立体几何_二面角问题方法归纳
立体几何二面角的求法

立体几何二面角的求法立体几何是数学的一个重要分支,研究的是空间中的图形和其性质。
其中,二面角是立体几何中的一个重要概念,它是由两个平面所围成的角。
本文将介绍二面角的定义、性质以及求法。
一、二面角的定义二面角是由两个平面所围成的角,其中一个平面称为顶面,另一个平面称为底面,二面角的两个边分别位于顶面和底面上。
二面角常用字母α表示。
二、二面角的性质1. 二面角的大小是以顶点为中心,两个边所围成的平面角的大小,即α=∠POQ。
2. 二面角的大小是由顶面和底面的位置关系决定的,与边的长度无关。
3. 二面角的度量范围是0到180度。
4. 如果两个平面平行,则它们所围成的二面角为0度。
5. 如果两个平面相互垂直,则它们所围成的二面角为90度。
6. 如果两个平面相交于一条直线,则它们所围成的二面角为180度。
三、二面角的求法1. 通过向量法求解二面角:设顶面的法向量为n1,底面的法向量为n2,二面角的余弦值可以通过两个法向量的点乘公式求解:cosα=n1·n2/(|n1||n2|),其中·表示点乘,|n1|和|n2|分别表示n1和n2的模。
2. 通过平面法向量求解二面角:设顶面的法向量为n1,底面的法向量为n2,二面角的余弦值等于两个法向量的模的乘积与它们的点乘的商:cosα=(|n1|·|n2|)/(n1·n2)。
3. 通过平面方程求解二面角:设顶面的平面方程为Ax+By+Cz+D1=0,底面的平面方程为Ax+By+Cz+D2=0,二面角的余弦值等于两个平面方程的D1、D2的差值与它们的模的乘积的商:cosα=(D1-D2)/(√(A^2+B^2+C^2)·√(A^2+B^2+C^2))。
四、二面角的应用1. 二面角常用于计算空间中的体积和表面积。
2. 在物理学中,二面角常用于描述力的方向和大小。
3. 在几何光学中,二面角常用于计算光的反射和折射。
4. 在工程中,二面角常用于计算材料的强度和稳定性。
二面角8种求法

二面角求法正方体是研究立体几何概念的一个重要模型,中学立体几何教学中,求平面与平面所成的二面角是转化为平面角来度量的,也可采用一些特殊的方法求二面角,而正方体也是探讨求二面角大小方法的典型几何体。
笔者通过探求正方体中有关二面角,分析求二面角大小的八种方法:(1)平面角定义法;(2)三垂线定理法;(3)线面垂直法;(4)判定垂面法;(5)异面直线上两点间距离公式法;(6)平行移动法;(7)投影面积法;(8)棱锥体积法。
一、平面角定义法此法是根据二面角的平面角定义,直接寻求二面角的大小。
以所求二面角棱上任意一点为端点,在二面角两个平面内分别作垂直于棱的两条射线所成角就是二面角的平面角,如图二面角α-l-β中,在棱l上取一点O,分别在α、β两个平面内作AO⊥l,BO⊥l,∠AOB即是所求二面角的平面角。
例题1:已知正方体ABCD-A1B1C1D1中,O、O1是上下底面正方形的中心,求二面角O1-BC-O的大小。
例题2:已知正方体ABCD-A1B1C1D1中,E、F为A1D1、C1D1的中点,求平面EFCA与底面ABCD所成的二面角。
二、 利用三垂线定理法此方法是在二面角的一个平面内过一点作另一个面的垂线,再由垂足(或仍是该点)作棱的垂线,连接该点和棱上的垂足(或连两垂足)两点线,即可得二面角的平面角。
如图二面角α-l-β中,在平面α内取一点A ,过A 作AB ⊥平面β,B 是垂足, 由B (或A )作BO (或AO )⊥l ,连接AO (或BO )即得AO 是平面β的斜线, BO 是AO 在平面β中的射影,根据三垂线定理(或逆定理)即得AO ⊥l ,BO ⊥l , 即∠AOB 是α-l-β的平面角。
例题3:已知正方体ABCD-A 1B 1C 1D 1中,求二面角B-AC-B 1的大小。
例题4:已知正方体ABCD-A 1B 1C 1D 1中,求平面ACD 1与平面BDC 1所成的二面角。
三、 线面垂直法此法利用直线垂直平面即该直线垂直平面内任何直线的性质来寻求二面角的平面角。
立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。
E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。
求直线1EC 与1FD 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。
思路二:平移线段C 1E 让C 1与D 1重合。
转化为平面角,放到三角形中,用几何法求解。
(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。
则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。
人教B版高中数学选择性必修第一册精品课件 第1章 空间向量与立体几何 1.2.4 二面角

3.设a=(0,1,1),b=(1,0,1)分别是平面α,β的两个法向量,则锐二面角α-l-β的大
小是(
)
A.45° B.90°
C.60°D.120°
解析:设锐二面角α-l-β的大小是θ,
|·|
1
1
则 cos θ=|||| =
= .
答案:B
2
)
2.在正四面体ABCD中,二面角A-BC-D的余弦值为(
1
A.2
1
B.3
3
C. 3
)
3
D. 2
解析:如图,设BC的中点为E,底面正三角形BCD的中心为O,则∠AEO就是二
面角A-BC-D的平面角.
3
3
1
在 Rt△AOE 中,AE= 2 AB,EO= 6 AB,则 cos∠AEO= = 3.
二面角B-AP-C的大小.
解:如图,过点B作BM⊥AC交AC于点M,过点M作MN⊥AP交AP于点N,连接
BN,由三垂线定理知BN⊥PA.
∴∠MNB为所求二面角的平面角.
设AB=BC=AC=PC=1,
3
2
∴BM= ,MN= ,
2
4
3
∴tan∠MNB= 2 = √6.故∠MNB=arctan√6,
2
4
APC的一个法向量.
·
∵cos<a,n>=||||=0,∴<a,n>=90°,
∴二面角A-PC-B为90°.
用法向量法求二面角的大小的优点是不需要确定二面角的平面角,缺点是
计算量大.若二面角两个半平面的法向量分别是n1,n2,设二面角的大小为θ,
立体几何二面角

立体几何二面角1、如图,正三棱柱ABC-A1B1C1的所有棱长都为2,(I)当λ=时,求证AB1丄平面A1BD;(II)当二面角A—A1D—B的大小为-时,求实数λ的值.2、3、如图,菱形与正三角形的边长均为2,它们所在平面互相垂直,平面,且.(Ⅰ)求证:平面;(Ⅱ)若,求二面角的余弦值.4、如图,三棱锥P-ABC中,PA⊥平面ABC,∠BAC=60°,PA=AB=AC=2,E是PC的中点.(1)求异面直线AE和PB所成角的余弦值.(2)求三棱锥A-EBC的体积.5、在四棱锥P﹣ABCD中,已知PB⊥底面ABCD,BC⊥AB,AD∥BC,AB=AD=2,CD⊥BD,异面直线PA,CD所成角等于60°(1)求证:面PCD⊥面PBD;(2)求直线PC和平面PAD所成角的正弦值;(3)在棱PA上是否存在一点E使得二面角A﹣BE﹣D的余弦值为?6、已知四棱锥P﹣ABCD的底面ABCD为直角梯形,AB∥CD,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=AB=1,M是PB的中点.(1)求异面直线AC与PB所成的角的余弦值;(2)求直线BC与平面ACM所成角的正弦值.7、在四棱锥中,,,平面平面,,且.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.8、如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(Ⅰ)证明:B1C1⊥CE;(Ⅱ)求二面角B1-CE-C1的正弦值;9、在如图所示的四棱锥中,已知平面∥为的中点.(Ⅰ)求证:;(Ⅱ)求证:平面平面;(Ⅲ)求直线与平面所成角的余弦值.11、如图,四棱锥中,底面为平行四边形,,,底面(1)证明:;(2)若,求二面角余弦值.12、如图,四棱锥P﹣ABCD的底面是矩形,侧面PAD丄底面ABCD,∠APD=.④若α⊥γ,β⊥γ,α∩β=l,则l⊥γ,其中真命题是.(填序号)20、设a,b为两条直线,α,β为两个平面,给出下列命题:(1)若a∥b,a⊥α,则b⊥α;(2)若a∥α,b∥α,则a∥b;(3)若a⊥b,b⊥α,则a∥α;(4)若a⊥α,a⊥β,则α∥β.其中正确命题的个数是.21、如图在直三棱柱ABC﹣A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC 所成角的余弦值是.四、综合题22、如图,四棱锥中,底面,,,,,是的中点.(1)求证:;(2)求证:面.五、计算题23、如图,四棱锥的底面为正方形,侧棱底面,且,分别是线段的中点。
高中数学必修二立体几何角的问题-教师版(含几何法和向量法)

立体几何线线、线面、面面所成角的问题几何法1、两异面直线及所成的角:不在同一个平面的两条直线,叫做异面直线,已知异面直线a,b,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).如果两条异面直线所成的角是直角,我们就说这两条直线互相垂直.2、直线和平面所成的角:一条直线PA 和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A 叫做斜足。
过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线 AO 叫做斜线在这个平面上的射影。
平面的一条斜线和它在平面内的摄影所成的锐角,叫做这条直线和这个平面所成的角。
一条直线垂直于平面,我们就说它们所成的角是直角。
一条直线和平面平行,或在平面内,我们说它们所成的角是00.3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
在二面角βα--l 的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角。
二面角的大小可以可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度。
常见角的取值范围:① 异面直线所成的角⎥⎦⎤ ⎝⎛20π,,直线与平面所成的角⎥⎦⎤⎢⎣⎡20π,,二面角的取值范围依次[]π,0② 直线的倾斜角[)π,0、到的角[)π,0、与的夹角的取值范围依次是⎥⎦⎤⎢⎣⎡20π,4、点到平面距离:求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 向量法1、两异面直线及所成的角:设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.2、直线和平面所成的角:设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.3、二面角:设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.4、点到平面距离:点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.例题例1.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010 解析:建立空间直角坐标系如图.则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2).BC 1→=(-1,0,2),AE →=(-1,2,1),cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010.答案:B例 2.已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 证明:在ADE ∆中,222AD AE DE =+,∴AE DE ⊥ ∵PA ⊥平面ABCD ,DE ⊂平面ABCD ,∴PA DE ⊥又PA AE A ⋂=,∴DE ⊥平面PAE (2)DPE ∠为DP 与平面PAE 所成的角在Rt PAD ∆,PD =Rt DCE ∆中,DE =在Rt DEP ∆中,2PD DE =,∴030DPE ∠=例3.如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小.证明:(1)ABD ∆为等边三角形且G 为AD 的中点,∴BG AD ⊥ 又平面PAD ⊥平面ABCD ,∴BG ⊥平面PAD(2)PAD 是等边三角形且G 为AD 的中点,∴AD PG ⊥ 且AD BG ⊥,PG BG G ⋂=,∴AD ⊥平面PBG ,PB ⊂平面PBG ,∴AD PB ⊥(3)由AD PB ⊥,AD ∥BC ,∴BC PB ⊥ 又BG AD ⊥,AD ∥BC ,∴BG BC ⊥∴PBG ∠为二面角A BC P --的平面角在Rt PBG ∆中,PG BG =,∴045PBG ∠=例4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( D ) A.3 B.22C.32λ D.55练习:1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点,(1)求证:EFGH 是平行四边形;(2)若BD=AC=2,EG=2。
高考数学 立体几何中的垂直、二面角、点面距三连问问题解法举例
A
C O B
A1
F
D
C1
B1
BC,CC1 的中点, B1O ⊥ BD , AB1 ⊥ BD .
在正方形 ABB1A1 中, AB1 ⊥ A1B , AB1 ⊥平面 A1BD .
(Ⅱ)设 AB1 与 A1B 交于点 G ,在平面 A1BD 中,作 GF ⊥ A1D 于 F ,连结 AF ,
由(Ⅰ)得 AB1 ⊥平面 A1BD . AF ⊥ A1D ,
AB1 (1,2,
3)
,
BD
(2,1,0)
,
BA1
(1,2,3)
.
z
A
AB1BD 2 2 0 0 , AB1BA1 1 4 3 0 ,
AB1 ⊥ BD , AB1 ⊥ BA1 . AB1 ⊥平面 A1BD .
立体几何中的垂直、二面角、点面距三连问问题解法举例
在立体几何命题中,第一问证明垂直(线线垂直,线面垂直或者面面垂 直)、第二问求二面角大小或某种三角函数值、第三问点面距,这种连续三问的 几何题学生求解起来往往感到比较吃力,费时较多,需要加强研究训练,现在 举例说明这类问题常见的解法.
例 1:如图,正三棱柱 ABC A1B1C1 的所有棱长都为 2 , D 为 CC1 中点.
(Ⅰ)求证: AB1 ⊥平面 A1BD ;
(Ⅱ)求二面角 A A1D B 的平面角的正弦值;
(Ⅲ)求点 C 到平面 A1BD 的距离. 解法一(几何法): (Ⅰ)取 BC 中点 O ,连结 AO . △ABC 为正三角形, AO ⊥ BC . 正三棱柱 ABC A1B1C1 中,平面 ABC ⊥平面 BCC1B1 , AO ⊥ 平面 BCC1B1 . 连结 B1O ,在正方形 BB1C1C 中, O,D 分别为
立体几何二面角余弦值公式
立体几何二面角余弦值公式
在立体几何中,二面角是一个重要概念,它指的是两个平面相交所形成的角。
求解二面角的余弦值是立体几何中的一个常见问题。
接下来,我们将介绍二面角余弦值公式的应用、规则、适用场景以及延申。
一、二面角余弦值公式的应用
在求解二面角余弦值时,常用的方法包括定义法、三垂线法、垂面法、面积法以及找棱法等。
这些方法在实际应用中可以相互转化,以适应不同问题的需求。
二、二面角余弦值公式的规则
1. 当两个法向量夹角为锐角或钝角时(即点乘后所得结果同号),二面角的大小与两个法向量的夹角相等。
2. 当两个法向量夹角为钝角时(即点乘后所得结果异号),二面角的大小与两个法向量的夹角互补。
三、二面角余弦值公式的适用场景
1.求解二面角的余弦值:当需要求解二面角的余弦值时,可以使用二面角余弦值公式进行计算。
2.判断二面角的性质:通过计算二面角的余弦值,可以判断二面角是锐角还是钝角。
3. 在几何模型中应用:二面角余弦值公式在各种几何模型中都有广泛的应用,如棱锥、棱柱、平面凸轮等。
四、二面角余弦值的延申
1.空间向量的应用:二面角余弦值的求解可以扩展到空间向量的应用,如求
解空间向量的模、夹角、投影等。
2.空间几何中的其他问题:二面角余弦值的求解方法可以延申到空间几何的其他问题,如求解空间直线与平面的夹角、求解空间两个平面的夹角等。
总之,二面角余弦值公式在立体几何中具有重要的应用价值。
通过掌握二面角余弦值公式的求解方法,可以更好地解决立体几何中的相关问题。
同时,了解二面角余弦值公式的适用场景和延申,有助于提高解决实际问题的能力。
高中数学必修二立体几何角的问题-学生版(含几何法和向量法)
立体几何线线、线面、面面所成角的问题几何法1、两异面直线及所成的角:不在同一个平面的两条直线,叫做异面直线,已知异面直线a,b,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).如果两条异面直线所成的角是直角,我们就说这两条直线互相垂直.2、直线和平面所成的角:一条直线PA 和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A 叫做斜足。
过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线 AO 叫做斜线在这个平面上的射影。
平面的一条斜线和它在平面内的摄影所成的锐角,叫做这条直线和这个平面所成的角。
一条直线垂直于平面,我们就说它们所成的角是直角。
一条直线和平面平行,或在平面内,我们说它们所成的角是00.3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
在二面角βα--l 的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角。
二面角的大小可以可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度。
常见角的取值范围:① 异面直线所成的角⎥⎦⎤ ⎝⎛20π,,直线与平面所成的角⎥⎦⎤⎢⎣⎡20π,,二面角的取值范围依次[]π,0② 直线的倾斜角[)π,0、到的角[)π,0、与的夹角的取值范围依次是⎥⎦⎤⎢⎣⎡20π,4、点到平面距离:求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 向量法1、两异面直线及所成的角:设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.2、直线和平面所成的角:设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.3、二面角:设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.4、点到平面距离:点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.例题例1.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010例2.已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角.例3.如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小.例4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( ) A.3 B.22 C.32λ D.55练习:1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点,(1)求证:EFGH 是平行四边形;(2)若BD=AC=2,EG=2。
求二面角平面角的方法
寻找二面角的平面角的方法二面角是高中立体几何中的一个重要内容,也是一个难点.对于二面角方面的问题,学生往往无从下手,他们并不是不会构造三角形或解三角形,而是没有掌握寻找二面角的平面角的方法.我们试将寻找二面角的平面角的方法归纳为以下六种类型. 1.1 二面角的相关概念新教材]1[在二面角中给出的定义如下:从一条直线出发的两个半平面所组成的图形叫做二面角.定义只给出二面角的定性描述,关于二面角的定量刻画还必须放到二面角的平面角中去研究.教材如下给出了二面角的平面角的概念:二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角.2. 二面角的求解方法对二面角的求解通常是先定位二面角的平面角,从而将三维空间中的求角问题转化为二维空间并可以通过三角形的边角问题加以解决.定位出二面角为解题的关键环节,下面就二面角求解的步骤做初步介绍:一、“找”:找出图形中二面角,若不能直接找到可以通过作辅助线补全图形定位二面角的平面角 二、“证”:证明所找出的二面角就是该二面角的平面角 三、“算”:计算出该平面角 由于定位二面角的难度较大,对于求解二面角还有一种思路就是绕开定位二面角这一环节,通过一些等价的结论或公式或用空间向量等方法来直接求出二面角的大小.本文将根据这两种解题思路对二面角的解题方法做一一介绍.2.1 定位二面角的平面角,求解二面角二面角常见题型中根据所求两面是否有公共棱可分为两类:有棱二面角、无棱二面角.对于前者的二面角的定位通常采用找点、连线或平移等手段来定位出二面角的平面角;而对于无棱二面角我们还必须通过构造图形如延展平面或找公垂面等方法使其有“无棱”而“现棱”再进一步定位二面角的平面角.一、根据平面角的定义找出二面角的平面角 例1 在60的二面角βα--a 的两个面内,分别有A 和B 两点.已知A 和B 到棱的距离分别为2和4,且线段10=AB ,试求:(1)直线AB 与棱a 所构成的角的正弦值; (2)直线AB 与平面α所构成的角的正弦值.分析:求解这道题,首先得找出二面角的平面角,也就是找出60角在哪儿.如果解决了这个问题,这道题也就解决了一半.根据题意,在平面β内作a AD ⊥;在平面α内作α⊥BE ,EBCD //,连结BC 、AC .可以证明a CD ⊥,则由二面角的平面角的定义,可知ADC ∠为二面角βα--a α图1的平面角.以下求解略.例1 正方体ABCD-A1B1C1D1中,求二面角A-BD-C1的大小为 . 例2(2006年江苏试题)如图2(1),在正三角形ABC中,E 、F 、P 分别是AB 、AC 、BC 上的点,满足AE : EB=CF :FA=CP :BP=1:2.如图2(2),将△AEF 折起 到△A1EF 的位置,使二面角A1-EF-B 成直二面角,连 接A1B 、A1P.(Ⅰ)与(Ⅱ)略;(Ⅲ)求二面角B-A1P-F 的余弦值 tan ∠COC 1=2分析与略解:在例1中,图形的对称和谐状态对解题产生了很好的启迪作用,在这里更离不开图形的这种对称和谐性.若取BP 的中点Q ,连接EQ ,则在正三角形ABC 中,很容易证得△BEQ ≌△PEQ ≌△PEF ≌△AEF ,那么在图2(2)中,有A 1Q=A 1F.作FM ⊥A 1P 于M ,连接QH 、QF ,则易得△A 1QP ≌△A 1FP ,△QMP ≌△FMP ,所以∠PMQ=∠PMF=90o ,∠QMF 为二面角B-A 1P-F 的平面角,使题解取得了突破性的进展.设正三角形的边长为3,依次可求得A 1P=5,QM=FM=552,在△QMF 中,由余弦定理得cos ∠QMF=87-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.. ..下载可编辑.. 二面角的求法
一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
例1(全国卷Ⅰ理)如图,四棱锥SABCD中,底面ABCD为矩形,SD底面ABCD,2AD 2DCSD,点M在侧棱SC上,ABM=60°
(I)证明:M在侧棱SC的中点 (II)求二面角SAMB的大小。
练习1()如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,60ABC,E,F分别是BC, PC的中点.(Ⅰ)证明:AE⊥PD; (Ⅱ)若H为PD上的动点,EH与平面PAD所成最大
角的正切值为62,求二面角E—AF—C的余弦值.
二、三垂线法 三垂线定理:在平面的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P在一个半平面上则通常用三垂线定理法求二面角的大小。
例2.(卷理) 如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB//CD,AB=4, BC=CD=2, AA1=2, E、E1、F分别是棱AD、AA1、AB的中点。 (1)证明:直线EE1//平面FCC1; (2)求二面角B-FC1-C的余弦值。
练习2()如图,在四棱锥ABCDP中,底面ABCD是矩形. 已知60,22,2,2,3PABPDPAADAB. (Ⅰ)证明AD平面PAB; (Ⅱ)求异面直线PC与AD所成的角的大小; (Ⅲ)求二面角ABDP的大小.
三.补棱法 本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确的交线时,一般用补棱法解决 例3()如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2. (Ⅰ)证明:平面PBE⊥平面PAB; (Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.
练习3已知斜三棱柱ABC—A1B1C1的棱长都是a,侧棱与底面成600的角,侧面BCC1B1⊥底面ABC。 A B
C
E D
P
EAB
C
FE
AB
CD
D ..
..下载可编辑.. (1)求证:AC1⊥BC; (2)求平面AB1C1与平面 ABC所成的二面角(锐角)的大小。
四、射影面积法(cossS射影) 凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos斜射SS)求出二面角的大小。
例4.(理)如图,在三棱锥PABC中,2ACBC,90ACB, APBPAB,PCAC.
(Ⅰ)求证:PCAB; (Ⅱ)求二面角BAPC的大小;
练习4: 如图5,E为正方体ABCD-A1B1C1D1的棱CC1的中点,求平面AB1E和底面A1B1C1D1所成锐角的余弦值.
五、向量法 向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。 例4:(卷理)如图,在五面体ABCDEF中,FA 平面ABCD, AD//BC//FE,ABAD,M为EC的
中点,AF=AB=BC=FE=12AD (I) 求异面直线BF与DE所成的角的大小;(II) 证明平面AMD平面CDE; 求二面角A-CD-E的余弦值。
练习5、()如图,在直三棱柱111ABCABC中,平面ABC侧面11AABB. (Ⅰ)求证:ABBC; (Ⅱ)若直线AC与平面1ABC所成的角为,二面角1ABCA的大小为,试判断与的大小关系,并予以证明.
A C B
P
ADBC
E
D B C
A
图 ..
..下载可编辑.. 二面角大小的求法的归类分析 一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例1 在四棱锥P-ABCD中,ABCD是正方形,PA⊥平面ABCD,PA=AB=a,求二面角B-PC—-D的大小。
二、三垂线法:已知二面角其中一个面一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角; 例2 在四棱锥P-ABCD中,ABCD是平行四边形,PA⊥平面ABCD,PA=AB=a,∠ABC=30°,求二面角P-BC-A的大小。
三、 垂面法:已知二面角一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;
例3 在四棱锥P-ABCD中,ABCD是正方形,PA⊥平面ABCD,PA=AB=a,求B-PC-D的大小。
四、射影面积法(cossS射影) 凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos斜射SS)求出二面角的大小,其中为平面角的大小,此方法不必在图形中画出平面角; 例4 在四棱锥P-ABCD中,ABCD为正方形,PA⊥平面ABCD,PA=AB=a,求平面PBA与平面PDC所成二面角的大小。
五、补棱法:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。 例5、在四棱锥P-ABCD中,ABCD为正方形,PA⊥平面ABCD,PA=AB=a,求平面PBA与平面PDC所成二面角 的大小。(补形化为定义法)
pABCD
L
H
jABC
D
PH
jABC
D
PH
lABCDP ..
..下载可编辑.. 六、向量法:向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。
例6、()如图,在直三棱柱111ABCABC中,平面ABC侧面11AABB. (Ⅰ)求证:ABBC; (Ⅱ)若直线AC与平面1ABC所成的角为,二面角1ABCA的大小为,试判断与的大小关系,并予以证明.
由此可见,二面角的类型和求法可用框图展现如下: 二面角大小的求法答案 定义法:本定义为解题提供了添辅助线的一种规律。如例1中从二面角S—AM—B中半平面ABM上的一已知点(B)向棱AM作垂线,得垂足(F);在另一半平面ASM过该垂足(F)作棱AM的垂线(如GF),这两条垂线(BF、GF)便形成该二面角的一个平面角,再在该平面角建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1(2009全国卷Ⅰ理)证(I)略 解(II):利用二面角的定义。在等边三角形ABM中过点B作BFAM交AM于点
F,则点F为AM的中点,过F点在平面ASM作GFAM,GF交AS于G,连结AC,∵△ADC≌△ADS,∴AS-AC,且M是SC
的中点,∴AM⊥SC, GF⊥AM,∴GF∥AS,又∵F为AM的中点,∴GF是△AMS的中位线,点G是AS的中点。则GFB即为所
求二面角.. ∵2SM,则22GF,又∵6ACSA,∴2AM, ∵2ABAM,060ABM∴△ABM是等边三角形,∴3BF, 在△GAB中,26AG,2AB,090GAB,∴211423BG F
G .. ..下载可编辑.. 366232222113212cos222FBGFBGFBGFBFG,∴二面角SAMB的大小为)36arccos(
练习1(2008)分析:第1题容易发现,可通过证AE⊥AD后推出AE⊥平面APD,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF上找到可计算二面角的平面角的顶点S,和两边SE
与SC,进而计算二面角的余弦值。(答案:二面角的余弦值为515) 二、三垂线法本定理亦提供了另一种添辅助线的一般规律。如(例2)过二面角B-FC1-C中半平面BFC上的一已知点B作另一半平面FC1C的垂线,得垂足O;再过该垂足O作棱FC1的垂线,得垂足P,连结起点与终点得斜线段PB,便形成了三垂线定理的基本构图(斜线PB、垂线BO、射影OP)。再解直角三角形求二面角的度数。
例2.(2009卷理) 证(1)略解(2)因为AB=4, BC=CD=2, 、F是棱AB的中点,所以BF=BC=CF,△BCF为正三角形,取CF的中点O,则OB⊥CF,又因为直四棱
柱ABCD-A1B1C1D1中,CC1⊥平面ABCD,所以CC1⊥BO,所以OB⊥平面CC1F,过O在平面CC1F作OP⊥C1F,垂足为P,连接BP,则∠OPB为二面角B-FC1-C的一个平面角, 在△BCF为正三角形中,3OB,在Rt△CC1F中, △OPF∽△CC1F,∵
11OPOFCCCF∴22122222OP,
在Rt△OPF中,22114322BPOPOB,272cos7142OPOPBBP,所以二面角B-FC1-C的余弦值为77. 练习2(2008)分析:本题是一道典型的利用三垂线定理求二面角问题,在证明AD⊥平面PAB后,容易发现平面PAB⊥平面ABCD,点P 就是二面角P-BD-A的半平面上的一个点,于是可过点P作棱BD的垂线,再作平面ABCD的垂线,于是可形成三垂线定理中
的斜线与射影容,从而可得本解法。(答案:二面角ABDP的大小为439arctan) 三.补棱法 例3(2008)分析:本题的平面PAD和平面PBE没有明确的交线,依本法显然要补充完整(延长AD、BE相交于点F,连结PF.)再在完整图形中的PF.上找一个适合的点形成二面角的平面角解之。 (Ⅰ)证略解: (Ⅱ)延长AD、BE相交于点F,连结PF. 过点A作AH⊥PB于H,由(Ⅰ)知,平面PBE⊥平面PAB,所以AH⊥平面PBE. 在Rt△ABF中,因为∠BAF=60°,所以,AF=2AB=2=AP. 在等腰Rt△PAF中,取PF的中点G,连接AG. 则AG⊥PF.连结HG,由三垂线定理的逆定理得,PF⊥HG.所以∠AGH是平面PAD和平面PBE所成二面角的平面角(锐角).
在等腰Rt△PAF中, 22.2AGPA在Rt△PAB中,
22225.55APABAPABAHPBAPAB