导数在求极限中的应用

合集下载

考研数学-专题5 导数的概念及应用

考研数学-专题5  导数的概念及应用

f (x), x 0;
F
(
x)
0, x 0;
f (x), x 0;
若 f (0) 1, 则
lim F(x) F(0) lim f (x) f (0) f (0) 1
x0
x
x0
x
lim F(x) F(0) lim f (x) f (0)
x0
x
x0
x
lim f (x) f (0) f (0) 1
x0
x0

lim ln[ f (x) ex ] ln 2
x0
x
从而 lim ln[ f (x) ex ] 0, lim f (x) f (0) 0,
x0
x0
当 x 0 时, ln[ f (x) ex ] ln[1 f (x) ex 1] ~ f (x) ex 1
则 lim ln[ f (x) ex ] lim f (x) ex 1 f (0) 1 ln 2
1
【例 2】已知 f (x) 在 x 0 处连续,且 lim[ f (x) ex ]x 2, 则 f (0) ( ) x0
(A)不存在
(B)等于 e2 ,
(C)等于 2,
(D)等于 1 ln 2
1
ln[ f ( x)e x ]
【解】 由于 lim[ f (x) ex ]x lim e x 2
3
f (x0 n ) f (x0 ) f (x0 )n n
(其中 lim 0 ) n
f
( x0
n ) f (x0 n n
n)
f
(
x0
)
n n
n n
n n n n
n n n n n n
0
则 lim n

导数在求极限中的应用

导数在求极限中的应用

引言极限是研究变量的变化趋势的基本工具。

在高等数学中许多基本概念和研究问题的方法都和极限密切相关,如函数的连续、导数、定积分和无穷级数等都是建立在极限的基本之上的。

极限的思想和方法产生某些实际问题的精确解,并且对数学在实际中的应用也有着重要的作用。

因此研究生考试往往把求极限问题作为考核的一个重点,而在不同的函数类型条件下所采用的求极限的技巧是各不相同的,因此大家要学会判断极限的类型,熟练和灵活的掌握各种技巧的应用。

本文主要介绍了导数在求极限中的基本应用,包括导数定义法,L ’Hospital 法则,Taylor 展式法及微分中值定理在求极限中的应用。

旨在让大家掌握各种导数方法适用的函数类型,要注意的事项及它的一些推广结论。

达到能灵活运用导数方法去求解一些极限问题以使问题简单化的目的。

第1章导数在求极限中的基本应用1.1导数定义法这种极限求法主要针对所给的极限不易求,但是函数满足导数定义的形式且能够确定的变化趋向的极限易求出时,可以用此法比较方便的求出极限.定义若函数()y f x =在其定义域中的一点0x 处极限存在,则称在0x 处可导,称此极限值为()f x 在0x 处的导数,记为0()f x '.显然,()f x 在0x 处的导数还有如下的等价定义形式:000()()()limx x f x f x f x x x →-'=-.下面通过两个例子让大家逐步领悟导数定义法的内涵例1求极限tan sin 0limsin b x b xx xαα+-→-.解由于tan sin tan sin tan sin tan sin sin b x b xb x b b b xx xxxxαααααα+-+----=+.所以,tan sin tan sin 0tan limlimlimsin tan sin sin b x b xb x b b b xx x x xxxxxαααααα+-+-→→→---=+ln ln 2ln b b b αααααα=+=.例2(本题选自《数学分析中的典型问题与方法》裴礼文.第二版.)设(0)f k '=,试证00()()lim a b f b f a k b a-+→→-=-.证明(希望把极限式写成导数定义中的形式)(拟合法思想:把要证的极限值k 写成与此式相似的形式) 两式相减,可得因0a -→,0b +→,所以有0b a >>,1a bb a b a<--又因(0)f k '=,故当0a -→,0b +→时右端极限为零,原极限获证.1.2L ’Hospital 法则本节主要总结了L ’Hospital 法则在求未定式极限中的应用,需要注意的问题,并深入分析了使用L ’Hospital 法则时实质是对无穷小或无穷大进行降阶.另外还指出L ’Hospital 法则与其他极限方法如无穷小的替换的结合.1. L ’Hospital 法则L ’Hospital 法则作为Cauchy 中值定理的重要应用,在计算未定式极限中扮演了十分重要的角色,这是因为对于未定式极限来讲极限是否存在,等于多少是不能用极限的四则运算法则解得的,而通过对分子分母求导再求极限能够很有效的计算出未定式的极限. 关于未定式:在计算一个分式函数的极限时,常常会遇到分子分母都趋于零或都趋于无穷大的情况,由于这是无法使用“商的极限等于极限的商”的法则,运算将遇到很大的困难.事实上,这是极限可能存在也可能不存在.当极限存在时极限值也会有各种各样的可能.我们称这种类型的极限为0未定型或∞∞未定型.事实上,未定型除以上两种类型外还有0⋅∞,∞-∞,1∞,00,0∞等类型. L ’Hospital 法则: 定理[]4若函数f 和g 满足:①0lim ()lim ()0x x x x f x g x →→==;②在点0x 的某空心邻域00()U x 内可导,且()0g x '≠; ③0()lim()x x f x A g x →'='(A 可为有限数或∞); 则00()()limlim ()()x x x x f x f x A g x g x →→'=='. 注:以上结论在0x x ±→,或是x →∞(包括+∞和-∞)时也是成立的.2. L ’Hospital 法则的应用a) L ’Hospital 法则能处理的基本未定型极限是00型或∞∞型例1求lim n x x x e λ→∞(n 为正整数,0λ>).(∞∞型)解连续使用L ’Hospital 法则n 次122(1)!lim lim lim lim 0n n n x x xn x x x x x x nx n n x n e e e e λλλλλλλ--→∞→∞→∞→∞-===⋅⋅⋅==. 从以上例中可看出L ’Hospital 法则的实质是对无穷小或无穷大进行降阶. 下面再看两个L ’Hospital 法则在解含有变限积分问题中的应用.例2求03(1cos )limxx t dt x→-⎰.分析:因为0(1cos )x t dt -⎰可导从而连续,所以此问题属于0型,可用L ’Hospital 法则求解.解032(1cos )(1cos )limlim03xx x t dt t dt x x →→--==⎰⎰.例3求极限110()lim x x f t x dt t αα++→⎰,其中0α>,()f x 为闭区间[]0,1上的连续函数. 解111100()()lim lim 1x x x x f t dt f t t x dt t x αααα++++→→=⎰⎰因0x →时,1x α单调递减趋于+∞, 使用L ’Hospital 法则,则111110001()()()()(0)lim lim lim lim 11xxx x x x f t f x dt f t f x f t x x dt tx xααααααααα+++++++→→→→+-====-⎰⎰. (2)在使用L ’Hospital 法则时,必须验证条件是否满足①所求的极限是否未定型极限;②求完导数后极限是否存在.其中第二条容易忽略.例4设()f x 为可导函数,(0)(0)1f f '==,求极限0(sin )1limsin x f x x→-.解0(sin )1limsin x f x x →-00cos (sin )lim lim (sin )(0)1cos x x x f x f x f x→→'⋅''====. (此题不能用L ’Hospital 法则求解,错误出在题目中没有给出在处连续的条件,所以不知道的极限是否存在,即不满足条件②,题目中只是说在处可导,而定理中要求在的某个邻域中可导) 当求导后的极限不存在时,原极限仍可能有极限,所以求导后极限不存在只能说明此时L ’Hospital 法则失效,不能说原式无极限.(3)对于其他未定型或极限0⋅∞、∞-∞、1∞、00、0∞等类型,可分别通过做商、通分、取对数转化成00型或∞∞型的极限,再使用L ’Hospital 法则.例5求极限1lim(1)tan2x x x π→-.解2111121122lim(1)tanlimlimlim sin 22cotcsc222x x x x xx x x x xπππππππ→→→→---====-.注:这是将0⋅∞型转化成了00型,如果选择不当把它化成∞∞型,则解题过程将会比较复杂.转化时一般规律是选择求导后式子简单的那种类型.例6求极限01limcot x x x→-.解将它改写成1cos sin cot sin x x x x x x x--=就化成了∞∞型,于是有01limcot x x x →-2000cos sin sin cos sin cos lim lim lim 0sin 2x x x x x x x x x x x xx x x x→→→---====. “1∞、00、0∞”可以通过如下转化化成型或型:例7 求极限2lim (arctan )x x x π→+∞.(1∞型)解因为2lim ln(arctan )2lim (arctan )x x x xx x eππ→+∞→+∞=而2lnarctan 2lim ln(arctan )lim1x x x x x xππ→+∞→+∞=所以22lim ln(arctan )2lim (arctan )x x x xx x eeπππ→+∞-→+∞==.例8 求极限1ln 0lim(cot )xx x +→.(0∞型)解因为当0x +→时tan x x :,所以0ln 111lim 1ln ln ln ln 00011lim (cot )lim ()lim ()tan x xxxx xx x x x e e x x+→+++--→→→====.(4)利用L ’Hospital 法则求数列极限——Stolz 公式Stolz 公式可以说是数列的L ’Hospital 法则,它对求数列的极限很有用. 定理1[4](∞∞型的Stolz 公式) 设{}n x 严格递增(即n N ∀∈有1n n x x +<)且lim n n x →∞=+∞,若①11limn n n n n y y a x x -→∞--=-(有限数),则lim n n nya x →∞=;②a 为+∞或-∞,结论仍然成立.定理2[4](0型的Stolz 公式)设n →∞时0n y →,{}n x 严格单调下降趋于零,若11limn n n n n y y a x x -→∞--=-,则limnn ny a x →∞=(其中a 为有限数,+∞或-∞). 例9 求极限limln n n n →∞.解由于1lim lim 1ln x x x x x→+∞→+∞==+∞,所以limln n nn→∞=+∞. 例10证明1121lim 1p p p p n n n p +→∞++⋅⋅⋅+=+(p 为自然数).证11112(1)lim lim (1)p p p pp p p n n n n nn n +++→∞→∞++⋅⋅⋅++=+- 1(1)1lim (1)1(1)12p n pp n p p p p n n →∞-+==+++++⋅⋅⋅+. 下面说明Stolz 公式必要时可以重复使用例11 02ln nk nk n CS n ==∑(其中(1)(1)12kn n n n k C k-⋅⋅⋅-+=⋅⋅⋅⋅),求lim n n S →∞.解因2n 单调递增趋于+∞,可应用Stolz 公式(再次使用Stolz 公式)1ln()(1)ln(1)ln ln(1)1limlim(21)(21)22nn n n n n n n n n n n →∞→∞+++--+===+--.例12 求极限121112122223222lim()()()212121n n n n n ---→∞⋅⋅⋅---.解先取对数,再取极限.令121112122223222lim()()()212121n n n n n n x ---→∞=⋅⋅⋅---应用Stolz 公式故,原式1lim 2n n x →∞==.(5)L ’Hospital 法则与其他方法相结合使用,如与无穷小相结合.例13求极限22201cos lim sin x x x x →-.解422240011cos 12lim lim sin 2x x xx x x x →→-==. 有个别题目在使用L ’Hospital 法则时会出现循环现象,此时不能用L ’Hospital 法则求解,如下面一例.例14求极限lim x xx x x e e e e --→+∞-+.解221lim lim11x x xx x xx x e e e e e e ----→+∞→+∞--==++. 第2章Taylor 展式在求极限问题中的应用本节介绍运用Taylor 公式求解一些较复杂的未定型的函数极限及中值点的极限、无穷远处的极限.定理1[4](带Peano 余项的Taylor 公式)设()f x 在0x 处有n 阶导数,则存在0x 的一个邻域,对于该邻域中的任一点x ,成立 其中余项()()n r x 满足()0()(())n n r x o x x =- 定理2[4](带Lagrange 余项的Taylor 公式)设()f x 在[],a b 上有n 阶连续导数,且在(,)a b 上有1n +阶导数.设[]0,x a b ∈为一定点,则对于任意[],x a b ∈,成立其中余项()()n r x 满足(1)()10()()()(1)!n n n f r x x x n ξ++=-+,ξ在x 和0x 之间. 注:函数()f x 在0x =处的Taylor 公式又称为函数()f x 的Maclaurin 公式. 几个常用函数的Maclaurin 公式:(为了便于书写,我们写出带Peano 余项的Taylor 公式)①231()2!3!!nxn x x x e x o x n =++++⋅⋅⋅++;②352122sin (1)()3!5!(21)!n nn x x x x x o x n ++=-+-⋅⋅⋅+-++; ③24221cos 1(1)()2!4!(2)!n n n x x x x o x n +=-+-⋅⋅⋅+-+; ④230123(1)()()()()()()n n nx x x x x o x αααααα+=++++⋅⋅⋅++ 其中α为任意实数,(1)(1)()!k k k αααα-⋅⋅⋅-+=,并规定0()1α=;⑤2341ln(1)(1)()234nn n x x x x x x o x n -+=-+-⋅⋅⋅+-+; ⑥3521122arctan (1)()3521n n n x x x x x o x n +-+=-+-⋅⋅⋅+-++. 1.用Taylor 公式巧解未定型极限由于L ’Hospital 法则的实质是对分子分母进行降阶,这意味着当遇到分子分母都是较高阶的情况时,必须多次应用L ’Hospital 法则,遇到分子分母有带根号项时,会越微分形式会越复杂.而用公式则可进一步到位,所以在求解未定型极限时,应该灵活使用公式法解决.从而避免应用法则出现的解题困难. 例1求极限2240cos limx x x e x -→-.解这是个0未定型极限问题,如果使用L ’Hospital 法则,则分子分母需求导四次,但若使用Taylor公式,则44401()112lim 12x x o x x →-+==-. 例2求极限0x →解这也是个0未定型的极限问题,因2441()624x x o x =-+,4224sin ln(1sin )sin (sin )2x x x o x +=-+用324sin [()]6x x x o x =-+代入,即有42245ln(1sin )()6x x x o x +=-+于是240ln(1sin )1)lim x x x→+- 424244405[()]6[()]76624lim 12x x x x x o x o x x →-+--+==-. 2.用Taylor 公式求中值点的极限例3(《本题选自数学分析中的典型问题与方法》裴礼文.第2版.第251页) 设(1)()f x 在00(,)x x δδ-+内是n 阶连续可微函数,此处0δ>; (2)当2,3,(1)k n =⋅⋅⋅-时,有()0()0n f x =但是(1)0()0n f x +≠; (3)当0h δ≠<时有000()()(())f x h f x f x h h hθ+-'=+①其中0()1h θ<<证明:lim ()h h θ→∞=证我们要设法从①式中解出()h θ,为此我们将①式左边的0()f x h +及右边的0(())f x h h θ'+在0x 处展开.由条件(2)知12,(0,1)θθ∃∈使得于是①式变成从而()h θ=因12,()(0,1)h θθθ∈,利用()()n f x的连续性,可得lim ()h h θ→∞=注:此题若用L ’Hospital 法则做将不胜其烦.例4设()()()()(),(01)!n n h f x h f x hf x f x h n θθ'+=++⋅⋅⋅++<<, 且(1)()0n f x +≠,证明:01lim 1h n θ→=+. 提示:1()(1)1()()()()()()!(1)!n n n n n h h f x h f x hf x f x f x o h n n +++'+=++⋅⋅⋅++++ 从而有()()(1)()()()()1n n n f x h f x h hf x o h h n θθθ++-=++. 证明2()11()()()()()2!!n n f x h f x hf x f x h f x h h n θ'''+=+++⋅⋅⋅++ 另0,h →得到(1)(1)01lim ()()1n n h f x f x n θ++→⋅=+,再由(1)()0n f x +≠,两边消去(1)()n f x +,即得到01lim 1h n θ→=+.3.用Taylor 公式求无穷远处的极限例5(《本题选自数学分析中的典型问题与方法》裴礼文.第2版.第249页)设函数()x ϕ在[)0,+∞上二次连续可微,如果lim ()x x ϕ→+∞存在,且()x ϕ''在[)0,+∞上有界,试证:lim ()0x x ϕ→+∞'=.证明要证明lim ()0x x ϕ→+∞'=,即要证明:0,0ε∀>∃∆>当0∆>时()x ϕε'<利用Taylor 公式,210,()()()()2h x h x x h h ϕϕϕϕξ'''∀>+=++即11()[()()]()2x x h x h h ϕϕϕϕξ'''=+--①记lim ()x A x ϕ→+∞=因ϕ''有界,所以,0M ∃>使得()x M ϕ''≤,(对x a ∀≥)故由①知211()(()())2x x h A A x Mh h ϕϕϕ'≤+-+-+②对0ε∀>,首先可取0h >充分小,使得2122Mh ε<,然后将h 固定,因lim ()x x A ϕ→+∞=,所以0∃∆>,当0x >时,从而由②式,即得()22x εεϕε'<+=.第3章微分中值定理在求极限问题中的应用微分中值定理是Role 定理,Lagrange 中值定理,Cauchy 中值定理和Taylor 中值定理的统称。

16种求极限的方法

16种求极限的方法

16种求极限的方法在微积分中,求极限是一项重要的技巧和方法,用于研究函数在其中一点或趋于其中一点时的行为。

求极限的方法有很多种,下面将介绍16种常见的求极限方法。

1.代入法:将待求极限中的变量替换成极限点处的值,如果代入后得到一个有界的数或者可数收敛,则该极限存在。

2.四则运算法则:利用加法、减法、乘法和除法的性质进行极限运算。

例如,如果两个函数的极限都存在,则它们的和、差、积以及商(除数非零)的极限均存在。

3.夹逼定理:如果两个函数在其中一点附近夹住一个函数,并且夹住的函数的极限存在,则被夹住的函数的极限也存在,并且等于夹住的函数的极限。

4.极限的唯一性:如果存在一个数L是函数f在其中一点的极限,那么该极限是唯一的。

5.极限的有界性:如果函数f在其中一点的极限存在,则函数f在该点附近必定有界。

反之,如果函数f在其中一点附近有界,那么该点处的极限必定存在。

6.无穷小量和无穷大量:无穷小量是指当自变量趋于其中一点时,函数值趋近于零的量,无穷大量是指当自变量趋于其中一点时,函数值趋近于无穷的量。

利用无穷小量和无穷大量的性质,可以简化极限的求解过程。

7. 根式求极限:使用L'Hopital法则来解决根式的极限问题,即将根式转化为分式,再求导数。

8.多项式求极限:将多项式的极限转化为无穷小量的极限,利用低阶无穷小量和高阶无穷小量的性质进行极限计算。

9.取对数法:将函数取对数后,利用对数的性质进行极限计算。

10.换元法:通过进行合适的变量替换,将待求极限转化为更容易求解的形式。

11.不等式运算法:通过使用不等式的性质,对函数进行合理的估计,从而求解极限。

12.导数法则:利用导数的性质,对函数进行极限计算。

例如,利用导数的定义和求导法则可以方便地求解一些函数的极限。

13.递推法:对于一些递归定义的数列或函数,可以通过递推法求解其极限。

14.泰勒展开法:利用函数对应点附近的泰勒展开式,将函数的极限转化为级数的极限,进而求解极限。

导数在求极限中的应用

导数在求极限中的应用

引言极限是研究变量的变化趋势的基本工具。

在高等数学中许多基本概念和研究问题的方法都和极限密切相关,如函数的连续、导数、定积分和无穷级数等都是建立在极限的基本之上的。

极限的思想和方法产生某些实际问题的精确解,并且对数学在实际中的应用也有着重要的作用。

因此研究生考试往往把求极限问题作为考核的一个重点,而在不同的函数类型条件下所采用的求极限的技巧是各不相同的,因此大家要学会判断极限的类型,熟练和灵活的掌握各种技巧的应用。

本文主要介绍了导数在求极限中的基本应用,包括导数定义法,L' Hospital 法则,Taylor 展式法及微分中值定理在求极限中的应用。

旨在让大家掌握各种导数方法适用的函数类型,要注意的事项及它的一些推广结论。

达到能灵活运用导数方法去求解一些极限问题以使问题简单化的目的。

例1求极限limb -tanx b _sin X a -asin x解由于b-lanx b -sinxct -a b tanx b , b b-sinxta n x= -------------------------- r ------------------ sin x tan x sin x sin x所以, limx—0b -tanx b -sinxa _asin xb -tanx b b b -sinxa —a tan x.. □ -a二lim limx 0 tan x sin x x 2tan x sin x第1章导数在求极限中的基本应用1.1导数定义法这种极限求法主要针对所给的极限不易求,但是函数满足导数定义的形式且能够确定的变化趋向的极限易求出时,可以用此法比较方便的求出极限.定义若函数y = f (x)在其定义域中的一点X)处极限也y r f (X o+也X)- f(X o)lim lim - —u0 .)x 匸J-:x存在,则称在X o处可导,称此极限值为f (X)在X-处的导数,记为f(X o).显然,f(X) 在X o处的导数还有如下的等价定义形式:f(X)- f(X-)X — X-F面通过两个例子让大家逐步领悟导数定义法的内涵=:b l n 二心b l n「- 2-b l n〉.例2 (本题选自《数学分析中的典型问题与方法》裴礼文.第二版.)设 f (0) = k,试证lim f(b)「f(a) = k.证明(希望把极限式写成导数定义中的形式)f(b) -f (a) b -a(拟合法思想:把要证的极限值 k 写成与此式相似的形式)0<f(b)-f(a) _k .::: b |f(b)-f(O) b -a|b -a|| b -ka f(a)-f(O)b -a a因 a > 0-,a bb — a b — ab f(b)-f(0) a f(a)-f(O) b -a b b -a aab —a两式相减,可得又因f (0) =k ,故当a > 0 - b > 0 •时右端极限为零,原极限获证.1.2 L ' Hospital 法则本节主要总结了 L ' Hospital 法则在求未定式极限中的应用,需要注意的 问题,并深入分析了使用L ' Hospital 法则时实质是对无穷小或无穷大进行降阶 另外还指出L ' Hospital 法则与其他极限方法如无穷小的替换的结合.1. L ' Hospital 法则L ' Hospital 法则作为Cauchy 中值定理的重要应用,在计算未定式极限中扮 演了十分重要的角色,这是因为对于未定式极限来讲极限是否存在,等于多少是 不能用极限的四则运算法则解得的,而通过对分子分母求导再求极限能够很有效 的计算出未定式的极限. 关于未定式:在计算一个分式函数的极限时,常常会遇到分子分母都趋于零或都趋于无穷 大的情况,由于这是无法使用“商的极限等于极限的商”的法则,运算将遇到很 大的困难.事实上,这是极限可能存在也可能不存在.当极限存在时极限值也会旳有各种各样的可能.我们称这种类型的极限为-未定型或未定型.事实上,未°°b > 0 ■,所以有b 0 a ,nnJlim 二=lim 竺x x, e'X二limHim 半X .; : ,-0 .求lim x )0x m 0x0 (1 -cost)dt3x例 3 求极限 lim.x'.xf^dt ,其中0,f (x)为闭区间1.0,11上的连续函数.定型除以上两种类型外还有0.:二_::, 1:, 00, ::0等类型. L ' Hospital 法则: 定理和若函数f 和g 满足:① lim f (x) = lim g(x) = 0 ;^Xo^^0② 在点X 的某空心邻域u 0(x 。

函数的极限和导数的极限的关系

函数的极限和导数的极限的关系

函数的极限和导数的极限的关系
函数的极限和导数的极限是密不可分的,它们之间有着紧密的关系。

当我们在研究一个函数的极限时,实际上是在研究这个函数的导数的极限。

因为导数可以反映出函数的增减性,而函数的极限就是反映函数在某个点附近的趋势。

因此,如果我们知道了一个函数在某个点的导数的极限,就可以推导出它在这个点的函数极限。

这种关系不仅仅在理论上有用,还在实际问题中有着重要的应用,比如求解最优化问题、研究物理问题等等。

因此,深入理解函数的极限和导数的极限的关系,对于数学和应用科学的学习都是至关重要的。

- 1 -。

导数在求值(极值、最值)中的应用

导数在求值(极值、最值)中的应用

补充习题1.1.11、判定下列函数奇偶性?A .)12sin()(++=x x x fB .)1ln()(2++=x x x f C .xe x xf x-=)( D .xxx x f sin 1)(2⋅-=2、判断下列说法是否正确(1)复合函数y=f[g(x)]的定义域即为u= g(x) 的定义域.(2)若y=y(u)为偶函数,u=u(x)为奇函数,则y=y[u(x)] 为偶函数. (3) 设⎩⎨⎧<+≥=010)(x x x xx f ,由于y=x 和y=x+1都是初等函数,所以f(x) 是初等函数.(4)设y=arcsinu,u=2x +2,这两个函数可以复合成一个函数y=arcsin(2x +2). 3、下列函数的定义域:(1)211xx y --=; (2)⎪⎩⎪⎨⎧=≠=.0,0,0,1sin x x xy 4、设)(x f y =的定义域为[]2,1,求)ln 1(x f -的定义域.5、指出下列初等函数由哪些基本初等函数复合而成?(1)xey 12sin=; (2)))1ln(arccos(2-=x y . (3)y=)35(si n 2+x6、将下列函数复合成一个函数(1)y=sinu,u=v ,v=2x-1 (2)y=lgu,u=1+v,v=2x补充习题1.1.21、.用铁皮做一个容积为的圆柱形罐头筒,试将它的全面积表示成底半径的函数,并确定此函数的定义域.2、某厂生产产品1000吨,定价为130元/吨.当售出量不超过700吨时,按原定价出售;超过700吨的部分按原价的九折出售.试将销售收入表示成销售量的函数.3、某手表厂生产一只手表的可变成本为15元,每天的固定成本为2000元。

如果每只手表的出厂价为20元,为了不亏本,该厂每天至少应生产多少只手表?补充习题1.2.11、下列函数f(x)在x 的何种趋势时是无穷小量?在x 的何种趋势时f(x)是无穷大量? (1)f(x)=12-+x x ; (2) f(x)=lgx (3) f(x)=222xx +2、利用无穷小量的性质,求下列函数的极限 (1)xx x 1sinlim 2→ (2)x xx arctan 1lim∞→(3)11lim1-+→x x x (4)xx x x 1cos)2(lim 2+→补充习题 1.2.2.1求下列函数的极限1.)1311(lim 31xxx ---→ 2. 1392lim323++-∞→x x x x3. 231lim 221+--→x x x x 4. )1(lim 22+-+∞→x x x x5 xxx 3s i n lim 2x +→ 6. xx x 3sin )21ln(lim+→7 . xe xx 3tan 1lim-→ 8. xx arcsin 13-1limx -→补充习题 1.2.2.2求下列函数的极限1.xx x x sin 2cos 1lim-→ 2. xx x 1tanlim ∞→3. 3sinlim22xx x → 4 xx xx )3lim +∞→(5. xx x x )11lim +-∞→(6. ]ln )2[ln(lim n n n n -+∞→补充习题 1.2.2.31、求函数321)(2--+=x x x x f 的连续区间,并求极限)(lim 0x f x →,)(lim 3x f x →及)(lim 3x f x -→。

函数极限的性质及应用

函数极限的性质及应用

函数极限的性质及应用函数极限的性质及应用是微积分中的重要概念,对于理解和应用微积分的原理和方法具有重要意义。

本文将从定义、性质以及应用几个方面来详细阐述函数极限的性质及应用,并且将针对每个性质和应用给出具体的例子来加深理解。

首先,我们来看一下函数极限的定义。

给定函数f(x),当自变量x无限接近某一常数a时,如果函数值f(x)无限接近某一常数b,则称函数f(x)在x趋近于a的过程中极限是b,记为lim[x→a]f(x)=b。

这个定义的核心思想是通过自变量趋近于某个常数来确定函数的极限,也就是自变量x的取值越靠近a,函数值f(x)越靠近b。

接下来我们来看一下函数极限的性质。

函数极限具有以下几个性质:1. 唯一性:如果函数在x趋近于a的过程中有极限,那么这个极限是唯一的。

也就是说,当x趋近于a时,函数值只会无限接近于一个确定的常数。

2. 有界性:如果函数在x趋近于a的过程中有极限,那么这个极限函数值将是有界的。

也就是说,当x趋近于a时,函数值的取值范围将在一个有限的区间内。

3. 保号性:如果函数在x趋近于a的过程中有极限且极限值不为零,那么函数值在x趋近于a的某一侧将保持与极限值的符号一致。

也就是说,当x趋近于a 时,函数值的符号将与极限值的符号一致。

4. 代数运算性质:函数极限具有一系列的代数运算性质,包括四则运算、复合运算以及连续运算。

这些性质使得我们在计算函数极限时可以借助各种代数运算的规则来简化计算过程。

接下来我们来看一下函数极限的应用。

函数极限的应用非常广泛,下面主要列举几个常见的应用:1. 确定函数收敛性:通过求解函数极限来判断函数是否收敛,也就是函数是否在某个点处存在有限的极限。

这在研究函数的行为和性质时非常重要。

2. 求解无穷大和无穷小:通过求解函数在某个点处的极限来确定函数的无穷大和无穷小行为。

这在研究函数的渐近线和渐近行为时非常有用。

3. 求解导数:通过函数极限的定义和性质,可以推导出求解导数的方法。

导数极限定理

导数极限定理

导数极限定理
导数极限定理:
1、首先函数在一点处的导数和在该点处导函数的极限是两个不同的概念,前者是直接用导数定义求,后者是利用求导公式求出导函数的表达式后再求该点处的极限,两者完全可以不相等。

例如
f(x)=x^2*sin(1/x)在x=0处的导数等于0,但其导函数在x=0处的极限不存在。

但是在相当普遍的情况下,二者又是相等的,这个事实的本质上就是由导数极限定理所保证的。

2、导数极限定理是说:如果f(x)在x0的某领域内连续,在x0的去心邻域内可导,且导函数在x0处的极限存在(等于a),则f(x)在x0处的导数也存在并且等于a。

这个定理的重要之处在于,不事先要求f在x0处可导,而根据导函数的极限存在就能推出在该点可导,也就是说,导函数如果在某点极限存在,那么在该点导函数一定是连续的,而这正是一般函数所不具备的性质。

3、利用无穷小的性质求函数的极限
性质1:有界函数与无穷小的乘积是无穷小。

性质2:常数与无穷小的乘积是无穷小。

性质3:有限个无穷小相加、相减及相乘仍旧无穷小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引言极限是研究变量的变化趋势的基本工具。

在高等数学中许多基本概念和研究问题的方法都和极限密切相关,如函数的连续、导数、定积分和无穷级数等都是建立在极限的基本之上的。

极限的思想和方法产生某些实际问题的精确解,并且对数学在实际中的应用也有着重要的作用。

因此研究生考试往往把求极限问题作为考核的一个重点,而在不同的函数类型条件下所采用的求极限的技巧是各不相同的,因此大家要学会判断极限的类型,熟练和灵活的掌握各种技巧的应用。

本文主要介绍了导数在求极限中的基本应用,包括导数定义法,L’Hospital 法则,Taylor展式法及微分中值定理在求极限中的应用。

旨在让大家掌握各种导数方法适用的函数类型,要注意的事项及它的一些推广结论。

达到能灵活运用导数方法去求解一些极限问题以使问题简单化的目的。

12 第1章 导数在求极限中的基本应用1.1 导数定义法这种极限求法主要针对所给的极限不易求,但是函数满足导数定义的形式且能够确定的变化趋向的极限易求出时,可以用此法比较方便的求出极限.定义 若函数()y f x =在其定义域中的一点0x 处极限0000()()limlim x x f x x f x yx x ∆→∆→+∆-∆=∆∆存在,则称在0x 处可导,称此极限值为()f x 在0x 处的导数,记为0()f x '.显然,()f x 在0x 处的导数还有如下的等价定义形式:000()()()limx x f x f x f x x x →-'=-.下面通过两个例子让大家逐步领悟导数定义法的内涵例1 求极限tan sin 0limsin b x b xx xαα+-→-.解 由于tan sin tan sin tan sin tan sin sin b x b xb x b b b xx xxxxαααααα+-+----=+.所以,tan sin tan sin 0tan limlimlimsin tan sin sin b x b xb x b b b xx x x xxxxxαααααα+-+-→→→---=+ln ln 2ln b b b αααααα=+=.例2 (本题选自《数学分析中的典型问题与方法》裴礼文.第二版.)设(0)f k '=,试证00()()lim a b f b f a k b a-+→→-=-.证明 (希望把极限式写成导数定义中的形式)3()()()(0)()(0)f b f a b f b f a f a f b a b a b b a a---=----(拟合法思想:把要证的极限值k 写成与此式相似的形式)b ak k k b a b a=--- 两式相减,可得()()()(0)()(0)0f b f a b f b f a f a f k k k b a b a b b a a---≤-≤-+----因0a -→,0b +→,所以有0b a >>,1a bb a b a<--又因(0)f k '=,故当0a -→,0b +→时右端极限为零,原极限获证.1.2 L ’Hospital 法则本节主要总结了L ’ Hospital 法则在求未定式极限中的应用,需要注意的问题,并深入分析了使用L ’ Hospital 法则时实质是对无穷小或无穷大进行降阶.另外还指出L ’ Hospital 法则与其他极限方法如无穷小的替换的结合.1. L ’Hospital 法则L ’Hospital 法则作为Cauchy 中值定理的重要应用,在计算未定式极限中扮演了十分重要的角色,这是因为对于未定式极限来讲极限是否存在,等于多少是不能用极限的四则运算法则解得的,而通过对分子分母求导再求极限能够很有效的计算出未定式的极限. 关于未定式:在计算一个分式函数的极限时,常常会遇到分子分母都趋于零或都趋于无穷大的情况,由于这是无法使用“商的极限等于极限的商”的法则,运算将遇到很大的困难. 事实上,这是极限可能存在也可能不存在. 当极限存在时极限值也会有各种各样的可能. 我们称这种类型的极限为00未定型或∞∞未定型. 事实上,未4 定型除以上两种类型外还有0⋅∞,∞-∞,1∞,00,0∞等类型. L ’Hospital 法则: 定理[]4 若函数f 和g 满足:① 0lim ()lim ()0x x x x f x g x →→==;② 在点0x 的某空心邻域00()U x 内可导,且()0g x '≠; ③ 0()lim()x x f x A g x →'='(A 可为有限数或∞); 则00()()limlim ()()x x x x f x f x A g x g x →→'=='. 注:以上结论在0x x ±→,或是x →∞(包括+∞和-∞)时也是成立的.2. L ’Hospital 法则的应用a) L ’Hospital 法则能处理的基本未定型极限是00型或∞∞型例1 求lim nx x x e λ→∞(n 为正整数,0λ>). (∞∞型)解 连续使用L ’Hospital 法则n 次122(1)!lim lim limlim 0n n n x x xn x x x x x x nx n n x n e e e e λλλλλλλ--→∞→∞→∞→∞-===⋅⋅⋅==. 从以上例中可看出L ’Hospital 法则的实质是对无穷小或无穷大进行降阶. 下面再看两个L ’Hospital 法则在解含有变限积分问题中的应用.例2 求03(1cos )limxx t dt x →-⎰.分析:因为0(1cos )x t dt -⎰可导从而连续,所以此问题属于0型,可用L ’Hospital法则求解.解 032(1cos )(1cos )limlim03xx x t dt t dt x x →→--==⎰⎰.例3 求极限11()lim xx f t x dt t αα++→⎰,其中0α>,()f x 为闭区间[]0,1上的连续函数.5解 11110()()lim lim1xxx x f t dtf t t x dt t x ααα++++→→=⎰⎰因0x →时,1x α单调递减趋于+∞, 使用L ’Hospital 法则,则111110001()()()()(0)lim lim lim lim 11xxx x x x f t f x dt f t f x f t x x dt tx xααααααααα+++++++→→→→+-====-⎰⎰. (2)在使用L ’Hospital 法则时,必须验证条件是否满足①所求的极限是否未定型极限;②求完导数后极限是否存在. 其中第二条容易忽略.例4 设()f x 为可导函数,(0)(0)1f f '==,求极限0(sin )1limsin x f x x→-.解 0(sin )1limsin x f x x →-00cos (sin )lim lim (sin )(0)1cos x x x f x f x f x→→'⋅''====. (此题不能用L ’Hospital 法则求解,错误出在题目中没有给出在处连续的条件,所以不知道的极限是否存在,即不满足条件②,题目中只是说在处可导,而定理中要求在的某个邻域中可导)当求导后的极限不存在时,原极限仍可能有极限,所以求导后极限不存在只能说明此时L ’Hospital 法则失效,不能说原式无极限.(3)对于其他未定型或极限0⋅∞、∞-∞、1∞、00、0∞等类型,可分别通过做商、通分、取对数转化成00型或∞∞型的极限,再使用L ’ Hospital 法则.例5 求极限1lim(1)tan 2x x x π→-.解 2111121122lim(1)tan lim lim lim sin 22cot csc 222x x x x x x x x x xπππππππ→→→→---====-.注:这是将0⋅∞型转化成了00型,如果选择不当把它化成∞∞型,则解题过程将会比较复杂. 转化时一般规律是选择求导后式子简单的那种类型.例6 求极限01lim cot x x x→-.解 将它改写成1cos sin cot sin x x x x x x x --=就化成了∞∞型,于是有01lim cot x x x →-2000cos sin sin cos sin cos lim lim lim 0sin 2x x x x x x x x x x x xx x x x→→→---====. “1∞、00、0∞”可以通过如下转化化成型或型:6 [][]()lim ()ln ()()ln ()()ln ()lim ()lim lim g x x ag x f x g x f x g x f x x ax ax af x ee e →→→→===例7 求极限2lim (arctan )x x x π→+∞. (1∞型)解 因为2lim ln(arctan )2lim (arctan )x x x xx x eππ→+∞→+∞=而2lnarctan 2lim ln(arctan )lim1x x x x x xππ→+∞→+∞=22221112arctan 1lim lim 1arctan 1x x x x x x x x π→+∞→+∞⋅-+==⋅=-+- 所以22lim ln(arctan )2lim (arctan )x x x xx x e e πππ→+∞-→+∞==.例8 求极限1ln 0lim(cot )xx x +→. (0∞型)解 因为当0x +→时tan x x ,所以 0ln 111lim 1ln ln ln ln 00011lim(cot )lim()lim()tan x xxxx x x x x x e ex x+→+++--→→→====. (4)利用L ’Hospital 法则求数列极限——Stolz 公式Stolz 公式可以说是数列的L ’Hospital 法则,它对求数列的极限很有用. 定理1[4](∞∞型的Stolz 公式) 设{}n x 严格递增(即n N ∀∈有1n n x x +<)且lim n n x →∞=+∞,若① 11limn n n n n y y a x x -→∞--=-(有限数),则lim n n nya x →∞=; ② a 为+∞或-∞,结论仍然成立.定理2[4](0型的Stolz 公式)设n →∞时0n y →,{}n x 严格单调下降趋于零,若11limn n n n n y y a x x -→∞--=-,则limnn ny a x →∞=(其中a 为有限数,+∞或-∞).7例9 求极限 limln n nn →∞ .解 由于1lim lim 1ln x x x x x→+∞→+∞==+∞,所以lim ln n nn→∞=+∞.例10 证明 1121lim 1p p p p n n n p +→∞++⋅⋅⋅+=+(p 为自然数). 证 11112(1)lim lim(1)p p p p p p p n n n n n n n +++→∞→∞++⋅⋅⋅++=+- 1(1)1lim (1)1(1)12p n pp n p p p p n n →∞-+==+++++⋅⋅⋅+.下面说明Stolz 公式必要时可以重复使用例11 02ln nk n k n C S n ==∑(其中(1)(1)12knn n n k C k-⋅⋅⋅-+=⋅⋅⋅⋅),求lim n n S →∞.解 因2n 单调递增趋于+∞,可应用Stolz 公式1111100022ln ln ln ln lim lim lim (1)21knn nn k k n n k n nk k k nn n n n C C C C C S n n n +++++===→∞→∞→∞+-==+-+∑∑∑ 1011ln (1)ln(1)ln 1lim lim 2121nn k k n n n n n k n k n n +==→∞→∞+++--+==++∑∑(再次使用Stolz 公式)1ln()(1)ln(1)ln ln(1)1limlim(21)(21)22nn n n n n n n n n n n →∞→∞+++--+===+--.例12 求极限1112122223222lim()()()212121n n n -→∞⋅⋅⋅---.解 先取对数,再取极限.8令1112122223222lim()()()212121n n n n x -→∞=⋅⋅⋅---211223121212ln ln ln ln 221221221n n n n n x ---=++⋅⋅⋅+---2121231222(ln 2ln 2ln )2212121n n n n ---=++⋅⋅⋅+--- 应用Stolz 公式1212122ln 121lim ln lim lim ln ln 212222n n nn n n n n n n x ----→∞→∞→∞--===--故, 原式1lim 2n n x →∞==.(5)L ’Hospital 法则与其他方法相结合使用,如与无穷小相结合.例13 求极限22201cos lim sin x x x x →-.解 422240011cos 12lim lim sin 2x x xx x x x →→-==. 有个别题目在使用L ’Hospital 法则时会出现循环现象,此时不能用L ’ Hospital 法则求解, 如下面一例.例14 求极限 lim x xx x x e e e e --→+∞-+.解 221lim lim11x x xx x xx x e e e e e e ----→+∞→+∞--==++.9 第2章 Taylor 展式在求极限问题中的应用本节介绍运用Taylor 公式求解一些较复杂的未定型的函数极限及中值点的极限、无穷远处的极限.定理1[4](带Peano 余项的Taylor 公式)设()f x 在0x 处有n 阶导数,则存在0x 的一个邻域,对于该邻域中的任一点x ,成立()2()0000000()()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x r x n '''=+-+-+⋅⋅⋅+-+其中余项()()n r x 满足()0()(())n n r x o x x =- 定理2[4] (带Lagrange 余项的Taylor 公式)设()f x 在[],a b 上有n 阶连续导数,且在(,)a b 上有1n +阶导数. 设[]0,x a b ∈为一定点,则对于任意[],x a b ∈,成立()2()0000000()()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x r x n '''=+-+-+⋅⋅⋅+-+其中余项()()n r x 满足(1)()10()()()(1)!n n n f r x x x n ξ++=-+,ξ在x 和0x 之间.注:函数()f x 在0x =处的Taylor 公式又称为函数()f x 的Maclaurin 公式. 几个常用函数的Maclaurin 公式:(为了便于书写,我们写出带Peano 余项的Taylor 公式)① 231()2!3!!nxn x x x e x o x n =++++⋅⋅⋅++;② 352122sin (1)()3!5!(21)!n nn x x x x x o x n ++=-+-⋅⋅⋅+-++;③ 24221cos 1(1)()2!4!(2)!n n n x x x x o x n +=-+-⋅⋅⋅+-+; ④ 230123(1)()()()()()()n nn x x x x x o x αααααα+=++++⋅⋅⋅++10其中α为任意实数,(1)(1)()!k k k αααα-⋅⋅⋅-+=,并规定0()1α=;⑤ 2341ln(1)(1)()234nn n x x x x x x o x n -+=-+-⋅⋅⋅+-+; ⑥ 3521122arctan (1)()3521n n n x x x x x o x n +-+=-+-⋅⋅⋅+-++. 1. 用Taylor 公式巧解未定型极限由于L ’Hospital 法则的实质是对分子分母进行降阶,这意味着当遇到分子分母都是较高阶的情况时,必须多次应用L ’Hospital 法则,遇到分子分母有带根号项时,会越微分形式会越复杂. 而用公式则可进一步到位,所以在求解未定型极限时,应该灵活使用公式法解决. 从而避免应用法则出现的解题困难. 例1 求极限 2240cos limx x x e x -→-.解 这是个0未定型极限问题,如果使用L ’Hospital 法则,则分子分母需求导四次,但若使用Taylor 公式,则22422424244001[1()][1()()()]cos 2!4!22!2lim lim x x x x x x x o x o x x e x x-→→-++-+-+-+-= 44401()112lim 12x x o x x →-+==-.例2 求极限0x →.解 这也是个0未定型的极限问题,因2441()624x x o x =-+,4224sin ln(1sin )sin (sin )2x x x o x +=-+用324sin [()]6x x x o x =-+代入,即有42245ln(1sin )()6x x x o x +=-+于是240ln(1sin )1)lim x x x →+-11 424244405[()]6[()]76624lim 12x x x x x o x o x x →-+--+==-. 2. 用Taylor 公式求中值点的极限例3 (《本题选自数学分析中的典型问题与方法》 裴礼文. 第2版. 第251页) 设(1)()f x 在00(,)x x δδ-+内是n 阶连续可微函数,此处0δ>; (2)当2,3,(1)k n =⋅⋅⋅-时,有()0()0n f x =但是(1)0()0n f x +≠; (3)当0h δ≠<时有000()()(())f x h f x f x h h hθ+-'=+ ①其中0()1h θ<<证明:lim ()h h θ→∞=证 我们要设法从①式中解出()h θ,为此我们将①式左边的0()f x h + 及右边的0(())f x h h θ'+在0x 处展开.由条件(2)知 12,(0,1)θθ∃∈ 使得()00001()()()()!n n h f x h f x hf x f x h n θ'+=+++(1)1()0002(())(())()(())(1)!n n n h h f x h h f x f x h h n θθθθ--''+=++-于是①式变成1(1)1()()001002(())()()()(())!(1)!n n n n n h h h f x f x h f x f x h h n n θθθθ---''++=++-从而()h θ=因 12,()(0,1)h θθθ∈,利用()()n f x的连续性,可得lim ()h h θ→∞=注:此题若用L ’Hospital 法则做将不胜其烦.例4 设()()()()(),(01)!n n h f x h f x hf x f x h n θθ'+=++⋅⋅⋅++<<, 且(1)()0n f x +≠,证明:01lim 1h n θ→=+.12提示:1()(1)1()()()()()()!(1)!n n n n n h h f x h f x hf x f x f x o h n n +++'+=++⋅⋅⋅++++从而有()()(1)()()()()1n n n f x h f x h hf x o h h n θθθ++-=++. 证明 2()11()()()()()2!!n n f x h f x hf x f x h f x h h n θ'''+=+++⋅⋅⋅++ 2()11()()()()2!!n n f x hf x f x h f x h n '''=+++⋅⋅⋅+(1)111()()(1)!n n n f x h o h n ++++++另0,h →得到(1)(1)01lim ()()1n n h f x f x n θ++→⋅=+, 再由(1)()0n f x +≠,两边消去(1)()n f x +,即得到01lim 1h n θ→=+. 3. 用Taylor 公式求无穷远处的极限例5 (《本题选自数学分析中的典型问题与方法》 裴礼文. 第2版. 第249页)设函数()x ϕ在[)0,+∞上二次连续可微,如果lim ()x x ϕ→+∞存在,且()x ϕ'' 在[)0,+∞上有界,试证:lim ()0x x ϕ→+∞'=. 证明 要证明lim ()0x x ϕ→+∞'=,即要证明:0,0ε∀>∃∆>当0∆>时()x ϕε'<利用Taylor 公式,210,()()()()2h x h x x h h ϕϕϕϕξ'''∀>+=++即11()[()()]()2x x h x h h ϕϕϕϕξ'''=+-- ①记lim ()x A x ϕ→+∞=因ϕ''有界,所以,0M ∃>使得()x M ϕ''≤,(对x a ∀≥)故由①知211()(()())2x x h A A x Mh h ϕϕϕ'≤+-+-+ ② 对0ε∀>,首先可取0h >充分小,使得2122Mh ε<,然后将h 固定,因lim ()x x A ϕ→+∞=,所以0∃∆>,当0x >时,1(()())2x h A A x h εϕϕ+-+-< 从而由 ②式, 即得()22x εεϕε'<+=.13 第3章 微分中值定理在求极限问题中的应用微分中值定理是Role 定理,Lagrange 中值定理,Cauchy 中值定理和Taylor 中值定理的统称。

相关文档
最新文档