现代汽车的自动变速器主要采用的是行星齿轮式自动变速器

合集下载

自动变速器行星齿轮系统传动原理

自动变速器行星齿轮系统传动原理

自动变速器行星齿轮系统传动原理自动变速器是一种用于驱动汽车的传动装置,它通过改变发动机输出转速和转矩的传送方式,以满足车辆在不同驾驶工况下的要求。

行星齿轮系统是自动变速器中的重要传动机构,它采用了一组行星齿轮来实现传动和变速功能。

行星齿轮系统由一个太阳轮、一个内齿轮和若干个行星轮组成。

太阳轮通过转动发动机输出的动力驱动,内齿轮与输出轴相连,行星轮则固定在一个行星架上,并通过一个传动链连接太阳轮和内齿轮。

在行星齿轮系统中,太阳轮是输入轮,内齿轮是输出轮,行星轮则起到传动和变速的作用。

当太阳轮转动时,行星轮沿着太阳轮的内外圆分别绕太阳轮的齿轮和内齿轮转动。

由于行星轮同时与太阳轮和内齿轮产生啮合,所以行星轮的运动既受到太阳轮的轮齿个数也受到内齿轮的轮齿个数的影响,从而实现了不同挡位的变速。

在自动变速器中,行星齿轮系统还引入了离合器和制动器来控制行星轮和外壳的运动。

离合器用于将太阳轮、内齿轮和行星轮的其中一部分连接起来,制动器用于将其中一部分固定住。

通过控制离合器和制动器的工作,可以实现行星齿轮系统的不同工作状态,从而实现不同的变速比。

通过行星齿轮系统的传动原理,自动变速器可以实现多个挡位的变速功能。

当需要提高车速时,可以通过离合器和制动器的组合工作,使太阳轮、内齿轮和行星轮之间产生相应的传动比,从而提供较高的输出转速。

当需要提高扭矩时,可以通过改变离合器和制动器的工作状态,使行星轮与外壳之间产生固定的传动比,从而提供较大的输出转矩。

总之,行星齿轮系统是自动变速器中的重要传动机构,它通过太阳轮、内齿轮和行星轮的组合运动,实现了传动和变速的功能。

通过控制离合器和制动器的工作,可以改变行星齿轮系统的工作状态,从而实现不同的变速比,满足车辆在不同驾驶工况下的要求。

行星轮系运动特性方程

行星轮系运动特性方程

传动比
现代汽车上的自动变速器大多采用行星齿 轮机构作为变速器的机械动力传动系统,在一 些有关机械原理及汽车的教科书中,往往给出 典 型 的 辛 普 森 (Simpson) 行 星 轮 系 和 腊 文 脑 (Ravigneavs) 行星轮系等固定轮系传动比计算 公式,对计算研究自动变速器的齿轮系构成起 到了重要的作用。但是,由于教材的局限性, 它无法涵盖所有的行星轮变速器传动比的计 算。更何况,目前不同的汽车厂家生产的自动 变速器的档位数在不断的增加, 以保证汽车 (换 挡)行驶的平顺性。这样,只能使行星轮系的 结构变得更加复杂,他们采用的方法常常是串 联单排行星轮系或者对原有的行星轮系进行改 进,例如对辛普森行星轮系和腊文脑行星轮系 “变种” 。 因此, 教科书和有关资料所提供的数 据,便无法完全准确地对所有行星轮系的传动 比给出全解。 而采用行星轮系运动特性应用式, 对复杂的行星轮系传动比计算,则是一种较好 的方法。
图中,R1、R2、R3 分别为太阳轮、齿圈及 行星轮的节度圆半径;F1、F2、F3 分别是太阳 轮、齿圈和行星轮(架)相互之间的作用力; O1 是太阳轮、齿圈和行星架的运动中心; O2 为行星轮的自转中心。 1.2 单排单行星轮系运动特性方程式的推导 1.2.1 分析行星轮的平衡 (1)根据行星轮力矩平衡条件,有:
F2 R 4 F33 R 4 ,即,F2=F33
由于, F1=F3, F33=F3 (作用力与反作用力) 故, F2= F1 ,F33= F1 (2)根据行星轮力的平衡条件,有:
2.单排双行星轮系运动特性方程应用式
2.1 单排双行星轮系的结构,如图 2 所示。 图中,R1、R2、R3、R4 分别为太阳轮、齿 圈及两个行星轮的节度圆半径;F1、F2、 F3、 F4、F5 分别是太阳轮、齿圈、两行星轮及行星 架相互之间的作用力;A 是太阳轮、齿圈和行 星架的运动中心;B、 C 分别为两个行星轮的 自转中心。

齿轮变速机构

齿轮变速机构
学习了上一个任务后,张华终于了解了自动变速器 中增加了手动变速器中没有的装置,那就是液力变矩装 置,利用变速器油不但可以传递动力,还能起到变速的 作用。但他觉得这种液力变矩装置还是不能完全代替齿 轮变速器,只要在手动变速器的基础上加装一个液力变 矩器就可以实现自动换挡的功能了,为了验证这一设想, 他准备请自做这个实验,你认为他能成功吗?
-3-
现代学徒制模块化教学PPT系列之 汽车底盘电控技术
任务3.1 行星轮变速机构(2课时)
行星轮变速机构结构较复杂,通常由行星轮机构和换 挡执行元件组成。行星轮机构的主要作用是改变传动比和 传动方向,即构成不同的挡位,换挡执行机构的作用是实 现挡位的变换。
-4-
现代学徒制模块化教学PPT系列之 汽车底盘电控技术
(1)见图1-3-4 (a),齿圈固定,太阳轮为主动件且顺 时针转动,而行星架则为被动件。
-9-
现代学徒制模块化教学PPT系列之 汽车底盘电控技术
(2)太阳轮固定,行星架为主动件且顺时针转动,齿 圈为被动件。当行星架顺时转动时,势必造成行星轮的顺 时针转动,结果行星轮带动齿圈顺时针转动。在这里,主 动件行星架的旋转方向和被动件齿圈相同。由于行星架是 一个当量齿数最大齿轮,因此被动的齿圈以增速的方式输 出,两者间传动比小于l。
现代学徒制模块化教学PPT系列之 汽车底盘电控技术
任务3 齿轮变速机构
虽然液力变矩器能在一定范围内自动、无级地改变转 矩比,以适应汽车行驶阻力的变化,然而,由于它的变矩 能力与传动效率之间存在矛盾,且变矩系数一般在1~4 范围内,难以满足汽车实际使用的需要,故在汽车上液力 变矩器仍需与机械变速系统配合使用。
-2-
现代学徒制模块化教学PPT系列之 汽车底盘电控技术

行星齿轮式电控自动变速器的工作原理

行星齿轮式电控自动变速器的工作原理

行星齿轮式电控自动变速器的工作原理1. 介绍行星齿轮式电控自动变速器是一种高效、智能化的变速器装置,广泛应用于现代汽车中。

它通过电控系统控制行星齿轮的组合方式,实现车辆的换挡操作。

本文将详细介绍行星齿轮式电控自动变速器的工作原理。

2. 基本构造行星齿轮式电控自动变速器由多个组成部分构成,包括行星齿轮组、离合器、制动器、液力变矩器等。

其中,行星齿轮组是变速器的核心部件,起到变速的作用。

3. 工作原理行星齿轮组由太阳齿轮、行星齿轮和环齿轮组成。

太阳齿轮与发动机输出轴相连,环齿轮与动力输出轴相连,而行星齿轮则与变速器的各个挡位相连。

3.1 挡位选择在行星齿轮组中,太阳齿轮为输入,环齿轮为输出。

通过选择不同的行星齿轮来改变太阳齿轮与环齿轮之间的传动关系,从而达到不同挡位的选择。

3.2 换挡过程当驾驶员需要换挡时,电控系统会根据车速、转速等信息进行判断,并控制离合器和制动器的工作,通过改变行星齿轮的组合方式来实现换挡操作。

具体来说,换挡过程可分为以下几个步骤:1.离合器切换:在需要换挡时,电控系统首先会切断当前挡位的离合器,断开传动。

同时,预先准备下一个挡位的离合器,以便实现顺畅的换挡。

2.制动器操作:电控系统会根据需要制动的情况来控制制动器的操作。

制动器主要用于暂时锁定行星齿轮,防止不必要的滑动。

3.行星齿轮组组合变化:在离合器切换和制动器操作完成后,电控系统会根据需要的挡位来改变行星齿轮的组合方式。

通过控制制动器和离合器的工作,行星齿轮的不同组合可以实现不同的挡位选择。

4.离合器连接:当行星齿轮组组合变化完成后,电控系统会连接相应挡位的离合器,以重新建立传动关系。

5.离合器释放:当离合器连接完成后,电控系统会逐渐释放离合器,并通过制动器来实现换挡的顺畅完成。

4. 优点和应用行星齿轮式电控自动变速器相比传统变速器具有以下优点:•换挡平顺:利用电控系统控制换挡过程,可以实现平顺的换挡,提高驾驶舒适性。

•换挡快速:电控系统能够快速判断换挡时机,并控制各个部件的操作,从而实现快速换挡。

自动变速器原理实训报告

自动变速器原理实训报告

一、实训目的通过本次实训,使学生了解自动变速器的基本结构、工作原理及维修方法,掌握自动变速器的操作技能,提高学生对汽车传动系统的认识,为今后从事汽车维修工作打下坚实基础。

二、实训内容1. 自动变速器概述自动变速器是现代汽车中一种重要的传动装置,它能够根据汽车行驶速度和发动机负荷自动进行升降档位,从而实现汽车平稳、高效的行驶。

自动变速器主要由液力变矩器、齿轮变速器、控制系统等部分组成。

2. 自动变速器结构(1)液力变矩器:位于自动变速器的最前端,安装在发动机的飞轮上。

它利用液力传动的原理,将发动机的动力传递给自动变速器的输入轴。

其主要作用是起到自动离合器的作用,传递或不传递发动机扭矩至变速器。

(2)齿轮变速器:包括齿轮变速机构和换挡执行机构。

常用的齿轮变速器主要有行星齿轮式和普通齿轮式两种。

其主要作用是进一步扩大液力变矩器传递过来的转速、扭矩的变化范围,并使自动变速器具有空挡和倒挡,用以中断动力传递和实现倒车。

(3)控制系统:自动变速器的核心部分,主要包括油泵、阀体、离合器、制动器以及连接所有这些部件的液体通路。

其主要作用是根据发动机和底盘传动系的负载状况(节气门开度和输出轴转速),对油泵输出到各执行机构的油压加以控制,以控制液力变矩器,控制各离合器和制动器的结合与分离实现自动换档。

3. 自动变速器工作原理(1)液力变矩器将发动机的动力传递给自动变速器的输入轴。

(2)根据汽车行驶速度和发动机负荷,控制系统自动调节油压,控制离合器和制动器的结合与分离,实现升降档位。

(3)齿轮变速器根据档位的变化,进一步扩大转速、扭矩的变化范围,实现汽车平稳、高效的行驶。

4. 实训操作(1)拆装自动变速器:了解自动变速器的结构,掌握拆装方法。

(2)故障诊断:通过观察、听诊、检测等方法,诊断自动变速器的故障。

(3)维修:根据故障原因,进行相应的维修操作。

三、实训总结通过本次实训,我对自动变速器的结构、工作原理及维修方法有了更加深入的了解。

(完整版)拉维娜式自动变速器资料

(完整版)拉维娜式自动变速器资料
设齿圈的齿数与太阳轮的齿数 之比为:
2 / 1 r2 / r1
∵ r2 2a 2b r1 ∴ a b (r2 r1) / 2
由受力平衡条件可得:
F1 FX F2
Fa 2F1 2FX 2F2 Fb
拉维娜式行星齿轮机构的受力分析
∴ 太阳轮力矩M1、齿圈 力矩M2、行星架力矩M3分别 为:
泵轮轴 涡轮轴
拉维娜式各档的传动分析
一、D1档 1.传动路线:涡轮→输入轴→ 离合器K1 →小太阳轮→ 短行星轮
→长行星轮,此时F0作用限制行星轮架逆转→齿圈→输出齿 轮。
拉维娜式各档的传动分析
2. 传动比
∵ 行星架固定(F0 作用使其没
有逆转而被固定),只有后排工作。
n3 0
∴ n1 'n2 (1)n3 0
L位一档与D1档的传动比相同,前者有发动机制动 (B1作用),而后者没有发动机制动。 传动比
i ' n1
n2
拉维娜式各档的传动分析
六、R档
1. 传动路线:涡轮轴→离合器K2 → 大太阳轮 →长行星轮, 由于B1作用,制动行星架。动力从长行星轮→ 齿圈→输出齿
轮。
n3
拉维娜式各档的传动分析
2、传动比 ∵ B1作用制动了行星架, 只有前排工作
一、结构特点 一个单行星轮行星排,一个双行星轮行星排组成. 长行星轮共用,齿圈共用,行星架共用。 二、运动方程 前排:n1 n2 (1 )n3 0 后排:n1' 'n2 (1 ' )n3 0 三、优点:
尺寸小,传动比范围大,两排可以实现四档。
四、拉维娜式行星齿轮机构变速器原理
1. 结构原理图
'n2
(1 ' )n3

汽车驾驶员技师考试提纲精华版[1]

汽车驾驶员技师考试提纲精华版[1]

考试提纲说明:1)查找时先查看黑体字部分;2)解答为简答,答题时请酌情组织适当语言补充。

第一章:汽车驾驶员专业知识第一题.汽油机电控装置主要有哪些?及其工作原理。

(1)电控燃油喷射系统①喷油量控制,电控单元将发动机空气流量信号作为主控信号,确定基本控油量;②喷油正时控制,根据发动机各缸的发火顺序,将喷射时间控制在进气行程内的最佳时刻;③断油控制分为减速断油和超速断油控制,前者是指汽车减速时电控单元切断喷油器的控制电路,使得停止喷油,太低速时又恢复供油,后者是指超速时候电控单元使喷油器停止喷油防止超速。

(2)电控点火系统①点火提前角控制,发动机运转时,电控单元根据发动机的转速和负荷信号,确定基本点火提前角,并根据其他信号进行修正,最后确定点火提前角,并向电子点火控制器输出点火控制信号,控制点火系统的工作。

②通电时间与恒流控制,电控单元可根据蓄电池电压及转速等信号,控制点火线圈一次电路的通电时间,恒流控制电路使得一次电流在极短时间内增长到额定值,减小转速对二次电压的影响,改善点火特性。

③爆燃控制,电控单元收到爆燃传感器的信号后,对信号进行滤波处理并判断其是否在设定范围内,当发生爆燃时,立即推迟点火时刻。

(3)怠速控制根据发动机怠速状态的要求,控制怠速进气量从而稳定一定的怠速转速。

(4)排放控制①EGR,废气再循环控制,由电控单元控制EGR阀的开度,使排放的气体进行再循环,以降低Nox的排放量。

②开环与闭环控制,在装有氧传感器及三效催化转换器的发动机中,电控单元根据发动机的工况及氧传感器反馈的空燃比信号,确定进行开环控制与闭环控制。

③二次空气喷射,电控单元根据发动机的工作温度,控制新鲜空气喷入排气歧管或三效催化转换器中,以减少排气污染。

④燃油蒸汽控制,电控单元控制活性燃油蒸汽排放装置的工作,以降低燃油蒸发污染。

(5)进气增压控制①可变进气道控制,电控单元通过控制真空电磁阀来控制动力阀的开闭,从而改变进气量,改善发动机的输出转矩与动力。

自动变速器行星齿轮结构原理

自动变速器行星齿轮结构原理

自动变速器行星齿轮结构原理自动变速器是汽车动力传动系统中非常重要的一部分,它通过改变不同齿轮之间的传动比,使发动机的输出功率通过传动系统传递到车轮上,实现车辆的速度调节和行驶方向的改变。

其中,行星齿轮结构是自动变速器的一种常见设计,具有结构紧凑、传动效率高等优点。

行星齿轮结构由太阳齿轮、行星齿轮和内齿圈组成。

太阳齿轮是固定齿轮,内齿圈则是输入轴,行星齿轮则是在太阳齿轮和内齿圈之间的齿轮,能够以不同方式连接到输出轴上。

行星齿轮结构的原理是通过改变太阳齿轮、行星齿轮和内齿圈之间的传动比来改变输出轴的转速。

行星齿轮结构的变速原理是基于行星齿轮的连接方式。

行星齿轮通常由行星齿轮轴和一对齿轮组成。

行星齿轮的齿轮数量通常比太阳齿轮和内齿圈的齿轮数量多。

在变速器中,太阳齿轮通过输入轴与发动机连接,而内齿圈则通过输出轴与车轮相连。

太阳齿轮的转速决定了输入轴的转速,而内齿圈的转速决定了输出轴的转速。

当太阳齿轮转动时,行星齿轮会绕着太阳齿轮旋转。

行 planetgear ,则沿太阳轴旋转。

当行星轮移动时,内部枢轴和外部转台也挂钩。

行星轮的旋转和行星轴的旋转方向正好相反。

在行星齿轮结构中,太阳齿轮与行星齿轮通过一对啮合的齿轮传递动力,而行星齿轮与内齿圈通过另一对啮合的齿轮传递动力。

根据太阳齿轮、行星齿轮和内齿圈之间的连接方式,行星齿轮结构可以实现不同的传动方式。

当太阳齿轮与行星齿轮连接时,输出轴的转速等于内齿圈与太阳齿轮的转速之差,此时输出轴的转速较低。

当太阳齿轮与内齿圈连接时,输出轴的转速等于内齿圈与太阳齿轮的转速之和,此时输出轴的转速较高。

通过改变太阳齿轮、行星齿轮和内齿圈之间的连接方式,变速器可以实现不同的传动比,从而实现车辆的加速、匀速和减速等行驶状态。

总之,行星齿轮结构是自动变速器中一种常见的传动设计,通过改变太阳齿轮、行星齿轮和内齿圈之间的传动比,实现输出轴的转速调节。

行星齿轮结构具有结构紧凑、传动效率高等优点,在现代汽车中得到广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现代汽车的自动变速器主要采用的是行星齿轮式自动变速器,其中按照变速器内行星齿轮机构的连接关系不同,有很多种。

与辛普森式行星变速机构不同的是,改进辛普森行星自动变速器将原辛普森式行星变速机构的公共太阳轮拆开,即两个行星排中的太阳轮各自独立,前行星架后齿圈或者前齿圈后行星架连接在一起作为整个机构的输入或输出单元,通过两个单排单级行星齿轮机构,加之相应的换挡执行元件,最多可实现四个前进档和一个倒挡,这一点是比经典辛普森进步的地方,原来经典辛普森最多可以实现三个前进挡和一个倒挡(在不增加行星排的情况下)。

目前,美国的通用、福特汽车公司采用的自动变速器多为改进辛普森式行星齿轮变速器,日本马自达汽车自动变速器也是采用改进辛普森式,这可能是源于马自达与福特的“血缘”关系吧。

通用公司生产的4T65E自动变速器为典型的改进辛普森式行星齿轮式自动变速器,它适用于发动机横置,前轮驱动的车辆,用于上海通用公司生产的别克及别克君威乘用车。

4T65E自动变速器适用车型除别克系列外,还用于凯迪拉克、庞蒂克、奥兹莫比尔、雪弗兰等车型。

通用别克4T65E四档改进辛普森行星齿轮自动变速器传动简图如下:
4T65E的典型特点是前排行星架和后排齿圈连接在一起作为输入端,后排行星架和前排齿圈故连在一起作为输出端。

通用别克4T65E四档改进辛普森行星齿轮自动变速器挡位图
4T65E的挡位分析
1)变速杆在P/N位时,离合器C1结合,驱动单向离合器F1外圈,单向离合器F1锁止,动力传至前排太阳轮。

但此时前排太阳轮,前排行星
架/后排齿圈、后排太阳轮三个部件中没有固定部件,都在空转,没有动力传递。

2)当变速杆位于D位时,在D-1挡,离合器C1结合,驱动单向离合器F1外圈,单向离合器F1锁止,动力传至前排太阳轮,前排太阳轮驱动前排行星架/后排齿圈同向旋转;制动器B1工作,单向离合器F2锁止,防止后排太阳轮反向旋转,则后排行星架/前排齿圈被同向减速驱动,车辆前行。

单向离合器F1和单向离合器F2的锁止是动力传递不可缺少的环节。

但当转矩来自车轮时(车辆滑行),前排太阳轮有同向增速旋转的趋势,则F1和F2滑转,动力不能反向传递到发动机,所以,D-1挡没有发动机制动作用。

当然如果想利用滑行以省油的话,最好没有发动机制动哦,因为没有发动机制动的时候,滑行的更远。

3)当变速杆处于D位时,在D-2挡,离合器C2结合,通过2挡驱动套驱动前排行星架/后排齿圈旋转,制动器B1工作,低速挡单向离合器F2锁止,后排太阳轮被固定,则后排行星架/前排齿圈被同向减速驱动,车辆前进。

如同上面的分析,车辆在D-2挡也没有发动机制动作用。

4)当变速杆处于D位时,在D-3挡,离合器C2结合,通过2挡驱动套将动力传给前排行星架/后排齿圈;同时离合器C3结合,单向离合器F3锁止,使前排太阳轮不能超速旋转,超速被限定在3挡离合器的转速(输入转速)。

这就同时驱动了前排行星架和前排太阳轮,根据行星传动的特点,这时整个行星齿轮机构整体旋转,实现直接挡。

当转矩来自车轮时(滑行),此时单向离合器F3超越,不能将动力传给发动机,因此D-3挡没有发动机制动。

5)当变速杆处于D时,在D-4挡,离合器C2接合,通过2挡驱动套将动力传给前排行星架/后排齿圈;制动器B4工作,将前排太阳轮固定,则前排齿圈/后排行星架为同向输出。

在D-4挡,由于没有单向离合器参与制动,因此有发动机制动。

6)当变速杆处于R位时,离合器C1接合,单向离合器F1锁止,驱动前排太阳轮旋转,制动器B3工作,将前排行星架固定,则前排齿圈/后排行星架为反向输出。

7)当变速杆处于3位时,变速器的挡位仅在1,2,3挡之间变化,不能升入4挡。

3-1挡,3-2挡与D-1,D-2挡完全相同,没有发动机制动。

在3-3挡,离合器C2,C3接合,整个行星齿轮机构整体回转,获得直接挡,离合器C1也接合,它不传递动力,仅是为了滑行时获得发动机制动作用。

8)当变速杆处于2位时,变速器的挡位仅能在1,2挡之间变化,不能升入更高档。

2-1挡与D-1挡相同,不能获得发动机制动作用。

2-2挡与D-2挡的不同之处就是B2加入了D-2挡的工作,将后排太阳轮双向抱死,以获得发动机制动,这一点同原辛普森式变速器的做法是一样的。

9)当变速杆处于1位时,动力传递路线与D-1挡相同,只是制动器B2加入了工作,离合器C3也加入接合,通过单向离合器F3防止前排太阳
轮顺时针滑转。

相关文档
最新文档