,=2940,所以s=1470.答:这批零件共有1470个.28.(5分)(2016•学而思杯)若一个三位数的三个数字a、b、c按从小到大排列后,怡好可组成一个等差数列(公差可以为0),这我们将这样的三位数叫做“和谐数”,如375,102,….(1)100至199之间,有多少个“和谐数”?(2)总共有多少个“和谐数”?(3)将所有的“和谐数”排成一列,546排在第几位?【分析】将公差分类,求出相应的“和谐数”,即可得出结论.【解答】解:(1)公差为0:111;公差为1:102,120,123,132;公差为2:135,153;公差为3:147,174;公差为4:159,195,所以100至199之间,有11个“和谐数”;(2)公差为0:111,222, (999)公差为1,(0,1,2),(1,2,3),…,(7,8,9),共8组,第1组有四种情况,其它组有6种情况,4+7×6=46个;公差为2,(0,2,4),(1,3,5),…,(5,7,9),共6组,第1组有四种情况,其它组有6种情况,4+5×6=34个;公差为3,(0,3,6),(1,4,7),(2,5,8),(3,6,9),共4组,第1组有四种情况,其它组有6种情况,4+3×6=22个;公差为4,(0,4,8),(1,5,9),共2组,第1组有四种情况,其它组有6种情况,4+1×6=10个;总共有9+46+34+22+10=121个“和谐数”;(3)将所有的“和谐数”排成一列,100~199:11个;200~299:公差为0:222;公差为1:201,210,213,231,234,243;公差为2:204,240,246,264;公差为3:258,285,共13个;300~399:公差为0:333;公差为1:312,321,324,342,345,354;公差为2:315,351,357,375;公差为3:306,360,369,396,共15个;400~499:公差为0:444;公差为1:423,432,435,453,456,465;公差为2:402,420,426,462,468,486;公差为3:417,471;公差为4:408,480,共17个;500~599:公差为0:555;公差为1:534,543,546,564,567,576;公差为2:513,531,537,573,579,597;公差为3:528,582;公差为4:519,591,共17个;11+13+15+17+8=64,所以546排在第64位.29.(5分)从一列数1,5,9,13,…,93,97中,任取14个数.证明:其中必有两个数的和等于102.【分析】首先根据题意可知这列数是一组公差是4等差数列,根据项数=(末项﹣首项)÷公差+1,求出这组等差数列一共有几项,据此分析解答即可.【解答】解:(97﹣1)÷4+1=25(个)将这25个组分成13组:{1},{5,97},{9,93},{13,89},…,{45,57},{49,53}.在这25个数中任取14个数来,必有二数属于上述13组中的同一组,故这一组二数之和是102.30.(5分)一个项数是偶数的等差数列,奇数项和偶数项的和分别是240和300.若最后一项超过第一项105,那么,该等差数列有多少项?【分析】设给出的数列有2n项,由偶数项的和减去奇数项的和等于n倍的公差,再根据最后一项比第一项多105得到一个关于项数和公差的式子,联立后可求项数.【解答】解:假设数列有2n项,公差为d,因为奇数项之和与偶数项之和分别是240与300所以S偶﹣S奇=300﹣240=nd,即nd=60①.又因为a2n﹣a1=105即a1+(2n﹣1)d﹣a1=105所以(2n﹣1)d=105②.联立①②得:n=4.则这个数列一共有2n项,即8项.答:该等差数列有8项.31.(5分)一堆电线杆,共有5层,第一层有8根,下面每层比上层多一根,这堆电线杆一共有多少根?【分析】根据题意,把第一层的根数看作梯形的上底,最下层的根数看作梯形的下底,层数看作梯形的高,由梯形的面积公式就可以求出结果.【解答】解:根据题意可得最下面的一层的根数是:8+5﹣1=12(根),由梯形的面积公式可得:这垛电线杆的总数为:(12+8)×5÷2=100÷2=50(根);答:这一堆电线杆共有50根.。
学而思杯五年级数学

隔是 4 分钟. 【答案】4 分钟.
15. 在 5 5 的棋盘的左下角的格子中放置一个“国王”,规定“国王”每一步只能向右、向上或向右上方走一格,那
么走到棋盘右上角的格子的方法一共有________种. 【解析】标数法,如图. 1 9 7 5 3 1 41 25 13 5 1 129 63 25 7 1 321 129 41 9 1
6.
二、 填空题Ⅱ(每题 6 分,共 30 分,将答案填在下面的空格处) 7. 图中有________个三角形.
2.
答 题
10 个棱长为 2 的小立方体堆成如下图形,表面积为________.
禁 止
线 内
年级____________________
密
封
【解析】前后各 10 个小正方形,左右各 4 个正方形,上下个 4 个正方形,表面积相当于 36 个小正方形,每个小 正方形的面积是 4,表面积共 144. 【答案】144.
解析边长为1的三角形有16个边长为2的三角形有7个边长为3的三角形有3个边长为4的三角形有一个三位数的2倍它的数字和是原来三位数数字和的一半这样的三位数最小是
绝密※启用前 2015 年学而思综合能力测评(深圳) 五年级 数学
座位号____________________
【解析】倒数第二行的 6 说明第一行的空格可以是 1,可以是 6,枚举尝试, 31 65=2015 或 36 67=2412 . 【答案】2015 或 2412. 动物王国中有一个奇怪的猫村.已知猫村共有 60 只猫,其中有漂亮尾巴的 27 只,漂亮毛色的 45 只.所有猫 毛色或尾巴至少一项漂亮,则两样都漂亮的有________只. 【解析】 27 45 60 12 . 【答案】12.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以 b 可以是 a, 2a,5a . 当 b = a 时, ( a ´ a ) (10a + a ) a 11 a = 1 ,则 ab = 11 ; 当 b = 2a 时, (a ´ 2a ) (10a + 2a ) a 6 a = 1, 2,3 ,则 ab = 12, 24,36 ; 当 b = 5a 时, ( a ´ 5a ) (10a + 5a ) a 3 a = 1 ,则 ab = 15 . 所以所有这样的好数 ab 之和是 11 + 12 + 24 + 36 + 15 = 98 .
A
E
D
B
F
C
二、 填空题(共 5 道小题,每题 8 分,共 40 分) 11. 如下图,在长方形 ABCD 中, BC 6cm , AB 4cm , CE 6cm , BF CE ,那么, BF __________ cm .
A
E F
D
B
【考点】几何,一半模型 【难度】☆☆☆ 【答案】4
15. 将数字 1~6 分别写到 6 张牌上,每张牌上的数字都不相同.艾迪和薇儿两人轮流抓牌,
从艾迪开始,每人每次抓 1 张,直到把牌抓完.在抓牌过程中,艾迪手中牌的数字之和 一直比薇儿手中牌的数字之和大, 但当薇儿抓完最后一张牌后, 手中牌的数字之和反而 比艾迪大 1.那么,两人共有__________种不同的抓牌顺序. 【考点】计数,有序枚举 【难度】☆☆☆☆ 【答案】24 【分析】6 张牌上总的数字之和是 1 + 2 + 3 + 4 + 5 + 6 = 21 ,且最后薇儿手中牌的数字之和 比艾迪大 1,所以最后薇儿手中牌的数字之和是 11,艾迪手中牌的数字之和是 10. 根据题意有序枚举可得: 当艾迪顺序是 10 = 2 + 5 + 3 时,薇儿顺序是 11 = 1 + 4 + 6 ,1 种; 当艾迪顺序是 10 = 3 + 5 + 2 时,薇儿顺序是 11 = 1 + 4 + 6 = 1 + 6 + 4 ,2 种;
A
E
D
B
【考点】几何,几何基本知识 【难度】☆☆☆ 【答案】3
C
【分析】过 D 点作 BE 的平行线与 BC 相交于点 F,可以得到四边形 EBFD 为平行四边形, 且三角形 ABE 与三角形 CDF 的面积完全相同.所以梯形 EBCD 与三角形 ABE 的面积 之差正好是平行四边形 EBFD 的面积,即为 30 cm2 .所以 DE 30 10 3cm .
启用前★绝密
2016 年北京市五年级综合能力测评(学而思杯)
数学试卷
考试时间:90 分钟 满分:150 分
考生须知:请将填空题答案填涂在答题卡 上,解答题答写在答题纸 上 ... ... 第Ⅰ卷(填空题
一、 填空题(共 10 道小题,每题 5 分,共 50 分) 1. 2016 年 8 月 21 日,历时 17 天的第 31 届夏季奥林匹克运动会在巴西里约热内卢圆满落 幕.中国体育代表团在本届奥运会上发挥出色,共获得了 70 枚奖牌.那么,在 8,21, 17,31,70 这 5 个数中,有__________个数是 2016 的因数. 【考点】数论,因数与倍数 【难度】☆ 【答案】2 【分析】 2016 = 25 ´ 32 ´ 7 ,所以只有 8 和 21 是 2016 的因数.
b=5.
□ □ □
要想使最后一行的乘积最大,那么 a 应该尽量大: 当 a = 9 时,不符合题意; 当 a = 8 时,符合题意.
5
所以最后一行乘积是 86802.
´
a d
b e
c 2
´
a 1
5 0 0
1 2 2
´ 8 8 1 5 6
8 1 7 1 8
5 0 0 0
1 2 2 2
【考点】数论,分解质因数 【难度】☆☆ 【答案】9 【分析】 2016 = 25 ´ 32 ´ 7 = 4 ´ 7 ´ 8 ´ 9 ,所以三只熊猫的年龄分别是 9 岁,8 岁,7 岁,那 么“学学”的年龄是 9 岁.
8.
有一块匀速生长的草地,可供 7 头牛吃 8 天,或可供 12 头牛吃 4 天,那么,这块草地 可供 10 头牛吃__________天.
□ □ □ □ 1 □
0 □
□ □ □ 5 1 □
6 □ □ □
6 □ □ □
14. 一个两位数如果能被它两个数位上的数字的乘积整除,我们就称这个两位数为“好数”,
那么,所有这样的“好数”之和是__________. 【考点】数论,位值原理与整除 【难度】☆☆☆☆ 【答案】98
ì ïa (10a + b) ì ïa b 【分析】设这个两位数是 ab ,则有 ( a ´ b) ab ( a ´ b) (10a + b) ï ,所 ï í í ï ï 10 + b a b 10 b a ( ) ï ï î ï î
9.
G20 峰会中,外宾选择“西湖十景”中的 3 个景点依次进行游览,那么共有___________ 种不同的游览方法.
【考点】计数,排列组合 【难度】☆☆ 【答案】720
3 = 10 ´ 9 ´8 = 720 种不同的游览方法. 【分析】共有 A10
3
10. 如下图,正方形 ABCD 的面积是 100 cm2 ,梯形 EBCD 的面积比三角形 ABE 的面积大 30 cm2 ,那么 DE __________ cm .
【考点】应用题,牛吃草 【难度】☆☆ 【答案】5 【分析】牛吃草问题的核心是“原草量+新长的草=牛吃的草” ; 草的生长速度为: (7 ´8 -12 ´ 4) ¸ (8 - 4) = 2 (份/天) ; 这块草地的原草量为: 7 ´ 8 - 2 ´ 8 = 40 (份) 可供 10 头牛吃: 40 ¸ (10 - 2) = 5 天.
【考点】行程,火车过桥 【难度】☆☆ 【答案】50 【分析】可以把这队同学看成一列火车,则火车长度是 (41 -1)´1 = 40 米,火车速度是 2 米 /秒,那么就转化成了基本的火车过桥问题.所以这列同学完全通过这座桥的时间是
(40 + 60) ¸ 2 = 50 秒.
6.
如下图,正六边形中共有__________个四边形.
94 = 5 + 89 = 2 ´ 47 ,所以满足条件的最大两位数是 94;
所以最大数与最小数之和是 10 + 94 = 104 .
13. 下面的乘法数字谜中,最后一行乘积的最大值是__________.
□ □ □ □ □ 2
□ □ 0 □ □ □ 1 □ 6
【考点】组合,数字谜 【难度】☆☆☆ 【答案】86802 且发生错位, 所以 e = 0 ,d = 1 ,c = 1 , 【分析】 因为 abc ´ 2 = □□0□ ,abc ´ d = □□1 ,
2
【考点】计数,几何计数 【难度】☆☆ 【答案】12 【分析】平行四边形有 6 个,梯形有 6 个,所以一共有 6 + 6 = 12 个四边形.
7.
动物园里有 3 只熊猫“学学”“而而”“思思”, 已知“学学”比“而而”大 1 岁, “而而”比“思思” 大 1 岁, 并且它们三个年龄乘积的 4 倍恰好等于 2016, 那么“学学”的年龄是__________ 岁.
= 5 + 2 + 4 ,4 种;
所以一共有 1 + 2 + 2 + 3 + 2 + 2 + 3 + 3 + 2 + 4 = 24 种.
第Ⅱ卷(解答题
16. 计算:
5 1 9 4 (1) 6 3 14 3 【考点】计算,分数计算
共 60 分)
三、 计算题(共 4 道小题,每题 4 分,共 16 分)
5 x 20 6 12 x 12 7 5 x 26 12 x 5 26 5 12 x 5 x 21 7 x x3
2x 1 x 5 2 3 6 【考点】计算
(4)
【难度】☆☆ 【答案】2 【分析】 6
2x 1 x 5 6 6 2 3 6
8 7 7 8
方法二:原式
8 35 8 49 8 7 7 16 7 16 7 4
5 7 2 2 2 8
7
(3) 5( x 4) 6 12( x 1) 7 【考点】计算,解方程 【难度】☆☆ 【答案】3 【分析】 5( x 4) 6 12( x 1) 7
菲菲说:“我的年龄是亮亮的 3 倍.” 亮亮说:“我比菲菲小 10 岁.”那么,菲菲的年龄 是__________岁.
【考点】应用题,年龄问题 【难度】☆ 【答案】15 【分析】菲菲比亮亮的年龄大 2 倍,对应是大 10 岁,所以 1 倍量是 10 ¸ 2 = 5 岁,那么菲菲 的年龄是 5 ´ 3 = 15 岁.
C
4
【分析】连接 BE.则可以得到 SDEBC =
1 1 S长方形ABCD = ´ 6 ´ 4=12 ,所以 BF 12 2 6=4cm . 2 2
A
E F
D
B
C
12. 有一些自然数, 它们既可以写成两个不同质数的和, 又可以写成两个不同质数的乘积. 例 自然数中,最大数与最小 如: 21=2+19=3 7 , 74=7+67=2 37 ,那么所有这样的两位 .. 数之和是__________. 【考点】数论,质数与合数 【难度】☆☆☆ 【答案】104 【分析】 10 = 3 + 7 = 2 ´ 5 ,所以满足条件的最小两位数是 10;