量子力学 第二版 第六章__散射 习题答案 周世勋

合集下载

量子力学答案-周世勋

量子力学答案-周世勋

第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kThc kT hc e kT hc e hcλλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThce kT hc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学答案 周世勋

量子力学答案 周世勋

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThcekThcλλ ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

《量子力学教程》周世勋_课后答案

《量子力学教程》周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

周世勋量子力学习题答案(七章全)

周世勋量子力学习题答案(七章全)


h2 2μ
d2 ψ dx2
(x)
+ U (x)ψ
(x)
=

6.62559 ×10−34 × 2.997925 ×108 1.380546 ×10−23
= 2.898 ×10−3 m ⋅ k
[注]
ρν
根据
=
8πhν 3 c3
1

e kT − 1
可求能量密度最大值的频率:
x = hν

kT
ρν
=
Ax3
1 ex −1

A
=
8πk 3T c3h2
3

dρν dν
球面波。
2.3 一粒子在一维势场
⎧∞ U (x) = ⎪⎨0
⎪⎩∞
x<0 0≤ x≤a x>a
中运动,求粒子的能级和对应的波函数。
[解]:由于势函数U (x) 不随时间变化
体系的状态波函数满足定态 Schrödinger 方程
0
a
− h2 ∇2ψ (x) + U (x)ψ (x) = Eψ (x) 2m
vj = ih [ψ (rv)∇ψ *(rv) −ψ *(rv)∇ψ (rv)] 则有: 2μ 即 vj 仅是空间坐标 (x, y, z) 的函数,与时间无关。
2.2 由下列两定态波函数计算几率流密度。
(1)
ψ1
=
1 r
eikr
ψ
(2)
2
=
1 e−ikr r
从所得结果说明ψ1 表示向外传播的球面波,ψ 2 表示向内(即向原点)传播的球面波。
m
= 2.43 ×10−12 m = 2.43 ×10−2 A°

量子力学教程(第二版)周世勋习题解答

量子力学教程(第二版)周世勋习题解答
整理(10)、(11)、(12)、(13)式,并合并成方程组,得
(10) (11) (12) (13)
ek1a B sin k 2aC cosk 2aD 0 0
k1ek1a B k 2 cosk 2aC k 2 sin k 2a D 0 0
0 sin k 2aC cosk 2aD ek1a F 0
(x) c (x)

④乘 ⑤,得 (x) (x) c2 (x) (x) , 可见,c 2 1 ,所以 c 1
当 c 1时, (x) (x) , (x) 具有偶宇称,
当 c 1时, (x) (x) , (x) 具有奇宇称,
18
当势场满足 U (x) U (x) 时,粒子的定态波函数具有确定的宇称。
3
第一章 绪论
1.1.由黑体辐射公式导出维恩位移定律: mT b, b 2.9 10 3 m0C 。
证明:由普朗克黑体辐射公式:
d
8h c33Βιβλιοθήκη 1hd ,
ekT 1
及 c 、 d c d 得
2
8hc 5
1,
hc
ekT 1
令 x hc ,再由 d 0 ,得 .所满足的超越方程为
kT
d
2
(x)
E
2
(x)

12
Ⅲ: x a
2 2m
d2 dx2
3
(x)
U
(x)
3
(x)
E
3
(x)

由于(1)、(3)方程中,由于U (x) ,要等式成立,必须
1(x) 0 2 (x) 0
即粒子不能运动到势阱以外的地方去。
方程(2)可变为
d
2 2 ( dx2

《量子力学教程》_课后答案

《量子力学教程》_课后答案
其解为
2 ( x) A sin kx B coskx

13
根据波函数的标准条件确定系数 A,B,由连续性条件,得
2 (0) 1 (0)
2 ( a ) 3 ( a)
⑤ ⑥ ⑥

B0 A sin ka 0
A0 s i n 0 ka ka n
《量子力学教程》 习题解答
1
《量子力学教程》
习题解答说明
• 为了满足量子力学教学和学生自学的需要,完 善精品课程建设,我们编写了周世勋先生编写 的《量子力学教程》的课后习题解答。本解答 共分七章,其中第六章为选学内容。 • 第一章 第二章 第三章 第四章 第五章 第六章 第七章
2
目录
• • • • • • • 第一章 绪论 第二章 波函数和薛定谔方程 第三章 力学量的算符表示 第四章 态和力学量的表象 第五章 微扰理论 第六章 弹性散射 第七章 自旋和全同粒子
(1)
J1与r 同向。表示向外传播的球面波。
i * * J1 ( 1 1 1 1 ) 2m i 1 ikr 1 ikr 1 ikr 1 ikr [ e ( e ) e ( e )]r0 2m r r r r r r i 1 1 1 1 1 1 [ ( 2 ik ) ( 2 ik )]r0 2m r r r r r r k k 2 r0 3 r mr mr
0
2
n , n 1,2, 。 eB
1 2 1 eBR 1 2 2 n e B n B B 电子的动能为 E v 2 2 2 eB
动能间隔为 E B B 9 10 J 热运动能量(因是平面运动,两个自由度)为 E kT ,所以当 T 4K 时, E 4.52 10 J ;当

《量子力学教程》周世勋 课后答案

《量子力学教程》周世勋 课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

《量子力学教学教程》周世勋课后答案解析

《量子力学教学教程》周世勋课后答案解析

量子力学课后习题详解 第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 散射1.粒子受到势能为2)(ra r U =的场的散射,求S 分波的微分散射截面。

[解] 为了应用分波法,求微分散射截面,首先必须找出相角位移。

注意到第l 个分波的相角位移l δ是表示在辏力场中的矢径波函数l R 和在没有散射势时的矢径波函数l j 在∞→r 时的位相差。

因此要找出相角位移,必须从矢径的波动方程出发。

矢径的波动方程是:0))1()((12222=+--+⎪⎭⎫ ⎝⎛l l R r l l r V k dr dR r dr d r其中l R 是波函数的径向部分,而Ekr U r V 2222),(2)(μμ==令rr x R l l )(=,不难把矢径波动方程化为02)1(2222=⎪⎭⎫ ⎝⎛-+-+''l l x r r l l k x μα再作变换 )(r f r x l =,得0)(221)(1)(2222=⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+-+'+''r f re k rf rr f μα这是一个贝塞尔方程,它的解是)()()(kr BN kr AJ r f p p +=其中222221 μα+⎪⎭⎫ ⎝⎛+=l p 注意到)(kr N p 在0→r 时发散,因而当0→r 时波函数∞→=rN R p l ,不符合波函数的标准条件。

所以必须有0=B故)(1kr J r AR p l =现在考虑波函数l R 在∞→r 处的渐近行为,以便和l j 在∞→r 时的渐近行为比较,而求得相角位移l δ,由于:)2sin(1)42sin(1)(l l kr rp kr rr R δπππ+-=+-→∞→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-=++-=∴21221224222l d l l p l μππππδ当l δ很小时,即α较小时,把上式展开,略去高次项得到⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+-=2122l l μαπδ又因 l i i elδδ212=-故∑∞=-+=2)(c o s )1)(12(21)(l l i P el ikf lθθδ∑∞=⎪⎪⎪⎪⎭⎫ ⎝⎛+-+=02)(cos 122)12(21l l P l i l ik θμαπ∑∞=-=02)(cos l lP k θπμα注意到⎪⎪⎩⎪⎪⎨⎧≤⎪⎪⎭⎫⎝⎛≥⎪⎪⎭⎫ ⎝⎛=-+=∑∑∞=∞=02121202112121222112)(cos 1)(cos 1cos 211l l l l l lr r P r r r r r P r r r r r r r r 当当θθθ如果取单位半径的球面上的两点来看 则 121==r r ,即有∑∞===-02sin21)(cos )cos 1(21l lP θθθ故2s i n21)(2θπμαθk f -=微分散射截面为θθαμπθθαμπθθd Ed k d f 2csc82sin41)(2222242222==由此可见,粒子能量E 愈小,则θ较小的波对微分散射截面的贡献愈大;势能常数α愈大,微分散射截面也愈大。

2.慢速粒子受到势能为⎩⎨⎧><=a r a r U r U 当当,0,)(0的场的散射,若0,00><U U E ,求散射截面。

[解] 慢速粒子的德布罗意波长很长,所以只需要考虑S 分波。

在a r >处,方程为 2210l l l(l )x k x r +⎡⎤''+-=⎢⎥⎣⎦其中222E kμ=在a r <处,则有 2210l l l(l )x k x r +⎡⎤'''-+=⎢⎥⎣⎦其中202)(2 E U k -='μ而波函数是r x R l l =在a >>λ的情况下,只故虑S 分波,即0=l 的情况,上面两个方程变为002=+''>x k x a r 0020=-''<x k x ar其解分别为当a r >时, )sin(00δ+=kr B x当a r <时, 0x Ashk r A c hk r '''=+由于在0→r 时,r x R 00=有限,但1cos 0−−→−'→r r k 当故 0='A即 )(0a r r k A s hx <'=在a r =处,波函数0R 及其微商必须连续,因此得出)sin(0δ+='ka B a k Ash )sin()cot(0202δδ+-+='-''ka aB ka k aB a k sh aA a k ch k aA用前式除后式可得)cot(coth 0δ+=''ka k a k k 即)(0δ+'='ka tg kk a k tgka a k tg k ktg -⎪⎭⎫⎝⎛''=∴- 10δ因此S 分波的辐射截面是⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛''==-ka a k tg k ktg kkQ 1220220sin 4sin 4πδπ当速度较小时,0→k ,可以近似地认为2002U k k μ=='这时有 0t g h k a t g h k a= 000k tghk a kak δ∴=-2002220144⎪⎪⎭⎫ ⎝⎛-==a k a k tg a kQ πδπ假如∞→0U ,相当于在受到球形无限深势阱散射的情况,这时由于121)(100022020200−−−→−⎥⎦⎤⎢⎣⎡-+=⎪⎪⎭⎫ ⎝⎛-∞→k a k a k tg a k a k tg a k a k tg 当204Q a π∴=3.只考虑S 分波,求慢速粒子受到势能4)(rr U α=的场散射时的散射截面。

[解] 当只考虑0=l ,即S 分波时,令r R α=,则x 满足的方程是:242=-''rx xμα为了解此方程,作如下代换,令)()(r f r r x =,由于)(121)(r f r r f r x +'=' 23)(41)()(-⋅-'+''=''rr f r r f r f r x可将原方程化为0411223272=⎪⎪⎭⎫⎝⎛+-'+''r r d f r f f r μ即04112242=⎪⎭⎫ ⎝⎛+-'+''r r d f r f f μ为了化简方程,再作变换,令ξμα12i r =注意到22212ξμαξμαξξξd df irid df drd d df drdf =-==drd d df i d fd i dr d d df i d d drf d ξξμαξξμαξξμαξξ222222222+=⎪⎪⎭⎫ ⎝⎛=232222222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=μαξξξμαξi d df i d f d方程可以化为04111222=⎪⎪⎭⎫⎝⎛-++ξξξξd dfd f d这是21阶的贝塞尔方程,它的解是⎪⎪⎭⎫ ⎝⎛=r i Hr f 12)()1(21 μα式中)1(H 表示第一类汉克尔函数,按定义为 [])()(sin )()1(ξξπξπp p ip p J J ep i H ---=当1<<ξ时,)1(2)(+=p J ppP Γξξ当0,→∞→ξr 时⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-−−→−--∞→2122322sin )(21212121)1(21ΓξΓξπξi i H r 当 而πΓΓπΓ21212123,21=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛==∴r x iH r r f r x μ2)()1(21当r 很大时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛=41241222 μαμαr x 常数⎥⎦⎤⎢⎣⎡+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛==r c C r r r x R 21412412212)(常数常数 μαμα另一方面rkr rkr C krkr C R )sin()0cos()0sin(021δ-=-+-=常数当1<<kr 时⎪⎭⎫ ⎝⎛+≅r C C R 21常数 其中 412241212,2⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=μαμαC C 01202δμαδ===∴k k C C tg散射截面222208424k k Q πμαπμαπδ⎪⎪⎭⎫ ⎝⎛==上述解的条件是,1<<kr 即112<<=r iμαξ亦即要求 k r 12<<<<μα4.用玻恩近似法求粒子在势能220)(reU r U α-=场中散射时的散射截面。

[解] 按玻恩近似法计算微分散射截面的公式2)()(θθf q =而⎰∞--=0222sin 2)(drkrer K f rαμθ[见教材(55-23)式]其中2s i n4222θk K=,θ为入射粒子方向和散射粒子方向之间的夹角。

在本题中220)(reU r U α-=⎰∞--=∴2022sin 2)(drKrer K U f rαμθ⎰∞--+--=02)(2222dreer K U iiKrr iKrr ααμ⎰⎰∞∞⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛----=242024202222222222drreeK U i dr reeK U i iK r K iK r K ααααααμμ注意到⎰⎰⎰∞∞∞⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-=222222222222222dreiK dr e iK r dr reiK r iK r iK r αααααααα⎰∞-+=+=3224212222απααπααiK iK dx xe x又⎰⎰⎰∞∞∞⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+-=-002222222222222222dr eiK dr e iK r dr reiK r iK r iK r αααααααα32421απαiK +-=22224320342022)(αααπμαπμθK K eU iK e K U i f ---=⋅=∴而2s i n4222θK K =2226420224)()(ααπμθθK eUf q -==∴5.利用玻恩近似法求粒子在势能20s Ze r,r a U (r )r b,r a ⎧-<⎪=⎨⎪>⎩场中散射的微分散射截面,式中22s ab Ze =[解] 由势能)(r U 的形状容易看出,计算)(θf 时只需计算由a →0的积分即可。

相关文档
最新文档