含参数导数方法总结
含参数导数方法总结

导数题型总结(解析版)体型一:关于二次函数的不等式恒成立的主要解法:1、分离变量;2变更主元;3根分布;4判别式法5、二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系(2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题"以及“充分应用数形结合思想”,创建不等关系求出取值范围。
注意寻找关键的等价变形和回归的基础一、基础题型:函数的单调区间、极值、最值;不等式恒成立;1、此类问题提倡按以下三个步骤进行解决:第一步:令得到两个根;第二步:画两图或列表;第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题,2、常见处理方法有三种:第一种:分离变量求最值-——--用分离变量时要特别注意是否需分类讨论(>0,=0,<0)第二种:变更主元(即关于某字母的一次函数)-—--—(已知谁的范围就把谁作为主元);例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数",已知实数m是常数,(1)若在区间上为“凸函数",求m的取值范围;(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.解:由函数得(1) 在区间上为“凸函数”,则在区间[0,3]上恒成立解法一:从二次函数的区间最值入手:等价于∵当时, 恒成立,当时,恒成立等价于的最大值()恒成立,而()是增函数,则(2)∵当时在区间上都为“凸函数"则等价于当时恒成立变更主元法再等价于在恒成立(视为关于m的一次函数最值问题)例2a的取值范围.解:(Ⅰ)令得的单调递减区间为(-,a)和(3a,+)∴当x=a时,极小值= 当x=3a时,极大值=b。
(Ⅱ)由||≤a,得:对任意的恒成立①则等价于这个二次函数的对称轴(放缩法)即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。
上是增函数。
穿透迷雾求归路――对含有参数的导数问题的一些分析

穿透迷雾求归路――对含有参数的导数问题的一些分析 延安中学 黄伟谨 内容简介:导数作为最为重要的数学工具之一,在数学物理等学科中有非常广泛的应用。
自从导数内容成为高中数学教材以后,与导数有关的问题特别是含有参数的导数问题成为近年来高考的热点。
含有参数的导数问题自然与成为了中学数学老师和学生重点关注的对象。
由于含有参数的导数问题在解题过程中往往需要对参数进行求值或讨论分析,本文主要介绍了几种常用的求值方法,以及如何用分类及构造的方法求参数的取值范围。
关键词:参数 导数 极值 最值 分类讨论 构造导数作为最为重要的数学工具之一,在数学物理等学科中有非常广泛的应用。
自从导数内容成为高中数学教材以后,与导数有关的问题特别是含有参数的导数问题成为近年来高考的热点。
含有参数的导数问题自然与成为了中学数学老师和学生重点关注的对象。
由于含有参数的导数问题在解题过程中往往需要对参数进行求值或讨论分析,因此它也是高中学生答题的难点,本文主要针对这一问题加以分析讨论,以供参考。
对含有参数的导数问题中的参数进行求值。
比较常见与典型的有下面几种情况:在含在参数的导数问题中,最为常见的一类求值问题是已知函数的极值点(有时是最值),利用函数)(x f y =在在0x x =处取得极大值或极小值时,此时0)('=x f 将0x x =代入即可求出参数的值。
例一.(2012年高考(江苏))若函数)(x f y =在0x x =处取得极大值或极小值,则称0x 为函数)(x f y =的极值点.已知a b ,是实数,1和1-是函数32()f x x ax bx =++的两个极值点.(1)求a 和b 的值;解:(1)由32()f x x ax bx =++,得2()32f'x x ax b =++.∵1和1-是函数32()f x x ax bx =++的两个极值点,∴ (1)32=0f'a b =++,(1)32=0f'a b -=-+,解得==3a b -0,.另一类常见的对参数求值的问题主要研究函数m x g x f +=)()((其中)(x g 为已知函数),在这一问题中由于)(x g 是已知的,所以函数m x g x f +=)()(的基本图形是固定的,参数m 仅仅决定函数m x g x f +=)()(的上下位置。
第03讲 含参讨论的方法与步骤:“三看”

含参讨论的方法与步骤:“三看”
注:只看导数导函数的形式,比如:一次型、指数型、对数型(以上三种型均为单调型)、二次型、类二次型(比如乘积的形式)等,所以要学会画函数图象(在函数的单调性的那一节已经把函数图象给出).
①“一看”最高项系数是否含参,含参要把参数为零的情况进行讨论;(“一看”系数是否为0).
②“二看”函数是否有极值点,即导函数方程是否有根:(“二看”是否有根)
1)一次型()f x ax b '=+,讨论0a >,令()0f x '=求根;讨论0a <,令()0f x '=求根.
2)二次型()2f x ax bx c '=++,讨论0a >,求∆,先令0∆≤,则()f x 在定义域内单调递增,先令0∆>,求()0f x '=根;讨论0a <,求∆,先令0∆≤,则()f x 在定义域内单调递减,先令0∆>,求()00f x '=根.
3)指数型()x f x k a b '=⋅+,若()0f x '=即x b a k −=
,若0b k −<,方程无根,即函数()f x 单调(增减可看图象);若0b k
−>,方程有根. ③“三看”根(极值点)的大小:
1)先比较根与根的大小(两根以上时,一般分成三种情况,一根左边,相等,右边).
2)根与定义域的关系:(在定义内,不在定义域内(包括端点)).。
导数在数学含参问题中的应用

导数在数学含参问题中的应用新课程利用导数解决含参问题或恒成立问题,导数是分析和解决问题的有效工具。
但学生在运用导数解决含参的问题时,往往会束手无措,特别是对其中的分离参数无法纯粹的分离出来感到苦恼。
其实这一部分主要就是根据函数的单调性求出函数在一定条件下的最值,进而解决恒成立问题,含参数问题既是高中教学的重点和难点,又是历年高考的热点。
本文从常见题型对含参函数问题进行了分析与研究,着重介绍常见题型利用导数解决这些问题的基本策略。
标签:导数函数的单调性参数的取值范围恒成立导数的思想最初是由法国的数学家费马(Fermat)为研究极值问题而引入的,但随着人们对导数概念和性质的进一步认识和研究便发现它的引出和定义始终贯穿着函数思想。
新课程增加了导数的内容,随着课改的不断深入,导数知识考查的要求逐渐加强它在解决函数的含参问题上带来了很大的便利。
以函数为载体,以导数为工具,运用导数确定含参数函数的参数取值范围是一类常见的探索性问题,主要是求存在性问题或恒成立问题中的参数的范围。
解决这类问题,主要是运用等价转化的数学思想,通过不断地转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式化、简单的问题。
解决的主要途径是将含参数不等式的存在性或恒成立问题根据其不等式的结构特征,恰当地构造函数,等价转化为含参函数的最值讨论。
这也是最近几年高考在命题是在函数与导数交汇试题的显著特点和命题趋向。
由于这类题目涉及的知识面广,综合性强,不少考生在处理这类问题时,不知道确定参数范围的函数关系或不等关系从何而来,以至于处于无从下手的盲区,希望下面一些拙见能对一些考生的备考有所作用。
一、含参函数的单调性的问题导数的运算,导数与函数单调性的关系,利用导数的性质对参数进行分类讨论综合运用化归与转化的思想。
【例1】已知函数f(x)=lnx-a2x2+ax(a∈R).(1)当a=1时,求函数f(x)的单调区间;(2)若函数f(x)在区间(1,+∞)上是减函数,求实数a的取值范围.解析:(1)当a=1时,f(x)=lnx-x2+x,其定义域是(0,+∞),f′(x)= -2x+1=令f′(x)=0,即- =0,解得x=- 或x=1∵x>0,∴x=1.当00;当x>1时,f′(x)0,∴f(x)在区间(1,+∞)上为增函数,不合题意.②当a>0时,f′(x)≤0(x>0)等价于(2ax+1)(ax-1)≥0(x>0),即x≥,此时f(x)的单调递减区间为.③当a0)等价于(2ax+1)(ax-1)≥0(x>0),即x≥- ,此时f(x)的单调递减区间为得a≤- .综上,实数a的取值范围是∪[1,+∞).【例2】已知函数f(x)= -2x2+lnx,其中a为常数.(1)若a=1,求函数f(x)的单调区间;(2)若函数f(x)在区间[1,2]上为单调函数,求a的取值范围.解析:(1)若a=1,则f(x)=3x-2x2+lnx的定义域为(0,+∞),f′(x)= -4x+3= = (x>0).当x∈(0,1),f′(x)>0时,函数f(x)=3x-2x2+lnx单调递增.当x∈(1,+∞),f′(x)<0时,函数f(x)=3x-2x2+lnx单调递减.故函数f (x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)f′(x)= -4x+ ,若函数f(x)在区间[1,2]上为单调函数,即在[1,2]上,f′(x)= -4x+ ≥0或f′(x)= -4x+ ≤0,即-4x+ ≥0或-4x+ ≤0在[1,2]上恒成立.即≥4x- 或≤4x- .令h(x)=4x- ,因为函数h(x)在[1,2]上单调递增,所以≥h(2)或≤h(1),即≥ 或≤3,解得a<0或0<a≤ 或a≥1.二、含参函数中的恒成立问题可先利用题设条件建立变量的关系式,将所求变量和另一已知变量分离或半分离(无法纯粹的分离),得到函数关系,从而使这种具有函数背景的范围问题迎刃而解,再由已知变量的范围求出函数的值域,即为所求变量的范围。
导数含参数的知识点

导数含参数的知识点
嘿,咱今天就来好好聊聊导数含参数这个事儿!你想想看啊,导数就像是一个神奇的工具,能帮我们理解函数变化的快慢。
可当这导数里有了参数,哇哦,那就像是一场更刺激的冒险了!
比如说,有个函数f(x)=ax²+bx+c,这里的 a 就是个参数呀!当 a 的
值变化的时候,整个函数的图像形态都会发生改变呢!这不就好像你换了一套不同风格的衣服,整个人的感觉都不一样了嘛!
咱再举个例子,假设有个函数g(x)=mx³+nx²。
如果 m 很大,那这个
函数在某些地方变化得可就超级快呀!就像一辆跑车在赛道上飞驰;要是
m 很小,那可能就像骑自行车,慢悠悠的。
而且哦,研究导数含参数的时候,那真的是要小心又小心。
有时候就差那么一点点,结果可能就完全不同啦!像在解一些题目时,得仔细分析参数的取值范围,这可不能马虎。
比如说要找到函数的极值点,就得根据参数的不同情况来讨论呢!你说这是不是得打起十二分精神?
我就记得有一次做作业,碰到一道导数含参数的题目,我一开始还不以为意,结果越做越觉得不对劲,后来才发现是自己没考虑到参数的一种特殊
情况。
哎呀,那可真是让我懊恼极了!还好我及时发现,重新认真分析,最后终于做出来了,那种成就感真的是无与伦比呀!
总的来说,导数含参数虽然有点难搞,但只要我们认真对待,多做练习,就一定能掌握它!就像我们征服一座高峰一样,虽然过程充满挑战,但登顶之后的喜悦是无法用言语来形容的!加油吧,我们都能行!。
含参变量积分求导法则

含参变量积分求导法则
含参变量积分求导法则是微积分中的一个重要概念,它是指对含有参
数的积分函数进行求导的方法。
在实际应用中,含参变量积分求导法
则被广泛应用于物理、工程、经济等领域,具有重要的理论和实际意义。
含参变量积分求导法则的基本思想是将含有参数的积分函数看作一个
整体,然后对其进行求导。
具体来说,假设有一个形如F(x,t)的含参变量积分函数,其中x为自变量,t为参数,那么对其进行求导的方法如下:
首先,将F(x,t)看作一个整体,对其进行求导,即:
dF/dx = ∫(∂F/∂x)dx + ∫(∂F/∂t)dt
其中,第一个积分符号表示对x进行积分,第二个积分符号表示对t
进行积分。
在这个式子中,∂F/∂x表示F对x的偏导数,∂F/∂t表示F 对t的偏导数。
接下来,根据积分的可加性,将第一个积分符号中的∂F/∂x提取出来,得到:
dF/dx = ∂/∂x ∫F(x,t)dt + ∫(∂F/∂t)dt
这个式子就是含参变量积分求导法则的基本形式。
它表示了含参变量
积分函数对自变量x的导数,可以通过对积分函数中的每一个t进行
积分,再对积分结果对x求导得到。
需要注意的是,含参变量积分求导法则只适用于一类特殊的积分函数,即积分上限和下限都是常数的情况。
如果积分上限和下限是变量,那
么就需要使用含参变量积分求导法则的推广形式。
总之,含参变量积分求导法则是微积分中的一个重要概念,它为我们
研究含有参数的积分函数提供了一种有效的方法。
在实际应用中,我
们可以根据这个法则,对含参变量积分函数进行求导,从而得到更加
精确的结果。
含参变量求导

( x 2 y 2 2)
例3 设曲线Γ由极坐标方程r=r(θ)所确定,试求该 曲线上任一点的切线斜率,并写出过对数螺线
上点 re (e 2 , ) 处的切线的直角坐标方程 2
解
由极坐标和直角坐标的变换关系知 x r ( ) cos y r ( ) sin
dy dy dt dy 1 ( t ) dx dt dx dt dx ( t ) dt
dy dy dt 即 dx dx dt
x ( t ) 若函数 二阶可导, y ( t )
d ( t ) dt d 2 y d dy ) ( ) ( 2 dx dx dt ( t ) dx dx
5.3 参变量函数的导数
一、由参数方程所确定的函数的导数
x (t ) 若参数方程 确定 y与x间的函数关系 , y (t ) 称此为由参数方程所确定的函数.
x 2t , x 例如 消去参数 t 2 y t , 2 2 x 2 x 1 2 yt ( ) y x 2 4 2 问题: 消参困难或无法消参如何求导?
上式两边对x求导得
1 1 y cos x ln x sin x y x 1 y y(cos x ln x sin x ) x sin x sin x x (cos x ln x ) x
一般地
f ( x ) u( x )v ( x ) ( u( x ) 0)
解
dy a sin t sin t dy dt dx dx a a cos t 1 cos t dt sin dy 2 1. dx t 2 1 cos 2
所求切线方程为
(完整版)导数含参数取值范围分类讨论题型总结与方法归纳

导数习题题型十七:含参数导数问题的分类讨论问题含参数导数问题的分类讨论问题1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。
★已知函数ax x a x x f 2)2(2131)(23++-=(a 〉0),求函数的单调区间)2)((2)2()(--=++-='x a x a x a x x f ★★例1 已知函数x a xax x f ln )2(2)(+--=(a 〉0)求函数的单调区间 222))(2(2)2()(x a x x x a x a x x f --=++-='★★★例3已知函数()()22211ax a f x x R x -+=∈+,其中a R ∈。
(Ⅰ)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。
解:(Ⅰ)当1a =时,曲线()y f x =在点()()2,2f 处的切线方程为032256=-+y x 。
(Ⅱ)由于0a ≠,所以()()12)1(222+-+='x x a x f ,由()'0f x =,得121,x x a a=-=。
这两个实根都在定()()()()()()22'2222122122111a x a x a x x ax a a f x x x ⎛⎫--+ ⎪+--+⎝⎭==++义域R 内,但不知它们之间 的大小。
因此,需对参数a 的取值分0a >和0a <两种情况进行讨论。
(1)当0a >时,则12x x <.易得()f x 在区间1,a ⎛⎫-∞- ⎪⎝⎭,(),a +∞内为减函数,在区间1,a a ⎛⎫- ⎪⎝⎭为增函数。
故函数()f x 在11x a =-处取得极小值21f a a ⎛⎫-=- ⎪⎝⎭;函数()f x 在2x a =处取得极大值()1f a =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数题型总结(解析版)体型一:关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。
注意寻找关键的等价变形和回归的基础一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种:第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,4323()1262x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.解:由函数4323()1262x mx x f x =-- 得32()332x mx f x x '=-- 2()3g x x mx ∴=--(1)()y f x =在区间[]0,3上为“凸函数”,则 2()30g x x mx ∴=--< 在区间[0,3]上恒成立解法一:从二次函数的区间最值入手:等价于max ()0g x <(0)0302(3)09330g m g m <-<⎧⎧⇒⇒>⎨⎨<--<⎩⎩解法二:分离变量法:∵ 当0x =时, 2()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2()30g x x mx =--<恒成立等价于233x m x x x->=-的最大值(03x <≤)恒成立, 而3()h x x x=-(03x <≤)是增函数,则max ()(3)2h x h == 2m ∴>(2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2()30g x x mx =--< 恒成立 变更主元法再等价于2()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题)22(2)023011(2)0230F x x x F x x ⎧->--+>⎧⎪⇒⇒⇒-<<⎨⎨>-+>⎪⎩⎩ 2b a ∴-=例2:设函数),10(3231)(223R b a b x a ax x x f ∈<<+-+-= (Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围.-2 2(二次函数区间最值的例子)解:(Ⅰ)()()22()433f x x ax a x a x a '=-+-=---01a <<令,0)(>'x f 得)(x f 的单调递增区间为(a ,3a )令,0)(<'x f 得)(x f 的单调递减区间为(-∞,a )和(3a ,+∞)∴当x=a 时,)(x f 极小值=;433b a +-当x=3a 时,)(x f 极大值=b.(Ⅱ)由|)(x f '|≤a ,得:对任意的],2,1[++∈a a x 2243a x ax a a -≤-+≤恒成立①则等价于()g x 这个二次函数max min ()()g x a g x a≤⎧⎨≥-⎩ 22()43g x x ax a =-+的对称轴2x a =01,a <<12a a a a +>+=(放缩法)即定义域在对称轴的右边,()g x 这个二次函数的最值问题:单调增函数的最值问题。
22()43[1,2]g x x ax a a a =-+++在上是增函数.max min ()(2)2 1.()(1)4 4.g x g a a g x g a a =+=-+=+=-+∴于是,对任意]2,1[++∈a a x ,不等式①恒成立,等价于(2)44,41.(1)215g a a a a g a a a +=-+≤⎧≤≤⎨+=-+≥-⎩解得 又,10<<a ∴.154<≤a 点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系第三种:构造函数求最值题型特征:)()(x g x f >恒成立0)()()(>-=⇔x g x f x h 恒成立;从而转化为第一、二种题型3aa()f x 'a3a2x a =[]1,2a a ++例3;已知函数32()f x x ax =+图象上一点(1,)P b 处的切线斜率为3-,326()(1)3(0)2t g x x x t x t -=+-++>(Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域;(Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。
解:(Ⅰ)/2()32f x x ax =+∴/(1)31f b a ⎧=-⎨=+⎩, 解得32a b =-⎧⎨=-⎩(Ⅱ)由(Ⅰ)知,()f x 在[1,0]-上单调递增,在[0,2]上单调递减,在[2,4]上单调递减 又(1)4,(0)0,(2)4,(4)16f f f f -=-==-= ∴()f x 的值域是[4,16]- (Ⅲ)令2()()()(1)3[1,4]2t h x f x g x x t x x =-=-++-∈思路1:要使()()f x g x ≤恒成立,只需()0h x ≤,即2(2)26t x x x -≥-分离变量 思路2:二次函数区间最值 二、参数问题题型一:已知函数在某个区间上的单调性求参数的范围解法1:转化为0)(0)(''≤≥x f x f 或在给定区间上恒成立, 回归基础题型解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;做题时一定要看清楚“在(m,n )上是减函数”与“函数的单调减区间是(a,b )”,要弄清楚两句话的区别:前者是后者的子集例4:已知R a ∈,函数x a x a x x f )14(21121)(23++++=. (Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值; (Ⅱ)如果函数)(x f 是),(∞+-∞上的单调函数,求a 的取值范围.解:)14()1(41)(2++++='a x a x x f . (Ⅰ)∵ ()f x '是偶函数,∴ 1-=a . 此时x x x f 3121)(3-=,341)(2-='x x f ,令0)(='x f ,解得:32±=x . 列表如下:x(-∞,-23)-23 (-23,23)23 (23,+∞))(x f ' + 0 - 0 + )(x f递增极大值递减极小值递增可知:()f x 的极大值为34)32(=-f , ()f x 的极小值为34)32(-=f . (Ⅱ)∵函数)(x f 是),(∞+-∞上的单调函数,∴21()(1)(41)04f x x a x a '=++++≥,在给定区间R 上恒成立判别式法 则221(1)4(41)204a a a a ∆=+-⋅⋅+=-≤, 解得:02a ≤≤.综上,a 的取值范围是}20{≤≤a a . 例5、已知函数3211()(2)(1)(0).32f x x a x a x a =+-+-≥ (I )求()f x 的单调区间;(II )若()f x 在[0,1]上单调递增,求a 的取值范围。
子集思想 (I )2()(2)1(1)(1).f x x a x a x x a '=+-+-=++- 1、20,()(1)0,a f x x '==+≥当时恒成立当且仅当1x =-时取“=”号,()(,)f x -∞+∞在单调递增。
2、12120,()0,1,1,,a f x x x a x x '>==-=-<当时由得且单调增区间:(,1),(1,)a -∞--+∞ 单调增区间:(1,1)a -- (II )当()[0,1],f x 在上单调递增 则[]0,1是上述增区间的子集:1、0a =时,()(,)f x -∞+∞在单调递增 符合题意2、[]()0,11,a ⊆-+∞,10a ∴-≤ 1a ∴≤ 综上,a 的取值范围是[0,1]。
三、题型二:根的个数问题题1函数f(x)与g(x)(或与x 轴)的交点======即方程根的个数问题a-1-1()f x '解题步骤第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系; 第三步:解不等式(组)即可; 例6、已知函数232)1(31)(x k x x f +-=,kx x g -=31)(,且)(x f 在区间),2(+∞上为增函数. (1) 求实数k 的取值范围;(2) 若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围. 解:(1)由题意x k x x f )1()(2+-=' ∵)(x f 在区间),2(+∞上为增函数,∴0)1()(2>+-='x k x x f 在区间),2(+∞上恒成立(分离变量法)即x k <+1恒成立,又2>x ,∴21≤+k ,故1≤k ∴k 的取值范围为1≤k(2)设312)1(3)()()(23-++-=-=kx x k x x g x f x h , )1)(()1()(2--=++-='x k x k x k x x h令0)(='x h 得k x =或1=x 由(1)知1≤k ,①当1=k 时,0)1()(2≥-='x x h ,)(x h 在R 上递增,显然不合题意… ②当1<k 时,)(x h ,)(x h '随x 的变化情况如下表:x ),(k -∞ k )1,(k1),1(+∞)(x h ' +— 0+)(x h↗极大值312623-+-k k ↘极小值21-k ↗由于021<-k ,欲使)(x f 与)(x g 的图象有三个不同的交点,即方程0)(=x h 有三个不同的实根,故需0312623>-+-k k ,即0)22)(1(2<---k k k ∴⎩⎨⎧>--<02212k k k ,解得31-<k 综上,所求k 的取值范围为31-<k根的个数知道,部分根可求或已知。