导数和极限精辟总结(全)
导数简单知识点总结归纳

导数简易知识点总结归纳导数是微积分学中一个分外重要的观点,也是计算速度变化及斜率的工具。
在微积分的进修中,导数是一个基础且重要的知识点。
通过了解导数的定义、性质和计算方法,我们可以更好地理解函数和曲线的特性,从而应用到各种实际问题中。
一、导数的定义导数可以理解为函数在某一点处的变化率。
详尽来说,对于函数 y = f(x),在点 x 处的导数表示为 f'(x),其定义如下:f'(x) = lim(h->0) [f(x+h) - f(x)] / h其中,lim 表示当 h 趋近于0时的极限;h 是 x 的一个非零增量;f(x+h) - f(x) 表示增量;(f(x+h) - f(x)) / h 表示增量与 h 的比值。
当 h 趋近于0时,增量与 h 的比值就是导数。
二、导数的性质1. 基本性质:导数具有线性性质,即对于任意函数 f(x) 和常数 k,有以下性质:(a) (kf(x))' = kf'(x)(b) (f(x) + g(x))' = f'(x) + g'(x)2. 基本函数导数:(a) 常数函数 y = C 的导数为零:(C)' = 0(b) 幂函数 y = x^n 的导数为 nx^(n-1):(x^n)' =nx^(n-1)(c) 指数函数 y = a^x 的导数为 a^x * ln(a):(a^x)' = a^x * ln(a)(d) 对数函数 y = ln(x) 的导数为 1/x:(ln(x))' = 1/x3. 基本运算法则:(a) 乘法法则:(uv)' = u'v + uv'(b) 除法法则:(u/v)' = (u'v - uv') / v^2(c) 复合函数法则:(f(g(x)))' = f'(g(x)) * g'(x)三、导数计算方法1. 利用定义法计算导数:对于任意函数 f(x),可以利用定义法进行导数的计算。
(完整版)导数知识点总结及应用

《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。
2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。
函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。
3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x +∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x+∆-∆无限趋近与一个常数A ,则0()f x A '=.4. 导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。
由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。
当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。
特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。
5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。
第二节 导数与函数的极值、最值知识点汇总

第二节导数与函数的极值、最值知识点汇总考点一利用导数研究函数的极值考法(一) 已知函数的解析式求函数的极值点个数或极值[例1] 已知函数f(x)=x-1+ae x(a∈R,e为自然对数的底数),求函数f(x)的极值.[解] 由f(x)=x-1+ae x,得f′(x)=1-ae x.①当a≤0时,f′(x)>0,f(x)为(-∞,+∞)上的增函数,所以函数f(x)无极值.②当a>0时,令f′(x)=0,得e x=a,即x=ln a,当x∈(-∞,ln a)时,f′(x)<0;当x∈(ln a,+∞)时,f′(x)>0,所以函数f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增,故函数f(x)在x=ln a处取得极小值且极小值为f(ln a)=ln a,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=ln a处取得极小值ln a,无极大值.[例2] 设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.讨论函数f(x)极值点的个数,并说明理由.[解] f′(x)=1x+1+a(2x-1)=2ax2+ax-a+1x+1(x>-1).令g(x)=2ax2+ax-a+1,x∈(-1,+∞).①当a=0时,g(x)=1,f′(x)>0,函数f(x)在(-1,+∞)上单调递增,无极值点.②当a>0时,Δ=a2-8a(1-a)=a(9a-8).当0<a≤89时,Δ≤0,g(x)≥0,f′(x)≥0,函数f(x)在(-1,+∞)上单调递增,无极值点.当a>89时,Δ>0,设方程2ax2+ax-a+1=0的两根为x1,x2(x1<x2),因为x1+x2=-1 2,所以x1<-14,x2>-14.由g(-1)=1>0,可得-1<x1<-1 4 .所以当x∈(-1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减;当x∈(x2,+∞)时,g(x)>0,f′(x)>0, 函数f(x)单调递增.因此函数f(x)有两个极值点.③当a<0时,Δ>0,由g(-1)=1>0,可得x1<-1<x2.当x∈(-1,x2)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减.所以函数f(x)有一个极值点.综上所述,当a<0时,函数f(x)有一个极值点;当0≤a≤89时,函数f(x)无极值点;当a>89时,函数f(x)有两个极值点.考法(二) 已知函数的极值点的个数求参数[例3] 已知函数g(x)=ln x-mx+mx存在两个极值点x1,x2,求m的取值范围.[解] 因为g(x)=ln x-mx+m x ,所以g′(x)=1x-m-mx2=-mx2-x+mx2(x>0),令h(x)=mx2-x+m,要使g(x)存在两个极值点x1,x2,则方程mx2-x+m=0有两个不相等的正数根x 1,x 2.故只需满足⎩⎪⎨⎪⎧h 0>0,12m>0,h ⎝ ⎛⎭⎪⎫12m <0,解得0<m <12.所以m 的取值范围为⎝ ⎛⎭⎪⎫0,12.考法(三) 已知函数的极值求参数[例4] (2018·北京高考)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. [解] (1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x . 所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.考点二 利用导数研究函数的最值[典例精析]已知函数f (x )=ln xx-1.(1)求函数f (x )的单调区间;(2)设m >0,求函数f (x )在区间[m,2m ]上的最大值. [解] (1)因为函数f (x )的定义域为(0,+∞),且f ′(x )=1-ln xx 2, 由⎩⎨⎧f ′x >0,x >0,得 0<x <e ;由⎩⎨⎧f ′x<0,x >0,得x >e.所以函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞). (2)①当⎩⎨⎧2m ≤e ,m >0,即0<m ≤e2时,函数f (x )在区间[m,2m ]上单调递增,所以f (x )max =f (2m )=ln2m 2m-1;②当m <e <2m ,即e2<m <e 时,函数f (x )在区间(m ,e)上单调递增,在(e,2m )上单调递减,所以f (x )max =f (e)=ln e e -1=1e-1; ③当m ≥e 时,函数f (x )在区间[m,2m ]上单调递减, 所以f (x )max =f (m )=ln mm-1.综上所述,当0<m ≤e 2时,f (x )max =ln 2m2m -1;当e 2<m <e 时,f (x )max =1e -1; 当m ≥e 时,f (x )max =ln mm-1.[题组训练]1.(2018·全国卷Ⅰ)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________.解析:f ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1).∵cos x +1≥0,∴当cos x <12时,f ′(x )<0,f (x )单调递减;当cos x >12时,f ′(x )>0,f (x )单调递增.∴当cos x =12,f (x )有最小值.又f (x )=2sin x +sin 2x =2sin x (1+cos x ), ∴当sin x =-32时,f (x )有最小值, 即f (x )min =2×⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫1+12=-332.答案:-3322.已知函数f (x )=ln x +ax 2+bx (其中a ,b 为常数且a ≠0)在x =1处取得极值.(1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,e]上的最大值为1,求a 的值.解:(1)因为f (x )=ln x +ax 2+bx ,所以f (x )的定义域为(0,+∞),f ′(x )=1x+2ax +b ,因为函数f (x )=ln x +ax 2+bx 在x =1处取得极值, 所以f ′(1)=1+2a +b =0, 又a =1,所以b =-3,则f ′(x )=2x 2-3x +1x,令f ′(x )=0,得x 1=12,x 2=1.当x 变化时,f ′(x ),f (x )随x 的变化情况如下表:所以f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12,(1,+∞),单调递减区间为⎝ ⎛⎭⎪⎫12,1.(2)由(1)知f ′(x )=2ax 2-2a +1x +1x=2ax -1x -1x(x >0),令f ′(x )=0,得x 1=1,x 2=12a, 因为f (x )在x =1处取得极值,所以x 2=12a≠x 1=1. ①当a <0,即12a<0时,f (x )在(0,1)上单调递增,在(1,e]上单调递减, 所以f (x )在区间(0,e]上的最大值为f (1),令f (1)=1,解得a =-2. ②当a >0,即x 2=12a>0时, 若12a <1,f (x )在⎝ ⎛⎭⎪⎫0,12a ,[1,e]上单调递增,在⎣⎢⎡⎭⎪⎫12a ,1上单调递减,所以最大值可能在x =12a 或x =e 处取得,而f ⎝ ⎛⎭⎪⎫12a =ln 12a +a ⎝ ⎛⎭⎪⎫12a 2-(2a +1)·12a =ln 12a -14a-1<0, 令f (e)=ln e +a e 2-(2a +1)e =1,解得a =1e -2. 若1<12a <e ,f (x )在区间(0,1),⎣⎢⎡⎦⎥⎤12a ,e 上单调递增,在⎣⎢⎡⎭⎪⎫1,12a 上单调递减,所以最大值可能在x =1或x =e 处取得, 而f (1)=ln 1+a -(2a +1)<0, 令f (e)=ln e +a e 2-(2a +1)e =1, 解得a =1e -2,与1<x 2=12a<e 矛盾. 若x 2=12a≥e ,f (x )在区间(0,1)上单调递增,在(1,e]上单调递减,所以最大值可能在x =1处取得,而f (1)=ln 1+a -(2a +1)<0,矛盾.综上所述,a=1e-2或a=-2.考点三利用导数求解函数极值和最值的综合问题[典例精析](2019·贵阳模拟)已知函数f(x)=ln x+12x2-ax+a(a∈R).(1)若函数f(x)在(0,+∞)上为单调递增函数,求实数a的取值范围;(2)若函数f(x)在x=x1和x=x2处取得极值,且x2≥e x1(e为自然对数的底数),求f(x2)-f(x1)的最大值.[解] (1)∵f′(x)=1x+x-a(x>0),又f(x)在(0,+∞)上单调递增,∴恒有f′(x)≥0,即1x+x-a≥0恒成立,∴a≤⎝⎛⎭⎪⎫x+1x min,而x+1x≥2 x·1x=2,当且仅当x=1时取“=”,∴a≤2.即函数f(x)在(0,+∞)上为单调递增函数时,a的取值范围是(-∞,2].(2)∵f(x)在x=x1和x=x2处取得极值,且f′(x)=1x+x-a=x2-ax+1x(x>0),∴x1,x2是方程x2-ax+1=0的两个实根,由根与系数的关系得x1+x2=a,x1x2=1,∴f(x2)-f(x1)=ln x2x1+12(x22-x21)-a(x2-x1)=lnx2x1-12(x22-x21)=lnx2x1-12(x22-x21)1x1x2=lnx2x1-12⎝⎛⎭⎪⎫x2x1-x1x2,设t=x2x1(t≥e),令h(t)=ln t-12⎝⎛⎭⎪⎫t-1t(t≥e),则h′(t)=1t-12⎝⎛⎭⎪⎫1+1t2=-t-122t2<0,∴h(t)在[e,+∞)上是减函数,∴h(t)≤h(e)=12⎝⎛⎭⎪⎫1-e+ee,故f (x 2)-f (x 1) 的最大值为12⎝ ⎛⎭⎪⎫1- e +e e .[题组训练]已知函数f (x )=ax 2+bx +ce x(a >0)的导函数f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值. 解:(1)f ′(x )=2ax +be x -ax 2+bx +ce x e x 2=-ax 2+2a -bx +b -ce x.令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点,且f ′(x )与g (x )符号相同.又因为a >0,所以当-3<x <0时,g (x )>0,即f ′(x )>0, 当x <-3或x >0时,g (x )<0,即f ′(x )<0,所以f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞).(2)由(1)知,x =-3是f (x )的极小值点,所以有⎩⎪⎨⎪⎧f -3=9a -3b +ce-3=-e 3,g 0=b -c =0,g-3=-9a -32a -b+b -c =0,解得a =1,b =5,c =5,所以f (x )=x 2+5x +5e x.由(1)可知当x =0时f (x )取得极大值f (0)=5,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者. 而f (-5)=5e-5=5e 5>5=f (0), 所以函数f (x )在区间[-5,+∞)上的最大值是5e 5.[课时跟踪检测]A级1.函数f(x)=x e-x,x∈[0,4]的最小值为( )A.0 B.1 eC.4e4D.2e2解析:选A f′(x)=1-x e x,当x∈[0,1)时,f′(x)>0,f(x)单调递增,当x∈(1,4]时,f′(x)<0,f(x)单调递减,因为f(0)=0,f(4)=4e4>0,所以当x=0时,f(x)有最小值,且最小值为0.2.若函数f(x)=a e x-sin x在x=0处有极值,则a的值为( )A.-1 B.0C.1 D.e解析:选C f′(x)=a e x-cos x,若函数f(x)=a e x-sin x在x=0处有极值,则f′(0)=a-1=0,解得a=1,经检验a=1符合题意,故选C.3.已知x=2是函数f(x)=x3-3ax+2的极小值点,那么函数f(x)的极大值为( )A.15 B.16C.17 D.18解析:选D 因为x=2是函数f(x)=x3-3ax+2的极小值点,所以f′(2)=12-3a=0,解得a=4,所以函数f(x)的解析式为f(x)=x3-12x+2,f′(x)=3x2-12,由f′(x)=0,得x=±2,故函数f(x)在(-2,2)上是减函数,在(-∞,-2),(2,+∞)上是增函数,由此可知当x=-2时,函数f(x)取得极大值f(-2)=18.4.(2019·合肥模拟)已知函数f(x)=x3+bx2+cx的大致图象如图所示,则x21+x22等于( )A.23B.43C.83D.163解析:选C 由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2,则x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两个不同的实数根,因此x 1+x 2=2,x 1x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=4-43=83.5.(2019·泉州质检)已知直线y =a 分别与函数y =e x +1和y = x -1交于A ,B 两点,则A ,B 之间的最短距离是( )A.3-ln 22 B.5-ln 22 C.3+ln 22D.5+ln 22解析:选D 由y =e x +1得x =ln y -1,由y =x -1得x =y 2+1,所以设h (y )=|AB |=y 2+1-(ln y -1)=y 2-ln y +2,h ′(y )=2y -1y =2⎝⎛⎭⎪⎫y -22⎝ ⎛⎭⎪⎫y +22y(y >0),当0<y <22时,h ′(y )<0;当y >22时,h ′(y )>0,即函数h (y )在区间⎝ ⎛⎭⎪⎫0,22上单调递减,在区间⎝ ⎛⎭⎪⎫22,+∞上单调递增,所以h (y )min =h ⎝ ⎛⎭⎪⎫22=⎝ ⎛⎭⎪⎫222-ln 22+2=5+ln 22.6.若函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________.解析:f ′(x )=3x 2-3a 2=3(x +a )(x -a ),由f ′(x )=0得x =±a ,当-a <x <a 时,f ′(x )<0,函数f (x )单调递减; 当x >a 或x <-a 时,f ′(x )>0,函数f (x )单调递增, ∴f (x )的极大值为f (-a ),极小值为f (a ). ∴f (-a )=-a 3+3a 3+a >0且f (a )=a 3-3a 3+a <0, 解得a >22. ∴a 的取值范围是⎝ ⎛⎭⎪⎫22,+∞.答案:⎝ ⎛⎭⎪⎫22,+∞7.(2019·长沙调研)已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ⎝⎛⎭⎪⎫a >12,当x ∈(-2,0)时,f (x )的最小值为1,则a =________.解析:由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1a,当0<x <1a时,f ′(x )>0;当x >1a时,f ′(x )<0.∴f (x )max =f ⎝ ⎛⎭⎪⎫1a =-ln a -1=-1,解得a =1.答案:18.(2018·内江一模)已知函数f (x )=a sin x +b cos x (a ,b ∈R),曲线y =f (x )在点⎝ ⎛⎭⎪⎫π3,f ⎝ ⎛⎭⎪⎫π3处的切线方程为y =x -π3.(1)求a ,b 的值;(2)求函数g (x )=f ⎝ ⎛⎭⎪⎫x +π3x在⎝⎛⎦⎥⎤0,π2上的最小值.解:(1)由切线方程知,当x =π3时,y =0,∴f ⎝ ⎛⎭⎪⎫π3=32a +12b =0.∵f ′(x )=a cos x -b sin x ,∴由切线方程知,f ′⎝ ⎛⎭⎪⎫π3=12a -32b =1,∴a =12,b =-32.(2) 由(1)知,f (x )=12sin x -32cos x =sin ⎝ ⎛⎭⎪⎫x -π3,∴函数g (x )=sin x x ⎝ ⎛⎭⎪⎫0<x ≤π2,g ′(x )=x cos x -sin xx 2.设u (x )=x cos x-sin x ⎝ ⎛⎭⎪⎫0≤x ≤π2,则u ′(x )=-x sin x <0,故u (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减.∴u (x )<u (0)=0,∴g (x )在⎝ ⎛⎦⎥⎤0,π2上单调递减.∴函数g (x )在 ⎝ ⎛⎦⎥⎤0,π2上的最小值为g ⎝ ⎛⎭⎪⎫π2=2π.9.已知函数f (x )=a ln x +1x(a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.解:由题意,知函数的定义域为{x |x >0},f ′(x )=a x -1x2=ax -1x2(a >0).(1)由f ′(x )>0,解得x >1a,所以函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫1a ,+∞;由f ′(x )<0,解得0<x <1a,所以函数f (x )的单调递减区间是⎝⎛⎭⎪⎫0,1a .所以当x =1a 时,函数f (x )有极小值f ⎝ ⎛⎭⎪⎫1a =a ln 1a +a =a -a ln a ,无极大值.(2)不存在,理由如下:由(1)可知,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,函数f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,函数f (x )单调递增.①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数,故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件. ②若1<1a ≤e ,即1e ≤a <1时,函数f (x )在⎣⎢⎡⎭⎪⎫1,1a 上为减函数,在⎣⎢⎡⎦⎥⎤1a ,e 上为增函数,故函数f (x )的最小值为f (x )的极小值f ⎝ ⎛⎭⎪⎫1a =a ln 1a +a =a -a ln a =0,即lna =1,解得a =e ,而1e≤a <1,故不满足条件.③若1a >e ,即0<a <1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e =a +1e =0,即a =-1e ,而0<a <1e,故不满足条件.综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.B 级1.(2019·郑州质检)若函数f (x )=x 3-ax 2-bx +a 2在x =1时有极值10,则a ,b 的值为( )A .a =3,b =-3或a =-4,b =11B .a =-4,b =-3或a =-4,b =11C .a =-4,b =11D .以上都不对解析:选C 由题意,f ′(x )=3x 2-2ax -b , 则f ′(1)=0,即2a +b =3.①f (1)=1-a -b +a 2=10,即a 2-a -b =9.② 联立①②,解得⎩⎨⎧a =-4,b =11或⎩⎨⎧a =3,b =-3.经检验⎩⎨⎧a =3,b =-3不符合题意,舍去.故选C.2.(2019·唐山联考)若函数f (x )=x 2-12ln x +1在其定义域内的一个子区间(a -1,a +1)内存在极值,则实数a 的取值范围是________.解析:由题意,得函数f (x )的定义域为(0,+∞),f ′(x )=2x -12x =4x 2-12x ,令f ′(x )=0,得x =12⎝ ⎛⎭⎪⎫x =-12舍去,则由已知得⎩⎪⎨⎪⎧a -1≥0,a -1<12,a +1>12,解得1≤a <32.答案:⎣⎢⎡⎭⎪⎫1,323.(2019·德州质检)已知函数f (x )=-13x 3+x 在(a,10-a 2)上有最大值,则实数a 的取值范围是________.解析:由f ′(x )=-x 2+1,知f (x )在(-∞,-1)上单调递减,在[-1,1]上单调递增,在(1,+∞)上单调递减,故函数f (x )在(a,10-a 2)上存在最大值的条件为⎩⎨⎧a <1,10-a 2>1,f 1≥f a,其中f (1)≥f (a ),即为-13+1≥-13a 3+a ,整理得a 3-3a +2≥0,即a 3-1-3a +3≥0, 即(a -1)(a 2+a +1)-3(a -1)≥0,即(a -1)(a 2+a -2)≥0,即(a -1)2(a +2)≥0,即⎩⎨⎧a <1,10-a 2>1,a -12a +2≥0,解得-2≤a <1.答案:[-2,1)4.已知函数f (x )是R 上的可导函数,f (x )的导函数f ′(x )的图象如图,则下列结论正确的是( )A .a ,c 分别是极大值点和极小值点B .b ,c 分别是极大值点和极小值点C .f (x )在区间(a ,c )上是增函数D .f (x )在区间(b ,c )上是减函数解析:选C 由极值点的定义可知,a 是极小值点,无极大值点;由导函数的图象可知,函数f (x )在区间(a ,+∞)上是增函数,故选C.5.如图,在半径为103的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其中A ,B 在直径上,C ,D 在圆周上,将所截得的矩形铁皮ABCD 卷成一个以AD 为母线的圆柱形罐子的侧面(不计剪裁与拼接损耗),记圆柱形罐子的体积为V ,设AD =x ,则V max =________.解析:设圆柱形罐子的底面半径为r , 由题意得AB =21032-x 2=2πr ,所以r =300-x 2π,所以V =πr 2x =π⎝⎛⎭⎪⎫300-x 2π2x =1π(-x 3+300x )(0<x <103),故V ′=-3π(x 2-100)=-3π(x +10)(x -10)(0<x <103). 令V ′=0,得x =10(负值舍去), 则V ′,V 随x 的变化情况如下表:x (0,10) 10 (10,103)V ′ +0 -V极大值所以当x =所以V max =2 000π. 答案:2 000π6.已知函数f (x )=ln(x +1)-ax 2+xx +12,其中a 为常数.(1)当1<a ≤2时,讨论f (x )的单调性;(2)当x >0时,求g (x )=x ln ⎝ ⎛⎭⎪⎫1+1x +1x ln(1+x )的最大值.解:(1)函数f (x )的定义域为(-1,+∞),f ′(x )=x x -2a +3x +13,①当-1<2a -3<0,即1<a <32时,当-1<x <2a -3或x >0时,f ′(x )>0,则f (x )在(-1,2a -3),(0,+∞)上单调递增,当2a -3<x <0时,f ′(x )<0,则f (x )在(2a -3,0)上单调递减. ②当2a -3=0,即a =32时,f ′(x )≥0,则f (x )在(-1,+∞)上单调递增.③当2a -3>0,即a >32时,当-1<x <0或x >2a -3时,f ′(x )>0, 则f (x )在(-1,0),(2a -3,+∞)上单调递增,当0<x <2a -3时,f ′(x )<0,则f (x )在(0,2a -3)上单调递减. 综上,当1<a <32时,f (x )在(-1,2a -3),(0,+∞)上单调递增,在(2a-3,0)上单调递减;当a =32时,f (x )在(-1,+∞)上单调递增;当32<a ≤2时,f (x )在(-1,0),(2a -3,+∞)上单调递增,在(0,2a -3)上单调递减.(2)∵g (x )=⎝ ⎛⎭⎪⎫x +1x ln(1+x )-x ln x =g ⎝ ⎛⎭⎪⎫1x ,∴g (x )在(0,+∞)上的最大值等价于g (x )在(0,1]上的最大值. 令h (x )=g ′(x )=⎝ ⎛⎭⎪⎫1-1x 2ln(1+x )+⎝ ⎛⎭⎪⎫x +1x ·11+x -(ln x +1)=⎝⎛⎭⎪⎫1-1x 2ln(1+x)-ln x+1x-21+x,则h′(x)=2x3⎣⎢⎡⎦⎥⎤ln1+x-2x2+xx+12.由(1)可知当a=2时,f(x)在(0,1]上单调递减,∴f(x)<f(0)=0,∴h′(x)<0,从而h(x)在(0,1]上单调递减,∴h(x)≥h(1)=0,∴g(x)在(0,1]上单调递增,∴g(x)≤g(1)=2ln 2,∴g(x)的最大值为2ln 2.。
大一高数重点

导数与极限(一)极限 1. 概念(1)自变量趋向于有限值的函数极限定义(δε-定义)Ax f ax =→)(l i m ⇔0>∀ε,0>∃δ,当δ<-<||0a x 时,有ε<-|)(|A x f 。
(2)单侧极限左极限: =-)0(a f Ax f a x =-→)(lim ⇔0>∀ε,0>∃δ,当δ<-<x a 0时,有ε<-|)(|A x f 。
右极限: =+)0(a f Ax f ax =+→)(lim ⇔0>∀ε,0>∃δ,当δ<-<a x 0时,有ε<-|)(|A x f 。
(3)自变量趋向于无穷大的函数极限定义1:0,0>∃>∀X ε,当X x >,成立()ε<-A x f ,则称常数A 为函数()x f 在x 趋于无穷时的极限,记为()Ax f x =∞→lim 。
A y =为曲线()x f y =的水平渐近线。
定义2:00>∃>∀X ,ε,当X x >时,成立()ε<-A x f ,则有()A x f x =+∞→lim 。
定义3:00>∃>∀X ,ε,当X x -<时,成立()ε<-A x f ,则有()Ax f x =-∞→lim 。
运算法则:1) 1) 若()A x f =lim ,()∞=x g lim ,则()()[]∞=+x g x f lim 。
2) 2) 若()()∞≠=但可为,0lim A x f ,()∞=x g lim ,则()()∞=∙x g x f lim 。
3) 3) 若()∞=x f lim ,则()01lim=x f 。
注:上述记号lim 是指同一变化过程。
(4)无穷小的定义0>∀ε,0>∃δ,当δ<-<||0a x 时,有ε<|)(|x f ,则称函数)(x f 在a x →时的无穷小(量),即 0)(lim =→x f a x 。
高中数学导数知识点总结

高中数学导数知识点总结高中数学导数知识点总结1一、求导数的方法(1)基本求导公式(2)导数的四则运算(3)复合函数的导数设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即二、关于极限1、数列的极限:粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。
记作:=A。
如:2、函数的极限:当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作三、导数的概念1、在处的导数。
2、在的导数。
3。
函数在点处的导数的几何意义:函数在点处的导数是曲线在处的切线的斜率,即k=,相应的切线方程是注:函数的导函数在时的函数值,就是在处的导数。
例、若=2,则=()A―1B―2C1D四、导数的综合运用(一)曲线的切线函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。
由此,可以利用导数求曲线的切线方程。
具体求法分两步:(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。
高中数学导数知识点总结2★高中数学导数知识点一、早期导数概念――――特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。
在作切线时他构造了差分f(A+E)―f(A),发现的因子E就是我们所说的导数f(A)。
二、17世纪――――广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。
牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。
牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。
导数高考知识点总结(最全)

导数知识点归纳及应用●知识点归纳 一、相关概念 1.导数的概念函数y=f(x),y=f(x),如果自变量如果自变量x 在x 0处有增量x D ,那么函数y 相应地有增量y D =f (x 0+x D )-)-f f (x 0),比值x yDD 叫做函数y=f y=f((x )在x 0到x 0+x D 之间的平均变化率,即x y D D =x x f x x f D -D +)()(00。
如果当0®D x 时,x y D D 有极限,我们就说函数y=f(x)y=f(x)在点在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim ®D x x y D D=0lim ®D x x x f x x f D -D +)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0®D x 时,x y D D 有极限。
如果xyD D 不存在极限,就说函数在点x 0处不可导,或说无导数。
处不可导,或说无导数。
(2)x D 是自变量x 在x 0处的改变量,0¹D x 时,而y D 是函数值的改变量,可以是零。
以是零。
由导数的定义可知,求函数y=f y=f((x )在点x 0处的导数的步骤:处的导数的步骤: ① 求函数的增量y D =f =f((x 0+x D )-)-f f (x 0); ② 求平均变化率x y D D =xx f x x f D -D +)()(00;③ 取极限,得导数f’(x 0)=xyx D D ®D 0lim 。
例:设f(x)= x|x|, f(x)= x|x|, 则则f ′( 0)= . [解析]:∵0||lim ||lim )(lim )0()0(lim 0000=D =D D D =D D =D -D +®D ®D ®D ®D x x xx x x f x f x f x x x x ∴f ′( 0)=02.导数的几何意义函数y=f y=f((x )在点x 0处的导数的几何意义是曲线y=f y=f((x )在点p (x 0,f (x 0))处的切线的斜率。
极限与导数的基础知识与运用

极限与导数的基础知识与运用极限和导数是高等数学中重要的概念,也是计算机科学、物理学等多个领域中必不可少的数学工具。
本文旨在系统地介绍极限和导数的概念,以及它们的应用。
一、极限1.1 极限的定义极限是研究函数变化趋势的一种方法。
给定一个函数 $f(x)$,当自变量 $x$ 越来越接近某个特定的值 $a$ 时,如果函数值 $f(x)$ 也越来越接近某个常数 $L$,则称 $L$ 是函数 $f(x)$ 当 $x$ 趋近于 $a$ 时的极限,记作$$\lim_{x\rightarrow a}f(x)=L$$其中,$x$ 可以从左侧或右侧趋近于 $a$。
1.2 夹逼定理夹逼定理是极限的一个重要定理,它有助于我们判断一些函数的极限是否存在。
设 $f(x)\leq g(x)\leq h(x)$,当 $x\rightarrow a$ 时,$f(x)$ 和 $h(x)$ 的极限都等于 $L$,则 $g(x)$ 的极限也等于 $L$。
即$$\lim_{x\rightarrow a}f(x)=L=\lim_{x\rightarrow a}h(x)\Rightarrow \lim_{x\rightarrow a}g(x)=L$$1.3 极限的计算计算极限的方法有很多,以下是一些典型的极限计算方法:1.3.1 基本极限$$ \lim_{x\rightarrow 0}\frac{\sin x}{x}=1 $$$$ \lim_{x\rightarrow \infty}\left(1+\frac{1}{x}\right)^x=e $$1.3.2 无穷小与无穷大当 $x\rightarrow 0$ 时,如果 $f(x)$ 满足 $\lim_{x\rightarrow0}f(x)=0$,则称 $f(x)$ 是一个无穷小。
当 $x\rightarrow \infty$ 时,如果 $f(x)$ 满足 $\lim_{x\rightarrow \infty}f(x)=\infty$,则称 $f(x)$ 是一个无穷大。
导数知识点总结大全

导数知识点总结大全一、基本概念1.1 导数的定义对于函数y = f(x),在点x处的导数表示为f'(x),它定义为函数在该点的变化率。
导数可以用极限的概念来定义:\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\]其中,h表示自变量x的小变化量,当h趋近于0时,这个极限就表示了函数在点x处的导数。
导数也可以表示为函数的微分形式,即dy = f'(x)dx。
1.2 导数的几何意义导数有着重要的几何意义,它表示了函数在某一点上的切线斜率。
对于函数y = f(x),在点(x, f(x))处的切线的斜率恰好等于函数在该点的导数f'(x)。
这意味着导数可以描述函数在某一点的变化速率和方向。
1.3 导数的物理意义在物理学中,导数也有着重要的物理意义。
对于物理量s关于时间t的函数s(t),它的导数s'(t)表示了速度的变化率,即s'(t) = ds/dt。
类似地,速度关于时间的函数v(t)的导数v'(t)表示了加速度的变化率,即v'(t) = dv/dt。
因此,导数在描述物理过程中的变化率和速度方面也有着重要的应用。
1.4 导数的符号表示导数的符号表示通常有几种形式,常见的包括f'(x)、dy/dx、y'等。
它们都表示对函数y =f(x)的自变量x求导所得到的结果,即函数在某一点上的变化率或者斜率。
二、导数的性质2.1 导数存在性对于一个函数f(x),它在某一点上的导数可能存在也可能不存在。
如果函数在某一点上导数存在,那么称该函数在该点上可导。
对于大多数常见的函数,它们在定义域内是可导的,例如多项式函数、三角函数、指数函数等。
但也存在一些特殊的函数,在某些点上导数可能不存在,例如绝对值函数在原点处的导数就不存在。
2.2 导数的连续性如果一个函数在某一点上导数存在,并且它在该点上是连续的,那么称该函数在该点上是可微的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数和导数的极限
函数 )(x f 在 0x 点的左导数定义为
)(0x f -'x
x f x x f x ∆-∆+=-→∆)()(lim 000 。
函数 )(x f 在 0x 点的右导数定义为
)(0x f +'x
x f x x f x ∆-∆+=+→∆)()(lim 000 。
函数 )(x f 在 0x 点导数的左极限定义为
)0(0-'x f )(lim 0
0x f x x '=-→ 。
函数 )(x f 在 0x 点导数的右极限定义为
)0(0+'x f )(lim 0
0x f x x '=+→ 。
在很多情况下,导数的左极限 )(lim 0
0x f x x '-→ 往往就是左导数 )(0x f -' ,导数的右极限 )(lim 00x f x x '+→ 往往就是右导数 )(0x f +' 。
例如,函数 ⎪⎩⎪⎨⎧≥<=1
11)(2x x x x x f 。
在 1=x 点的左导数为 )1(-'f 1111lim )1()1(lim 00-=∆-∆+=∆-∆+=-→∆-→∆x
x x f x f x x ;导数的左极限为 )(lim 01x f x '-→1)1(lim )1(lim 20101-=-='=-→-→x
x x x ,两者是一样的。
在 1=x 点的右导数为 21)1(lim )1()1(lim )1(200=∆-∆+=∆-∆+='+→∆+→∆+x
x x f x f f x x ;导数的右极限为 )(lim 01x f x '+→2)2(lim )(lim 0
1201=='=+→+→x x x x ,两者也是一样的。
但有时候,导数的左极限 )(lim 0
0x f x x '-→ 并不等于左导数 )(0x f -' ,导数的右极限 )(lim 00x f x x '+→ 并不等于右导数 )(0x f +' 。
例如,函数 ⎩⎨⎧=≠=010)(2
x x x x f 。
在 0=x 的左导数为 )0(-'f +∞=∆-∆+=∆-∆+=-→∆-→∆x
x x f x f x x 1)0(lim )0()0(lim 200; 导数的左极限为 )(lim 0x f x '-→0)2(lim )(lim 0
20=='=-→-→x x x x ,显然两者是不一样的。
在 0=x 的右导数为 )0(+'f -∞=∆-∆+=∆-∆+=+→∆+→∆x
x x f x f x x 1)0(lim )0()0(lim 200; 导数的右极限为 )(lim 0x f x '+→0)2(lim )(lim 0
20=='=+→+→x x x x ,显然两者也是不一样的。
又例如,函数 ⎪⎩⎪⎨⎧=≠=0001sin )(2x x x x x f (见下图)。
在 0=x 的左导数为
)0(-'f x f x f x ∆-∆+=-→∆)0()0(lim 0x
x x x ∆-∆∆=-→∆01sin )(lim 2001sin lim 0=∆∆=-→∆x x x ; 而导数的左极限的计算式为
)(lim 0x f x '-→)1cos (lim )1cos 1sin 2(lim )1sin (lim 0020x
x x x x x x x x -=-='=-→-→-→ , 这个极限不存在。
在 0=x 的右导数为
)0(+'f 01sin lim 01sin )(lim )0()0(lim 0200=∆∆=∆-∆∆=∆-∆+=+→∆+→∆+→∆x x x x x x f x f x x x ; 而导数的右极限的计算式为
)(lim 0x f x '+→)1cos (lim )1cos 1sin 2(lim )1sin (lim 0020x
x x x x x x x x -=-='=+→+→+→ , 这个极限不存在。