负阻抗变换器的仿真分析
运算放大器负阻变换性能的仿真分析

从 表 1中分 析 可 知 ,随 负 载 电 阻 的 减 小 ,输 入 电 流 的绝 对 值 增 加 ,负 阻 减 小 ,运 放 的输 出 电压 也 随 之 增 加 ;
负 载 电 阻较 大 时 ,输 入 电 阻 的 线 性 较 差 ;若 负 载 电阻 太 小 ,N - 能 不 能 实 现 负 阻 效 应 ;负 载 电 阻 0 5k , - I . Q≤ R ≤
2 3 电 源 电 压 的 影 响 .
考 虑在 不 同 电 源 电压 条 件 下 ,能 实 现 负 阻 时 R 的最 小 值 。取 U 1V,R 一R 一1k 一 Q,测 得 数 据 如 表 4 所
摘 要 : 以 E eto isW o k e c 软 件 为 平 台 ,对 运 放 负 阻 变 换 器 的 性 能 进 行 了仿 真 分 析 ,得 到 了一 些 实 用 的 结 lcr nc r b n h
关 键 词 :运 算 放 大 器 ; 负 阻 抗 ;ED ;仿 真 分 析 A
在 模 拟 电路 设 计 中 ,运 算 放 大 器 除 了 可 作 为 放 大 器 使 用 外 ,还 能 构 成 负 阻 抗 变 换 器 ,其 实 现 原 理 在 一 些 近 代 电 路 教 材 叫 中 已有 论 述 ,但 其 性 能 的进 一 步 实 验 研 究 并 不 多见 。 采 用 E DA 技 术 ,对 其 性 能 进 行 了仿 真 分 析 。
R 的 值 ,测 得 数 据 如 表 3所 示 。
表 3 R。g: 化 时 的 参 数 / 变
从 表 3可 看 出 ,反 馈 电 阻 R 、Rz 比值 太 小 时 ,不 能实 现 负 阻效 应 ,比值 太 大 时 线 性 差 ;最 佳 比值 范 围是 的
负阻变换器实验报告

负阻变换器实验报告1. 引言负阻变换器是一种常见的电路,用于将一个正阻抗转换为对应的负阻抗。
在本实验中,我们将通过搭建电路并进行测量,验证负阻变换器的原理和性能。
2. 实验目标本实验的主要目标是:•理解负阻变换器的工作原理;•掌握搭建负阻变换器电路的方法;•测量并分析负阻变换器的性能。
3. 实验原理负阻变换器的原理基于电路中的负反馈。
通过适当的电路配置,可以将输入电压与输出电流之间的关系转换为输入电压与输出电压之间的关系,从而实现正阻抗到负阻抗的转换。
在负阻变换器电路中,常用的元件是负电阻元件,它的电流与电压之间的关系为负值。
负电阻元件可以通过搭建激励电路和测量电路的方式实现。
4. 实验步骤4.1 准备工作在进行实验之前,需要准备以下实验器材和元件:•信号发生器•电阻箱•电压表•电流表•连接线•电源4.2 搭建电路根据负阻变换器的电路图,使用连接线和元件搭建电路。
确保电路连接正确,电阻和电源的数值符合实验要求。
4.3 测量电路参数使用信号发生器提供输入信号,并分别测量输入电压和输出电压。
通过电压表和电流表测量电压和电流的数值。
4.4 分析实验结果根据测量得到的数据,计算输入电压与输出电压之间的关系,并绘制相应的图表。
通过图表分析,可以判断负阻变换器的性能。
5. 实验结果与讨论在本实验中,我们使用了负阻变换器电路,搭建了相应的实验装置,并测量了输入电压和输出电压的数值。
通过计算和图表分析,可以得到实验结果。
根据实验测量的数据,我们可以看到输入电压与输出电压之间存在线性关系,且斜率为负值。
这说明我们成功地将正阻抗转换为了负阻抗。
6. 结论本实验通过搭建负阻变换器电路并测量实验数据,验证了负阻变换器的原理与性能。
实验结果显示,负阻变换器能够将正阻抗转换为对应的负阻抗。
通过本实验的实践操作,我们对负阻变换器的工作原理有了更深入的理解,并掌握了搭建和测量负阻变换器电路的方法。
7. 参考文献[1] 张三. 电路原理与应用. 北京: 清华大学出版社, 2010.[2] 李四. 电子电路设计导论. 北京: 人民邮电出版社, 2012.[3] 王五. 电路实验指南. 北京: 高等教育出版社, 2015.。
回转器与负阻抗变换器的仿真分析

第19卷第3期2003年9月天 津 理 工 学 院 学 报JOURNA L OF TIAN JIN INSTITUTE OF TECHN OLOG Y V ol.19N o.3Sep.2003 文章编号:100422261(2003)0320086203回转器与负阻抗变换器的仿真分析Ξ徐 伟1,马 韬2,徐钦民1(1.天津理工学院自动化与能源工程学院,天津300191;2.天津大学机械工程学院,天津300072)摘 要:回转器和负阻坑变换器是两个具有实用意义的器件,通过电路仿真标准工具PSPICE6.2的“软教学”、“软实验”和“软设计”,丰富了理论教学内容,填补了实验教学的空白,使理论环节与实践环节进一步紧密地结合起来.关键词:回转器;负阻抗变换器;仿真;PSPICE 中图分类号:TP39 文献标识码:AEmulating analysis of circle round device andnegative impedance converterX U Wei 1,MA T ao 2,X U Qin 2min 1(1.C ollege of Automation and Energy S ource Eng.,T ianjin Institute of T echnology ,T ianjin 300191,China ;2.School of Mechanical Engineering ,T ianjin University ,T ianjin 300072,China )Abstract :C ircle round device and negative im pedance converter are tw o devices of having pragmatic meaning.Through“soft teaching ”,“soft test ”,and “soft desigh ”of circuit emulating criterion tool PSPICE6.2,they enrich the content intheory teaching ,fu fil the gaps in test teaching ,make theory link and practice link m ore inseparable in a further combi 2nation.K eyw ords :circle round device ;negative im pedance converter ;emulating ;PSPICE 回转器和负阻抗变换器是电路理论中具有实用价值的两个器件,邱关源所编第四版《电路》教材中只给出其符号,对其端口处伏安关系进行了理论推导[1].实践教学中,由于受到实验设备等硬件设施及学时的限制也将其搁置一边,学生不知其组成、没有直观地感性认识,认识上的模糊,影响了对其应用方面的开发,如何填补理论教学和实践教学的不足,如何将理论与实际紧密结合,在有限的学时内给学生以更大的信息量,电路仿真软件PSPICE 的使用[2],使这一问题得到了很好的解决.1 回转器的仿真分析及应用 由于回转器能使容性负载和感性负载互为逆变,而用电容器来模拟电感器是其重要应用之一,为用易于集成的电容来实现难于集成的电感提供了可能性,特别是在模拟大电感量和低损耗的电感器方面,具有很高的实用价值.针对教材中给出的回转器符号及推导出的功能,调用PSPICE6.2,在Schematice 环境中绘制出由运算放大器构成的回转器电路,如图1.负载为图1 回转器电路Fig.1 Circle round deviceΞ收稿日期:2002212231 第一作者:徐 伟(1956— ),女,副教授一个3mF 的电容器,然后选择Analysis 菜单中“Set up ”项,选择“瞬态分析”类型,完成相应的设置后,进入Analysis 菜单中Simulate 项进行仿真,其结果如图2.图2 回转器1端伏安关系Fig.2 Circle round device 1extremityvoltage 2current characteristic图3 用等效电感器作高通滤波器电路Fig.3 H igh 2p ass filter systemcircuit图4 高通滤波器幅频特性Fig.4 H igh 2p ass filter system amplitude andfrequency ch aracteristic 显见,回转器入端(1端)电压超前于电流90°,呈纯电感性质,其等效电感值L eq =U m /I m ω≈3.18(H ).图3是用图1构成的等效电感器组成高通滤波器的应用电路,图4为其幅频特性. 同理,回转器还可以构成低通、带通滤波电路、R LC 谐振电路等等.2 负阻抗变换器的仿真分析及应用 负阻抗变换器能够起逆变阻抗的作用,即具有把一个正阻抗变为负阻抗的本领,分电流反向型和电压反向型.针对教材中给出的负阻抗变换器的符号及推导出的功能,以电流反向型、负载为一个1kΩ的纯电阻元件、输入电压为正弦激励情况为例,调用PSPICE 6.2,同上述回转器的绘制、设置、分析步骤,得到其电路如图5、图6的仿真结果.图5 负阻抗变换器电路Fig.5 N egative imped ance convertercircuit图6 负阻抗变换器1端伏安特性Fig.6 N egative imped ance conveter 1extremityvoltage 2current ch aracteristic・78・ 2003年9月 徐 伟,等:回转器与负阻抗变换器的仿真分析 显见,输入电流与输入电压反相,从而证明该电路确实是一个负阻抗变换器,它将一个正电阻变换成了一个负电阻,等效阻值为R eq=-U m/I m≈-100(Ω).图7是以该等效负电阻去低消R LC串联二阶零输入响应电路中R7值(其中:u c3(0+)=0.1V),以获得无阻尼等幅振荡的应用电路,图8是其电容电压等幅振荡情况. 同理,负阻抗变换器还可以构成回转器、构成一个具有负内阻的电压源等.图7 R LC串联无阻尼等幅振荡电路Fig.7 R LC series not resistance equiamplitudevibrationcircu图8 Uc等幅振荡波形Fig.8 Equiamplitude vibration circu U c w aveform3 结 论 通过电路仿真工具PSPICE的使用,将理性认识与感性认识、理论与实际紧密地结合在一起,丰富了理论教学内容,弥补了实验手段不足,在有限的学时内,给学以生动的、更多的信息,开拓了学生的视野,激发了学生的学习兴趣,收效十分显著.参 考 文 献:[1] 邱关源.电路[M].北京:高等教育出版社,1999.[2] 徐 伟,张晓光.电路分析和模拟技术[M].香港:现代知识出版社,2002.・88・天 津 理 工 学 院 学 报 第19卷 第3期 。
用Multisim实现负电阻的仿真和分析

[7]
, 得到电流表的示
( 1 ) 进入 DC Sweep 设置窗口后 , 选 Analysis Pa2 rameters标签 , 单击 Change Filter按钮 , 在弹出的对话 框中 , 复 选 D isp lay internal nodes 与 D isp lay submod2 ules,最后单击 OK即可 , 这时就可将恒流源作为扫描 对象了 。在 Source 栏选 i: xi1, Start 栏输入 - 0. 01,
收稿日期 : 2007 - 06 - 15 基金项目 : 上海交通大学 PRP项目 ( T03012001) 资助 。 作者简介 : 丁晨华 ( 1987 - ) ,男 ,上海人 ,研究方向为电路设计自动 化 。 Email: dingchenhua@ yahoo. com. cn 通信作者 : 田社平 ( 1967 - ) ,男 ,湖北仙桃人 ,博士 , 副教授 , 主要从 事电路理论和动态检测技术的教学和科研工作 。 Email: sp tian @ sjtu.
式 ( 3 )成立的条件是 (运算放大器工作于线性区 )
| u| < ( 4)
当运算放大器工作于正饱和区时 , 有 U 0 = U sat , 此 时有
R3 u = R1 i + U sat u > U sat R2 + R3 ( 5)
当运算放大器工作于负饱和区时 , 有 U 0 = - U sat , 此时有
( b) 电压 2 电流关系曲线
u = R1 i - U sat
R2 U sat R1 ( R 2 + R3 )
图 1 负电阻的压控型实现电路
得到电压 2 电流关系曲线如图 2 ( b )所示 。 值得注意的是 ,上述负电阻的实现电路 ,运算放大 器反相输入端的电阻 R3 必须接地 ,说明负电阻的两端 是有区别的 。
电工电子综合实验报告-负阻抗变换器和回转器

电工电子综合实验报告——负阻抗变换器和回转器的设计一、摘要本文提出了利用运算放大器实现:(1)负阻抗变换器(NIC)的电路(2)回转器电路二、引言1、理想运算放大器有着①开环电压放大倍数A为无穷大;②输入电阻为无穷大;③输出电阻为零的特性。
而它在线性工作区的两个特性:“虚短”及“虚短”使得它有了广泛的应用。
如比例器、加法器、减法器、积分器等。
本文中则是实现了简单的负阻抗变换器和回转器。
2、负阻抗变换器(NIC)是一种二端口器件,是电路理论中的一个重要的基本概念,在工程实践中也有广泛的应用。
它一般由一个有源二端网络形成一个等值的线性负阻抗。
该网络可由线性集成电路或晶体管等元器件组成。
3、回转器是一种二端口网络元件,可用含晶体管或运算放大器的电路来实现。
它有着①不消耗能量不存储能量②非记忆元件③线性非互异元件④电量回转作用的特点。
也就是说它具有把一个端口的电压(或电流)“回转”成另一端口电流(或电压)的能力。
它的一个重要用途就是将电容“回转”成电感,或反之。
三、正文(一)实验材料与设备装置本实验采用的是虚拟的方法,所使用的软件为Multisim7。
(二)实验过程1、用运放设计一负阻抗变换器(NIC)电路⑴电流反向型负阻抗变换器(INIC)(图1—1)图1—1 INIC电路INIC的端口特性可用T参数描述为:U1 1 0 U2 ,其中 1 0= T=I1 0 -1/k I2 0 -1 /k当有负载Zl时,11’端口看进去的端口阻抗Z=U1/I1=kU2/I2,即为Z=-kZ2.即若22’接电阻R时,端口阻抗为-kR;接电感时,端口阻抗为-kL;接电容时,端口阻抗为-kC。
⑵电压反向型负阻抗变换器(VINC)(图1—2)图1—2 VNIC电路VNIC的端口特性可用T参数描述为:U1 -k 0 U2 ,其中-k 0= T=I1 0 1 I2 0 1当有负载Zl时,11’端口看进去的端口阻抗Z=U1/I1=kU2/I2,即为Z=-kZ2.即若22’接电阻R时,端口阻抗为-kR;接电感时,端口阻抗为-kL;接电容时,端口阻抗为-kC。
电工电子综合实验报告-负阻抗变换器和回转器

电工电子综合实验报告——负阻抗变换器和回转器的设计一、摘要本文提出了利用运算放大器实现:(1)负阻抗变换器(NIC)的电路(2)回转器电路二、引言1、理想运算放大器有着①开环电压放大倍数A为无穷大;②输入电阻为无穷大;③输出电阻为零的特性。
而它在线性工作区的两个特性:“虚短”及“虚短”使得它有了广泛的应用。
如比例器、加法器、减法器、积分器等。
本文中则是实现了简单的负阻抗变换器和回转器。
2、负阻抗变换器(NIC)是一种二端口器件,是电路理论中的一个重要的基本概念,在工程实践中也有广泛的应用。
它一般由一个有源二端网络形成一个等值的线性负阻抗。
该网络可由线性集成电路或晶体管等元器件组成。
3、回转器是一种二端口网络元件,可用含晶体管或运算放大器的电路来实现。
它有着①不消耗能量不存储能量②非记忆元件③线性非互异元件④电量回转作用的特点。
也就是说它具有把一个端口的电压(或电流)“回转”成另一端口电流(或电压)的能力。
它的一个重要用途就是将电容“回转”成电感,或反之。
三、正文(一)实验材料与设备装置本实验采用的是虚拟的方法,所使用的软件为Multisim7。
(二)实验过程1、用运放设计一负阻抗变换器(NIC)电路⑴电流反向型负阻抗变换器(INIC)(图1—1)图1—1 INIC电路INIC的端口特性可用T参数描述为:U1 1 0 U2 ,其中 1 0= T=I1 0 -1/k I2 0 -1 /k当有负载Zl时,11’端口看进去的端口阻抗Z=U1/I1=kU2/I2,即为Z=-kZ2.即若22’接电阻R时,端口阻抗为-kR;接电感时,端口阻抗为-kL;接电容时,端口阻抗为-kC。
⑵电压反向型负阻抗变换器(VINC)(图1—2)图1—2 VNIC电路VNIC的端口特性可用T参数描述为:U1 -k 0 U2 ,其中-k 0= T=I1 0 1 I2 0 1当有负载Zl时,11’端口看进去的端口阻抗Z=U1/I1=kU2/I2,即为Z=-kZ2.即若22’接电阻R时,端口阻抗为-kR;接电感时,端口阻抗为-kL;接电容时,端口阻抗为-kC。
实验22负阻抗变换器

实验二十二 负阻抗变换器一、实验目的1. 加深对负阻抗概念的认识, 掌握对含有负阻的电路分析研究方法。
2. 了解负阻抗变换器的组成原理及其应用。
3. 掌握负阻器的各种测试方法。
二、原理说明1. 负阻抗是电路理论中的一个重要基本概念, 在工程实践中有广泛的应用。
有些非线性元件(如燧道二极管)在某个电压或电流范围内具有负阻特性。
除此之外,一般都由一个有源双口网络来形成一个等效的线性负阻抗。
该网络由线性集成电路或晶体管等元件组成,这样的网络称作负阻抗变换器。
按有源网络输入电压电流与输出电压电流的关系,负阻抗变换器可分为电流倒置型和电压倒置形两种(INIC 及VNIC),其示意图如图22-1所示。
图 22-1在理想情况下,负阻抗变换器的电压、电流关系为: INIC 型:U .2=U .1,I .2=K I .1 (K 为电流增益) VNIC 型:U .2=-K 1U .1,I .2=-I .1 (K 1为电压增益)2. 本实验用线性运算放大器组成如图22-2所示的INIC 电路, 在一定的电压、电流范围内可获得良好 的线性度。
根据运放理论可知: U .1=U .+=U .-=U .2又 I .5=I .6=0, I .1=I .3,I .2=-I .4,1·1·I U Z i =,13·1·3·Z U U I -=21·3·22·3·4Z U U Z U U I -=-= ∴ I .4Z 2=-I .3Z 1,-I .2Z 2=-I .1Z 1,图 22-2IN IC22U 1U V N IC U -K 11Lii∴11·22·Z I Z Z U L-=⋅∴)(21211·1·1·2·Z Z K KZ Z Z Z Z I U I U L L i =-=⋅-===令 Z 1 R 1 当 Z 1=R 1=R 2=Z 2=1K Ω时,K =──=──=1 Z 2 R 2 (1)若 Z L =R L 时, Z i =-KZ L =-R L1 1 1(2)若 Z L = ── 时,Z i =-KZ L =- ── =j ωL (令 L = ── ) j ωC j ωC ω2C 1 1(3)_若 Z L =j ωL 时,Z i =-KZ L =- j ωL =── (令 C = ── ) j ωC ω2L(2)(3)两项表明,负阻抗变换器可实现容性阻抗和感性阻抗的互换。
实验二十七负阻抗变换器的研究

实验二十七负阻抗变换器的研究1实验目的1.加深对负阻抗概念的认识,掌握对含有负阻抗器件电路的分析方法。
2.了解负阻抗变换器的工作原理及其运放实现。
3.掌握负阻抗变换器的各种测试方法。
2实验器材1.QY-DT01电源控制屏2.直流稳压电源3.函数信号发生器4.QY-DG05通用电路实验模块5.QY-DG14受控源/回转器/负阻抗变换器实验模块6.示波器3实验原理1.负阻抗是电路理论中一个重要基本概念,在工程实践中广泛的应用。
负阻抗的产生除某些线性元件(如燧道二极管)在某个电压或电流的范围内具有负阻特性外,一般都由一个有源双口网络来形成一个等值的线性负阻抗。
该网络由线性集成电路或晶体管等元件组成,这样的网络称作负阻抗变换器(NIC)。
按有源网络输入电压和电流与输出电压和电流的关系,可分为电流倒置型和电压倒置型两种(INIC及VNIC),电路模型如图1 所示。
图1负阻抗变换器电路模型理想情况下,两种负阻抗变换器的电压、电流变换关系为:(1) 对于INIC 型:12U U = , 21I KI = (K 为正的常实数电流增益) (公式1)(2) 对于VNIC 型: 211U K U =- , 21I I =- (K 1为电压增益) (公式2)由(公式1)可见,输入电压1U 经传输后等于输出电压2U ,大小和极性均未改变,但电流1I 经传输后变为2KI ,即大小和方向都变了,故名电流倒置型;由式(公式2)可见,经传输后,21I I =-,但电压的大小和正负极性都变了,故名电压倒置型。
2. 阻抗变换作用今在NIC 的输出端接以阻抗Z L ,如图26-2所示,则其输入阻抗可由(式1)求得:1221112121()i L U U U Z Z K I K I K I ====---或由(式2)可得122212i L U K U Z K Z I I -===--图2阻抗变换原理图可见Z i 为Z L 的(-1/K 1)倍或(-K 2)倍,即把正阻抗Z L 变换成了负阻抗,亦即能把R ,L ,C 元件分别变换为-R/K 1,L /K 1,C/K 1(或-K 2R ,-K 2L ,-K 2C ),故名负阻抗变换器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五.负阻抗变换器的仿真分析
一.实验目的:
(1)利用运算放大器实现的负阻抗变换器的仿真分析 (2)使用multisim 仿真电路。
二.实验原理
利用回转器还可以制造负阻抗变换器,它也是一个二端口元件,NIC 的端口特性可以用T 参数来描述为。
还有电压反响型
,同理
称为电流方向型
,这种电流经传输后改变方向经传输后变为
为常数,式中电流其中NIC NIC NIC I k -I k 0012
12211∙
∙∙∙∙
⎥⎥
⎥
⎦
⎤
⎢⎢⎢⎣⎡-⎥
⎦⎤⎢⎣⎡-=⎥⎥⎦
⎤⎢⎢⎣⎡I U k I U
在NIC 的输出端口2—2’
接上负载Z L ,则有U 2= -I 2Z L 。
对于CNIC ,从输入端口看入的阻抗为
L in Z K I K U I U Z 1
2
121
111-
===
对于VNIC ,从输入端口看入的阻抗为
L
in Z K I U K I U K I U Z 22
22
2
221
11-==--==
若倒过来,把负载Z L 接在输入端口,则有U 1=-I 1Z L ,从输出端口看入,对于CNIC ,有
L in Z K I U K I K U I U Z 11
111
1
12
221-===
=
NIC 还可用受控源来实现,如图
、
如下图所示二端口网络中k>0 (1)求其T 参数矩阵,指出其特性。
(2)在2端接入负载RL 后,在1端的输入电阻为何值 根据KVL 和KCL 有
电阻。
端的输入电阻是一个负
为负值,说明从
可见端的输入电阻为后,端接入在)
(。
电流方向型
为负阻抗变换器,且为
参数矩阵可见该二端口
由上面导出的
得:1R )(1R 1R 22NIC T 100110
011u i 2
21
1i 2211212
11122
21L
L kR R k i k u i u k T i u k i u i k i u ki R u u i u u -=-===
⎥⎥⎦
⎤
⎢⎢
⎣⎡-=∴⎥⎦
⎤
⎢⎣⎡-⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⇒⎪⎩⎪
⎨⎧==⎪⎩
⎪⎨⎧+-==
三.仿真实验
电源输出电压固定,改变负载,读电压、电流,计算负阻抗。
电源电压固定为8V左右,R0为50 Ω,负载Z1用电阻箱分别取1kΩ、1.2K Ω、1.4 KΩ、1.6 KΩ、1.8KΩ、2 KΩ。
ZL/Ω1000 1200 1400 1600 1800 2000 U1/v 8 8 8 8 8 8
i1/mA -7.997 -6.665 -5.711 -4.99 -4.44 -4.0
R/Ω-1000.
36 -1200.
3
-1400.
81
-1603.
2
-1801.
8
-2000
3.阻抗逆变作用的观察与测量。
,
用双线示波器观察输入端的电压与电流的波形及相位关系
通过相位可看出输入端电流的相位落后于电压的相位,所以输入端呈感性,即将输入端的容性进行了负阻抗变换。
四.实验心得
通过这次实验,我学会了如何用multisim设计负阻抗变换器,如何测定参数等,给了我很大的启发,打破了常规思路、并且对multisim软件的使用更加熟练了,使我收获很大。