单片机使用上拉电阻及作用
单片机使用上拉电阻

单片机使用上拉电阻上拉电阻是单片机中常用的电路元件,它在数字电路中起到很重要的作用。
为了更好地了解单片机中上拉电阻的使用,本文将从以下几个方面进行详细介绍。
一、上拉电阻的基本原理与作用上拉电阻是一种电阻,其特点是将电压拉高至逻辑高电平。
在单片机中,上拉电阻可以通过连接到处理器引脚和电源正极之间,使得引脚在不连接任何外设时保持在高电平状态。
这种状态下,引脚的电压为电源电压,处于逻辑高电平状态。
当引脚被连接到外部设备(如按钮或开关)时,通过按钮或开关的操作,可以将引脚与地(电源负极)相连,此时引脚的电压会变为地电压,处于逻辑低电平状态。
因此,上拉电阻在单片机中起到了起始状态控制、输入信号的电平转换等作用。
二、上拉电阻的连接方式在单片机中,上拉电阻有两种常见的连接方式:内部上拉和外部上拉。
1.内部上拉:许多单片机都提供了内部上拉电阻功能,即通过设置寄存器的方式实现上拉电阻的功能。
在这种情况下,无需外接额外的电阻,可以直接通过在单片机的寄存器中设置相应的位,使引脚的上拉电阻电路生效。
这样,引脚在不连接任何外设时,会被拉高至逻辑高电平。
2.外部上拉:当单片机没有内部上拉电阻功能时,可以通过外接上拉电阻的方式实现相同的效果。
具体操作是将一个端子连接至处理器引脚,另一端与电源正极相连,从而实现引脚的上拉电路。
三、单片机中使用上拉电阻的具体应用上拉电阻在单片机中有多种具体应用。
以下是几个常见的应用场景。
1.输入状态的判断:在单片机中,可以使用上拉电阻来判断输入状态。
当引脚没有连接到外部设备时,上拉电阻使得引脚维持在高电平状态,此时读取该引脚的电平就可以得知输入状态。
当外部设备与引脚相连,使引脚电平变为低电平时,就可以判断输入的状态为低电平。
2.开关和按键的检测:在单片机外部连接一个按钮或开关时,可以使用上拉电阻。
当按钮或开关未按下时,引脚维持高电平状态;当按钮或开关按下时,引脚通过按钮或开关与地相连,电平变为低电平状态,从而检测到按钮或开关的操作。
单片机上拉电阻

单片机上拉电阻1. 什么是上拉电阻?上拉电阻是一种用于单片机输入引脚的电路元件。
在单片机输入引脚上连接一个上拉电阻,可以保证输入引脚在未连接外部信号时保持高电平状态。
2. 上拉电阻的作用在单片机的输入引脚上连接一个上拉电阻,可以实现以下几个作用:2.1 防止浮空状态当单片机的输入引脚未连接外部信号时,会处于浮空状态。
这时候,引脚可能会受到噪声或其他干扰的影响,导致输入不稳定。
通过连接上拉电阻,可以将输入引脚拉高到高电平状态,避免了浮空状态。
2.2 确定默认状态有些应用场景下,我们希望单片机的输入引脚在未接收到外部信号时保持特定的默认状态。
通过连接上拉电阻,可以将输入引脚默认为高电平或低电平,以满足特定要求。
2.3 减少功耗当单片机的输入引脚处于高阻态(即浮空状态)时,会消耗一定的功率。
通过连接上拉电阻,可以降低功耗,提高系统的能效。
3. 如何选择上拉电阻的数值?选择上拉电阻的数值需要考虑以下几个因素:3.1 输入引脚的电流要求不同型号的单片机,其输入引脚的电流要求可能有所不同。
在选择上拉电阻时,需要确保其能够提供足够的电流给输入引脚。
3.2 上拉电阻和输入电容的时间常数上拉电阻和输入电容的时间常数决定了输入信号从低电平到高电平或从高电平到低电平的时间。
如果时间常数过大,可能会导致信号响应速度变慢;如果时间常数过小,可能会导致信号抖动。
在选择上拉电阻时,需要根据具体应用场景来确定合适的数值。
3.3 上拉电阻和外部信号源的匹配在某些应用场景下,单片机的输入引脚可能会连接到外部信号源。
为了保证信号传输的质量,需要确保上拉电阻和外部信号源的输出阻抗匹配。
4. 上拉电阻连接方式4.1 内部上拉一些单片机内部集成了上拉电阻,可以通过设置相应的寄存器来启用内部上拉。
这种方式简单方便,但是由于内部上拉电阻的数值固定,可能无法满足特定应用的要求。
4.2 外部上拉外部上拉是通过连接外部电阻实现的。
将上拉电阻连接到单片机的输入引脚和正电源之间,可以实现上拉效果。
单片机上拉电阻和下拉电阻做作用和接线方法图解

单片机上拉电阻和下拉电阻做作用和接线方法图解
摘要: 是不是经常听别人讲,加个试试看,加个下拉电阻试试看,是不是还在疑惑上下拉电阻是什幺,该怎幺用,什幺时候用,有什幺用途? 1.什幺是上下拉电阻:把一个不确定的信号通过电阻连接到高电平,使该信号...
是不是经常听别人讲,加个试试看,加个下拉电阻试试看,是不是还在疑惑上下拉电阻是什幺,该怎幺用,什幺时候用,有什幺用途?
1.什幺是上下拉电阻
:把一个不确定的信号通过电阻连接到高电平,使该信号初始为高电平;
下拉电阻:把一个不确定的信号通过电阻连接到低电平,使该信号初始为低电平;
2.上下拉电阻的接线方法
如下图所示:
电阻R12 将KEY1 网络标识上拉到高电平,在按键S2 没有按下的情况下KEY1 将被钳制在高电平,从而避免了引脚悬空而引起的误动作;
下拉电阻如下图所示:
电阻R29 将DIR 网络标识下拉到低电平,在光耦没有导通的情况下DIR
将被钳制在低电平,从而避免了引脚悬空而引起的误动作;
3.上下拉电阻的作用
提高电路稳定性,避免引起误动作。
第一图中的按键如果不通过电阻上拉到高电平,那幺在上电瞬间可能就发生误动作,因为在上电瞬间的引脚电平。
什么是上拉电阻上拉电阻的作用.doc

什么是上拉电阻上拉电阻的作用上拉电阻的概念上拉电阻就是从电源高电平引出的电阻接到输出端。
1、如果电平用OC(集电极开路,TTL)或OD(漏极开路,CMOS)输出,那么不用上拉电阻是不能工作的,这个很容易理解,管子没有电源就不能输出高电平了。
2、如果输出电流比较大,输出的电平就会降低(电路中已经有了一个上拉电阻,但是电阻太大,压降太高),就可以用上拉电阻提供电流分量,把电平拉高。
(就是并一个电阻在IC内部的上拉电阻上,这时总电阻减小,总电流增大)。
当然管子按需要工作在线性范围的上拉电阻不能太小。
当然也会用这个方式来实现门电路电平的匹配。
上拉电阻的作用1、当TTL电路驱动CMOS电路时,如果电路输出的高电平低于CMOS电路的最低高电平(一般为3.5V),这时就需要在TTL 的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须使用上拉电阻,以提高输出的高电平值。
3、为增强输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻以降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限,增强抗干扰能力。
6、提高总线的抗电磁干扰能力,管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上、下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻的注意事项需要注意的是,上拉电阻太大会引起输出电平的延迟。
(RC延时)一般CMOS门电路输出不能给它悬空,都是接上拉电阻设定成高电平。
下拉电阻:和上拉电阻的原理差不多,只是拉到GND去而已。
那样电平就会被拉低。
下拉电阻一般用于设定低电平或者是阻抗匹配(抗回波干扰)。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
单片机 nreset 低电平复位 电容1uf 上拉电阻10k

单片机 nreset 低电平复位电容1uf 上拉
电阻10k
单片机(Microcontroller Unit,MCU)的复位电路通常用于在启动或发生故障时将单片机重置到初始状态。
其中,低电平复位(nRESET)是一种常见的复位方式,即当nRESET信号为低电平时,单片机被复位。
当您提到“电容1uf”和“上拉电阻10k”,这是复位电路中常见的配置,用于消除可能的电源电压中的噪声或瞬态干扰。
以下是对这个配置的解释:
电容(C=1uf):它通常连接在电源和地之间,用于滤除电源中的高频噪声。
其目的是确保单片机在电源稳定时获得稳定的复位信号。
上拉电阻(R=10k):它通常连接在nRESET引脚和VCC之间。
在没有外部复位信号的情况下,nRESET引脚默认被上拉到高电平,确保单片机不会意外复位。
当需要复位单片机时,通过将nRESET引脚拉至低电平(通常是通过软件控制一个GPIO引脚,或使用外部硬件信号)来触发复位。
这个配置的工作原理如下:
1.当电源电压开始上升时,由于电容的充电特性,nRESET 引脚上的电压会逐渐下降。
如果电源电压中的噪声或瞬态干扰导
致VCC突然上升,由于电容的平滑作用,nRESET引脚的电压不会立即跟随,从而防止了误触发复位。
2.当电源稳定后,电容已充电到VCC,此时上拉电阻确保nRESET保持在高电平状态,直到需要复位。
这种配置有助于确保单片机的稳定运行和可靠复位。
不过,实际应用中可能还需要考虑其他因素,如单片机的具体型号、应用场景等,来优化或调整这个电路设计。
【硬件设计】上拉电阻和下拉电阻用法

【硬件设计】上拉电阻和下拉电阻的用法一、什么是上拉电阻?什么是下拉电阻?上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
二、上拉电阻及下拉电阻作用:1、提高電壓准位:a.当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
b.OC门电路必须加上拉电阻,以提高输出的搞电平值。
2、加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
3、N/A pin防靜電、防干擾:在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
同時管脚悬空就比较容易接受外界的电磁干扰。
4、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
5、預設空閒狀態/缺省電位:在一些 CMOS 输入端接上或下拉电阻是为了预设缺省电位. 当你不用这些引脚的时候, 这些输入端下拉接 0 或上拉接 1。
在I2C 总线等总线上,空闲时的状态是由上下拉电阻获得。
6. 提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免收到随机电平而影响电路工作。
同样如果输出端处于被动状态,需要加上拉或下拉,如输出端仅仅是一个三极管的集电极。
从而提高芯片输入信号的噪声容限增强抗干扰能力。
三、上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
单片机上拉电阻的作用

单片机上拉电阻的作用一、定义输入信号单片机通常通过外部电路接口与外部设备进行连接,输入信号可能是开关接口、按键接口等。
当开关或按键未按下时,输入引脚的电平将处于一个未知的状态,无法确定是高电平还是低电平。
为了使输入引脚保持在可靠的状态,需要使用上拉电阻将输入引脚连接到电源上。
当开关或按键未按下时,上拉电阻将输入引脚连接到电源上的高电平,以定义输入引脚的状态为高电平。
这样,当开关或按键未按下时,输入引脚就可以确定为高电平。
二、防止输入引脚浮动当单片机的输入引脚没有外部电路连接时,引脚处于开路状态。
在这种情况下,引脚容易受到干扰,引发浮动现象。
当有外部干扰信号作用于引脚时,引脚的电平会不确定地改变,这可能导致错误的信号输入到单片机中,进而影响系统的正常运行。
为了防止引脚的浮动现象,可以使用上拉电阻将引脚连接到电源上的高电平。
这样,在没有外部信号输入时,上拉电阻将保持引脚处于高电平状态,有效地防止了引脚浮动现象的发生。
三、节约功耗在单片机的电路设计中,功耗的节约是非常重要的。
上拉电阻在一些电路设计中可以起到节约功耗的作用。
在一些应用中,输入信号较长时间都是稳定的,在这种情况下,可以选择使用上拉电阻,通过将输入引脚连接到高电平,省去了其他电路元件的功耗。
这种设计可以使系统功耗降低,特别在电池供电的系统中更加重要。
四、提高系统可靠性使用上拉电阻连接输入引脚,可以提高系统的可靠性。
上拉电阻可以保持输入引脚的电平稳定,防止由于引脚电平的变化而引起的信号干扰或误判。
在一些噪声较大的环境下,使用上拉电阻可以有效地抑制噪声信号的影响,提高系统的抗干扰能力。
同时,上拉电阻的使用还能够减少误操作的可能性,使系统的运行更加稳定可靠。
五、确保电平逻辑正确在数字逻辑电路中,高电平通常表示1,低电平表示0。
单片机的输入引脚也需要根据高电平和低电平来进行逻辑判断和控制。
使用上拉电阻将引脚连接到高电平,可以确保输入引脚的逻辑电平正确。
单片机上拉电阻作用

单片机上拉电阻作用一、单片机上拉电阻的原理单片机上拉电阻是指在单片机输入引脚与电源正电压之间连接一个高阻值电阻,通常取10kΩ以上。
在单片机中,输入引脚本质上是一个电容输入的引脚,它具有很高的输入阻抗。
当引脚没有接其他器件时,会表现出非常高的阻抗,从而形成一个高阻抗电路。
二、单片机上拉电阻的作用1.输入电平的稳定性:单片机的输入引脚直接与外部信号连接,通过上拉电阻的连接,可以使输入电平稳定。
当引脚没有接其他器件时,上拉电阻连接的是电源正电压,可以保证引脚的电平为高电平。
2.防止干扰信号:单片机输入引脚通常会受到来自外部电路的干扰,比如电磁干扰、静电干扰等。
通过上拉电阻连接,可以有效地防止这些干扰信号对单片机的影响。
3.降低功耗:当单片机输入引脚没有接其他器件时,引脚高阻抗状态下的电流非常小,因此通过上拉电阻的连接,可以降低功耗。
4.方便信号采集:上拉电阻连接的引脚通常用于接收外部信号,在信号采集中非常有用。
如果没有上拉电阻的连接,外部信号无法有效地驱动单片机输入引脚,会导致信号采集异常。
三、单片机上拉电阻的应用场景1.按键输入:在按键输入中,通常将按键连接到单片机的输入引脚上,通过上拉电阻连接,可以保证输入引脚在按键未被按下时为高电平,在按键被按下时变为低电平。
这样可以方便地检测按键输入事件。
2.信号采集:在信号采集中,通常将传感器输出信号连接到单片机的输入引脚上。
通过上拉电阻的连接,可以保证信号采集的稳定性和可靠性。
3.输入端信号处理:单片机的输入引脚通常用于接收外部信号,如PWM信号、ADC转换结果等。
通过上拉电阻的连接,可以方便地实现信号的处理和读取。
4.外设控制:在控制外设时,通常将单片机的输出引脚与外设连接。
外设通常需要有一个有效的高电平信号来控制,通过上拉电阻的连接,可以提供一个有效的高电平信号,方便实现外设的控制。
综上所述,单片机上拉电阻是单片机系统中常见的电路元件,它通过连接输入引脚与电源正电压之间的高阻值电阻,可以保证输入电平的稳定性,防止干扰信号,降低功耗,并方便信号的采集和处理,常见应用场景有按键输入、信号采集、输入端信号处理和外设控制等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上拉电阻总结
上拉电阻:
1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:
1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑
以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理
对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:
1.驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3.高低电平的设定。
不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
4.频率特性。
以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。
上拉电阻的设定应考虑电路在这方面的需求。
下拉电阻的设定的原则和上拉电阻是一样的。
OC门输出高电平时是一个高阻态,其上拉电流要由上拉电阻来提供,设输入端每端口不大于100uA,设输出口驱动电流约500uA,标准工作电压是5V,输入口的高低电平门限为0.8V(低于此值为低电平);2V(高电平门限值)。
选上拉电阻时:
500uA x 8.4K= 4.2即选大于8.4K时输出端能下拉至0.8V以下,此为最小阻值,再小就拉不下来了。
如果输出口驱动电流较大,则阻值可减小,保证下拉时能低于0.8V即可。
当输出高电平时,忽略管子的漏电流,两输入口需200uA
200uA x15K=3V即上拉电阻压降为3V,输出口可达到2V,此阻值为最大阻值,再大就拉不到2V了。
选10K可用。
COMS门的可参考74HC系列
设计时管子的漏电流不可忽略,IO口实际电流在不同电平下也是不同的,上述仅仅是原理,一句话概括为:输出高电平时要喂饱后面的输入口,输出低电平不要把输出口喂撑了(否则多余的电流喂给了级联的输入口,高于低电平门限值就不可靠了)
在数字电路中不用的输入脚都要接固定电平,通过1k电阻接高电平或接地。
1. 电阻作用:
l 接电组就是为了防止输入端悬空
l 减弱外部电流对芯片产生的干扰
l 保护cmos内的保护二极管,一般电流不大于10mA
l 上拉和下拉、限流
l 1. 改变电平的电位,常用在TTL-CMOS匹配
2. 在引脚悬空时有确定的状态
3.增加高电平输出时的驱动能力。
4、为OC门提供电流
l 那要看输出口驱动的是什么器件,如果该器件需要高电压的话,而输出口的输出电压又不够,就需要加上拉电阻。
l 如果有上拉电阻那它的端口在默认值为高电平你要控制它必须用低电平才能控制如三态门电路三极管的集电极,或二极管正极去控制把上拉电阻的电流拉下来成为低电平。
反之,l 尤其用在接口电路中,为了得到确定的电平,一般采用这种方法,以保证正确的电路状态,以免发生意外,比如,在电机控制中,逆变桥上下桥臂不能直通,如果它们都用同一个单片机来驱动,必须设置初始状态.防止直通!
2、定义:
l 上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!l 上拉是对器件注入电流,下拉是输出电流
l 弱强只是上拉电阻的阻值不同,没有什么严格区分
l 对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
3、为什么要使用拉电阻:
l 一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。
l 数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!
l 一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平,C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:
比如:当一个接有上拉电阻的端口设为输如状态时,他的常态就为高电平,用于检测低电平的输入。
l 上拉电阻是用来解决总线驱动能力不足时提供电流的。
一般说法是拉电流,下拉电阻是用来吸收电流的,也就是你同学说的灌电流
电阻在选用时,选用经过计算后与标准值最相近的一个!
P0为什么要上拉电阻原因有:
1. P0口片内无上拉电阻
2. P0为I/O口工作状态时,上方FET被关断,从而输出脚浮空,因此P0用于输出线时为开漏输出。
3. 由于片内无上拉电阻,上方FET又被关断,P0输出1时无法拉升端口电平。
P0是双向口,其它P1,P2,P3是准双向口。
不错准双向口是因为在读外部数据时要先“准备”一下,为什么要准备一下呢?
单片机在读准双向口的端口时,现应给端口锁存器赋1,目的是使FET关断,不至于因片内FET导通使端口钳制在低电平。
上下拉一般选10k!
芯片的上拉/下拉电阻的作用
最常见的用途是,假如有一个三态的门带下一级门.如果直接把三态的输出接在下一级的输入上,当三态的门为高阻态时,下一级的输入就如同漂空一样.可能引起逻辑的错误,对MOS电路也许是有破坏性的.所以用电阻将下一级的输入拉高或拉低,既不影响逻辑又保正输入不会漂空.
改变电平的电位,常用在TTL-CMOS匹配;在引脚悬空时有确定的状态;为OC门的输出提供电流;作为端接电阻;在试验板上等于多了一个测试点,特别对板上表贴芯片多的更好,免得割线;嵌位;
上、下拉电阻的作用很多,比如抬高信号峰峰值,增强信号传输能力,防止信号远距离传输时的线上反射,调节信号电平级别等等!当然还有其他的作用了具体的应用方法要看在什么场合,什么目的,至于参数更不能一概而定,要看电路其他参数而定,比如通常用在输入脚上的上拉电阻如果是为了抬高峰峰值,就要参考该引脚的内阻来定电阻值的!另外,没有说输入加下拉,输出加上拉的,有时候没了某个目的也可能同时既有上拉又有下拉电阻的!加接地电阻--下拉
加接电源电阻--上拉
对于漏极开路或者集电极开路输出的器件需要加上拉电阻才可能工作。
另外,普通的口,加上拉电阻可以提高抗干扰能力,但是会增加负载。
电源:+5V
普通的直立LED,
共八个,负极分别接到一个大片子的管脚上,
用多大的上拉电阻合适?谢谢指教!
一般LED的电流有几个mA就够了,最大不超过20mA,根据这个你就应该可以算出上拉电阻值来了。
保献起见,还是让他拉吧,(5-0.7)/10mA=400ohm,差不多吧,不放心就用2k的
奇怪,新出了管压0.7V的LED了吗?据我所知好象该是1.5V左右。
我看几百欧到1K都没太大问题,一般的片子不会衰到10mA都抗不住吧?
上拉电阻的作用:6N137的的输出三极管C极,如果没有上拉电阻,则该引脚上的电平不会发生随B极电平的高低变化。
原因是它没有接到任何电源上。
如果接上了上拉电阻,则B 极电平为高时,C极对地导通(相当于开关接通),C极的电压就变低;如B极电压为低,则C极对地关断,C极的电压就升到高电平。
为就是上面说的“将通断转换成高低电平”。
你说的51与此图有一定的不同,参照着去理解吧。
另外,一般地,C极低电平时器件从外部
吸入电流的能力和高电平时向外部灌出电流的能力是不一样的。
器件输出端常有Isink和Isource两个参数,且前者往往大于后者。
下拉电阻的作用:所见不多,常见的是接到一个器件的输入端,多作为抗干扰使用。
这是由于一般的IC的输入端悬空时易受干扰或器件扫描时有间隙泄漏电压而影响电路的性能。
后者,我们在某批设备中曾碰到过。
上拉电阻的阻值主要是要顾及端口的低电平吸入电流的能力。
例如在5V电压下,加1K上拉电阻,将会给端口低电平状态增加5mA的吸入电流。
在端口能承受的条件下,上拉电阻小一点为好。
提高负载能力、提高直流工作电平
无信号是给电路提供确定的电平。