固体物理电子教案41自由电子气的能量状态24页
第五章 固体中电子的能量状态

反键态
导带
3p sp3
3s 成键态 价带
长春理工大学材料科学与工程学院教案
紧束缚近似对原子的内层电子是相当好的近似,它还可用来近似地 描述过渡金属的 d 带、类金刚石晶体以及惰性元素晶体的价带。紧 束缚近似是定量计算绝缘体、化合物及半导体特性的有效工具。 (10) 能带的三种图象
扩展布里渊区图象: 不同的能带在 k 空间中不同的布里渊区中给出。每一个布里渊区有 中一个能带,第 n 个能带在第 n 个布里渊区中。
长春理工大学材料科学与工程学院教案
由于认为 k 与 k+Gl 等价,因此可以认为 En(k)是以倒格矢 Gl 为周 期的周期函数,即对于同一能带 n,有
En (k) = En (k +Gl)
(11)能带的性质
¾ 能带具有周期性
E (k ) = E (k + n 2π ) a
电子波矢
k ' = k + n 2π a
长春理工大学材料科学与工程学院教案
—— 第一布里渊区和第二布里渊区能带的重叠
(9)原子能级与能带的对应 对于原子的内层电子,其电子轨道很小,因而形成的能带较 窄。这时原子能级与能带之间有简单的一一对应关系。
长春理工大学材料科学与工程学院教案
E
对于外层电子,由于其电子轨道较大,形成的能带就较宽。 这时,原子能级与能带之间比较复杂,不一定有简单的一一对应关 系。一个能带不一定与孤立原子的某个能级相对应,可能会出现能 带的重叠。 在某些情况下还可能出现不同原子态的相互作用。如:Si 的价带与 导带。
电子在运动过程中并不像自由电子那样完全不受任 何力 的作用,电子在运动过程中受到晶格中原子势 场的作用。
在一定的条件下根据布洛赫定理可知电子不再是完全被束 缚在某个原子周围,而是可以在整个固体中运动,称为共有 化电子。
固体物理电子教案黄昆

固体物理电子教案黄昆教案章节:第一章引言教学目标:1. 了解固体物理的基本概念和研究内容。
2. 掌握固体物理的基本研究方法和手段。
3. 理解固体物理的重要性和在现代科技中的应用。
教学内容:1. 固体物理的基本概念和研究内容:固体物质的性质、晶体结构、电子态等。
2. 固体物理的基本研究方法:实验方法、理论方法和计算方法。
3. 固体物理的重要性和在现代科技中的应用:半导体器件、超导材料、磁性材料等。
教学活动:1. 引入固体物理的概念,引导学生思考固体物质的性质和特点。
2. 通过示例和图片,介绍晶体结构的基本类型和特点。
3. 讲解电子态的概念,引导学生了解固体中电子的分布和行为。
4. 介绍固体物理的基本研究方法,如实验方法、理论方法和计算方法。
5. 通过实际案例,展示固体物理在现代科技中的应用和重要性。
教学评估:1. 进行课堂提问,检查学生对固体物理基本概念的理解。
2. 布置课后作业,要求学生掌握晶体结构的基本类型和特点。
3. 进行小组讨论,让学生展示对固体物理研究方法的理解。
教案章节:第二章晶体结构1. 掌握晶体结构的基本概念和分类。
2. 了解晶体结构的空间点阵和晶胞参数。
3. 理解晶体结构的物理性质和电子态。
教学内容:1. 晶体结构的基本概念:晶体的定义、晶体的特点。
2. 晶体结构的分类:离子晶体、共价晶体、金属晶体、分子晶体。
3. 晶体结构的空间点阵:点阵的定义、点阵的类型。
4. 晶胞参数:晶胞的定义、晶胞的类型。
5. 晶体结构的物理性质和电子态:电性质、热性质、光学性质等。
教学活动:1. 通过示例和图片,引入晶体结构的概念,引导学生了解晶体的特点。
2. 讲解晶体结构的分类,让学生掌握不同类型晶体的特点。
3. 介绍晶体结构的空间点阵,引导学生了解点阵的定义和类型。
4. 讲解晶胞参数的概念,让学生掌握晶胞的定义和类型。
5. 通过示例和图片,介绍晶体结构的物理性质和电子态,引导学生理解其重要性。
教学评估:1. 进行课堂提问,检查学生对晶体结构基本概念的理解。
《固体中的电子》课件

《固体中的电子》PPT课件
固体中的电子PPT课件大纲: 1. 概述固态物理学 2. 电子在固体中的行为介绍 3. 固体的电子能带结构
电子能带结构
1
能带间隙
能带间隙决定了材料的导电性质,从绝
费米能级
2
缘体到导体的转变。
费米能级划分了电子能带中的占据和未
占据态,影响了电子的导电行为。
3
金属中的电子贡献
固态电子学
《固体中的电子》PPT课程涉及了固态物理学的概述、电子在固体中的行为 介绍、固体的电子能带结构、半导体和导体的区别、能带间隙、费米能级、 电子在能带中的分布等主题。课程还讨论了能带及其形状对电子的影响、金 属中的电子贡献、超导体的电子性质、材料的电阻率和导电性、电子与格子 的相互作用、电子散射、能带工程、量子点的电子性质、材料不同性质对电 子的影响、固态电子学的应用、电子学和信息技术以及未来的固态电子学发 展方向。
半导体和导体
半导体
半导体材料具有介于导体和绝缘体之间的导电性质, 广泛应用于电子器件中。
导体
导体材料具有良好的电流传导性能,常用于导线和 电路连接器等。
固态电子学应用
1 电子学和信息技术
2 量子点的电子性质
固态电子学是现代信息技 术的基础,推动了计算机、 通信和数据存储等领域的 发展。
量子点是一种特殊的固态 材料,具有优异的光学和 电学性质,可应用于光电 子器件和传感器。
3 材料的电阻电性,为材料设 计和应用提供重要依据。
未来的固态电子学发展方向
纳米材料
纳米材料的研究将推动材料性 能的突破和新型器件的发展。
低功耗
低功耗电子器件和电路的研发 是未来固态电子学的重要方向。
可扩展性
《固体物理教案》课件

《固体物理教案》PPT课件一、引言1. 介绍固体物理的概念和重要性2. 固体的分类和特点3. 固体物理的研究方法和内容二、晶体结构1. 晶体的定义和特点2. 晶体的基本结构类型3. 晶体的空间群和点群4. 晶体的对称性分析三、晶体的物理性质1. 晶体的光学性质2. 晶体的电性质3. 晶体的磁性质4. 晶体的热性质四、晶体的力学性质1. 晶体的弹性性质2. 晶体的塑性变形3. 晶体的断裂和强度4. 晶体的超导性质五、非晶体和准晶体1. 非晶体的定义和特点2. 非晶体的形成和结构3. 准晶体的定义和特点4. 准晶体的结构和性质六、电子态和能带理论1. 电子态的定义和分类2. 自由电子气和费米液体3. 能带理论的基本概念4. 能带的计算和分析方法七、原子的电子结构和元素周期表1. 原子的电子结构类型2. 原子轨道和电子云3. 元素周期表的排列原理4. 元素周期律的应用八、半导体物理1. 半导体的定义和特点2. 半导体的能带结构3. 半导体的导电性质4. 半导体器件的应用九、超导物理1. 超导现象的发现和特性2. 超导体的微观机制3. 超导体的临界参数4. 超导技术的应用十、纳米材料和固体interfaces1. 纳米材料的定义和特性2. 纳米材料的制备和应用3. 固体interfaces 的定义和类型4. 固体interfaces 的性质和调控十一、磁性和顺磁性材料1. 磁性的基本概念和分类2. 顺磁性材料的微观机制3. 顺磁性材料的宏观特性4. 顺磁性材料的应用十二、金属物理1. 金属的电子性质2. 金属的晶体结构3. 金属的塑性变形机制4. 金属的疲劳和腐蚀十三、光学性质和声子1. 固体的光学吸收和散射2. 声子的定义和特性3. 声子的晶体和性质4. 声子材料的应用十四、拓扑缺陷和量子材料1. 拓扑缺陷的定义和分类2. 量子材料的定义和特性3. 量子材料的研究方法和应用4. 拓扑缺陷和量子材料的前沿进展十五、固体物理实验技术1. 固体物理实验的基本方法2. 固体物理实验的仪器和设备3. 固体物理实验的数据分析和处理4. 固体物理实验的实际应用重点和难点解析一、引言重点:固体物理的基本概念和研究内容。
固体物理 电子教案 4.1自由电子气的能量状态

VC
2π3
(k空间E
~
E
dE两等能面间的体积)
考虑到每个波矢状态代表点可容纳自旋相反的两个电子,
dZ
2
VC
2π3
(k空间E
~
E
dE两等能面间的体积)
2
VC
2π3
dsdk
dE (K E)dk E dE ky ds
E
dk
2
VC
2π3
E
ds k E
dk
dZ
2
VC
2π3
4π k 2
dk
E dE ky
dZ
2
VC
2π3
4π
2mE 2
2
m dE 2m E
E
kx
4πVC
2π3
(2m)3 2 3
E1 2
dE
3
4πVC
2m h2
21
E 2dE
N (E) dZ cE1 2
dE
其中
C
4πVc
§4.1 自由电子气的能量状态
自由电子气(自由电子费米气体):自由的、无相互作用 的 、遵从泡利原理的电子气。
4.1.1 金属中自由电子的运动方程和解
1.模型(索末菲)
(1)金属中的价电子彼此之间无相互作用; (2)金属内部势场为恒定势场(价电子各自在势能等于平 均势能的势场中运动);
(3)价电子速度服从费米—狄拉克分布。
E
(r )
2m
E---电子的能量
----电子的波函数(是电子位矢 r的函数)
固体物理 电子教案 4.4第四章 总结

Z dZ
lim N(E)
E 0 E dE
自由电子气的能态密度
N(E) dZ cE1 2
dE
其中C
4πVc
2m3
h2
2
二、电子气1
在热平衡时,能量为E的能级被电子占据的概率。
EF---费米能级(等于这个系统中电子的化学势),它是温度 T和晶体自由电子总数N的函数。
电子气的热容量
C VC V eC V aTb3 T
π2
N0Z2
E k2 B F 0= Zπ2
R 2TF 0
b 12 Rπ4
5
3 D
功函数和接触电势差
1.功函数: 电子在深度为E0的势阱内,要使费米面上的电子逃离金属,
至少使之获得=E0-EF的能量,称为脱出功又称功函数。
2.里查逊—德西曼公式
j= 4π he3 m (kBT)2e(E0EF)kBT AT2ekBT
3.接触电势 两块不同的金属A和B相接触,或用导线连接起来,两块
金属就会彼此带电产生不同的电势VA和VB,称为接触电势。
VAVB1 e(BA)
固体物理 电子教案 4.4第四章 总结
自由电子气的能量状态
一、自由电子气的能量状态
1.自由电子气(自由电子费米气体):是指自由的、无相互
作用的、遵从泡利原理的电子气。
2.自由电子气的能量
E
2k 2 2m
2m 2 (kx2k2y kz2)
3.能态密度
k
x
k
y
kz
2πnx ; L
2πn y ; L
2.费米能量
N0f(E)N(E)d E
N2C 3
EF0
32
自由电子气的能量状态

2π 3
L
(2)波矢空间状态密度(单位体积中的状态代表点数):
L
3
2π
(3)
k ~ k dk 体积元 dk中的(波矢)状态数为:
dZ0
L 2π
3
dk
(4) k ~ k dk 体积元dk 中的电子状态数为:
dZ
2
L
3
dk
2π
首都师范大学物理系
2.能态密度
lim (1)定义: N (E)
Z dZ
E0 E dE
(2)计算:
波矢密 度
两个等能面间 的波矢状态数
两等能面间的 电子状态数
能态 密度
E ~ E dE 两等能面间的波矢状态数:
VC
2π3
(k空间E
~
E
dE两等能面间的体积)
首都师范大学物理系
考虑到每个波矢状态代表点可容纳自旋相反的两个电子,
dZ
2
VC
2π3
(k空间E
~
E
k x
k y
kБайду номын сангаас
z
2πnx
L 2πn y
L 2πnz
L
; ; ;
首都师范大学物理系
二、波矢空间和能态密度
1.波矢空间
以波矢
k
的三个分量
k
、
x
k
y、k
为坐标轴的空间称为波矢
z
空间或 k 空间。
金属中自由电子波矢:
kx
2πnx L
,ky
2πny L
,kz
2πnz L
(1)在波矢空间每个(波矢)状态代表点占有的体积为:
T0K时,费米面以内能量 离EF约kBT范围的能级上的电子 被激发到EF之上约kBT范围的能 级。
固体物理电子教案黄昆

固体物理电子教案黄昆第一章:引言1.1 固体物理的基本概念介绍固体的定义和特点讨论固体的分类和结构1.2 固体物理的发展历程回顾固体物理的发展简史介绍固体物理的重要科学家和贡献1.3 固体物理的研究方法介绍固体物理的研究方法和手段讨论实验技术和理论模型第二章:晶体结构2.1 晶体的基本概念介绍晶体的定义和特点讨论晶体的分类和空间群2.2 晶体的点阵结构介绍点阵的定义和类型讨论晶体的点阵参数和坐标描述2.3 晶体的空间结构介绍晶体的空间结构类型讨论晶体的空间群和空间点阵的对应关系第三章:固体物理的电子结构3.1 电子的基本概念介绍电子的定义和性质讨论电子的亚层和轨道3.2 电子的能级和态密度介绍电子能级的概念和计算方法讨论态密度和能带结构3.3 电子的输运性质介绍电子输运的基本概念讨论电子输运的微观机制和宏观表现第四章:固体物理的能带理论4.1 能带理论的基本概念介绍能带理论的定义和意义讨论能带结构的类型和特征4.2 紧束缚近似和自由电子近似介绍紧束缚近似和自由电子近似的方法和应用讨论紧束缚近似和自由电子近似的结果和限制4.3 能带结构的计算和分析介绍能带结构的计算方法和技术讨论能带结构的结果和分析方法第五章:固体物理的实验技术5.1 实验技术的基本概念介绍固体物理实验技术的方法和手段讨论实验技术的原理和应用5.2 X射线衍射技术介绍X射线衍射技术的原理和应用讨论X射线衍射技术的实验操作和数据处理5.3 电子显微技术介绍电子显微技术的原理和应用讨论电子显微技术的实验操作和图像分析第六章:固体物理的电子光谱6.1 电子光谱的基本概念介绍电子光谱的定义和分类讨论电子光谱的实验测量和理论分析6.2 光电子能谱(PES)介绍光电子能谱的原理和应用讨论光电子能谱的实验操作和数据解析6.3 吸收光谱和发射光谱介绍吸收光谱和发射光谱的原理和特点讨论吸收光谱和发射光谱的应用和分析方法第七章:固体物理的电子性质7.1 电子迁移性和导电性介绍电子迁移性和导电性的定义和测量讨论电子迁移性和导电性的影响因素和机制7.2 电子的散射和碰撞介绍电子散射和碰撞的概念和类型讨论电子散射和碰撞对电子输运性质的影响7.3 电子的关联和相互作用介绍电子关联和相互作用的的概念和机制讨论电子关联和相互作用对固体物理性质的影响第八章:固体物理的半导体材料8.1 半导体的基本概念介绍半导体的定义和特点讨论半导体的分类和制备方法8.2 半导体的能带结构介绍半导体能带结构的类型和特征讨论半导体的导电性质和应用8.3 半导体器件和集成电路介绍半导体器件和集成电路的基本原理和结构讨论半导体器件和集成电路的应用和发展趋势第九章:固体物理的超导材料9.1 超导体的基本概念介绍超导体的定义和特点讨论超导体的分类和制备方法9.2 超导体的能带结构和电子配对介绍超导体的能带结构和电子配对机制讨论超导体的临界温度和临界磁场9.3 超导体的应用和前景介绍超导体的应用领域和实例讨论超导体的前景和挑战第十章:固体物理的新材料探索10.1 新材料的基本概念介绍新材料的定义和特点讨论新材料的研究方法和手段10.2 新材料的制备和表征介绍新材料的制备方法和表征技术讨论新材料的性能和应用10.3 新材料的研究趋势和挑战介绍新材料研究的发展趋势和挑战讨论固体物理在新材料研究中的作用和意义重点解析本文教案主要介绍了固体物理的基本概念、晶体结构、电子结构、能带理论、实验技术、电子光谱、电子性质、半导体材料、超导材料以及新材料探索等内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)在波矢空间每个(波矢)状态代表点占有的体积为:
2π 3
L
(2)波矢空间状态密度(单位体积中的状态代表点数):
L 3
2π
(3)
k~kdk体积元 d k 中的(波矢)状态数为:
dZ0
L 3dk 2π
法3. 在k空间自由电子的等能面是半径 k 2mE的球面,
在半径为k的球体积内电子的状态数为:
Z
2Vc (2π)3
4πk3 3
Vc 3π2
2mE3
2
2
自由电子气的能态密度:
N(E) dZ dE
4πVC2hm2 3
2
E1
2
CE1
2
其中
C
4πVc
2hm2 3
2
4.1.3 自由电子气的费米能量
其中
C
4πVc
2m3
h2
2
令n=N/V,代表系统的价电子浓度,则有
EF 02hm 28 3π n232 m 2 3nπ223
金属中一般 n~1028m-3,电子质量m=9×10-31kg,
E
0 F
~
几个电子伏。
自由电子气系统中每个电子的平均能量由下式计算
EdN
E0= N
C N
EF 0 E3 2dE
(4) k~kdk体积元 d k 中的电子状态数为: dZ 2 L 3dk
2π
2.能态密度
lim (1)定义: N(E)
ZdZ
E 0 E dE
(2)计算:
波矢密 度
两个等能面间 的波矢状态数
两等能面间的 电子状态数
能态 密度
E~EdE两等能面间的波矢状态数:
VC
2π3
(k空
间 E~EdE两等能面间) 的体积
E---电子的能量
----电子的波函数(是电子位矢 r 的函数)
驻波边界条件 常用边界条件
周期性边界条件
x, y,zxL, y,z x, y,zx, yL,z x, y,zx, y,zL
k (r )Aik e r
2 k 2 E
2m
2m 2 (kx2k2y kz2)
波函数为行波,表示当一个电子运动到表面时并不被反射
a. kBT0
b. kBT1
c. kBT2.5
f(E)
1
陡变
EEF EEF
0
EEF
1 E EF
f
(
E
)
1 02
E EF E EF
1 E EF
f
(E)
1 02
E EF E EF
随着T的增加,f(E)发生变化的能量范围变宽,但在任何情
况下,此能量范围约在EF附近kBT范围内。
3.费米面
x,
y,
z
L
x,
y,
z
e ik x L 1
e
ik
Y
L
1
e ik Z L 1
k
x
k
y
kz
2πnx ; L
2πn y ; L
2πnz ; L
(其中 nx ,ny ,nz为整数)
4.1.2 波矢空间和能态密度
1.波矢空间
以波矢k 的三个分量kx、ky、kz为坐标轴的空间称为波矢
空间或 k 空间。
§4.1 自由电子气的能量状态
自由电子气(自由电子费米气体):自由的、无相互作用 的 、遵从泡利原理的电子气。
4.1.1 金属中自由电子的运动方程和解
1.模型(索末菲)
(1)金属中的价电子彼此之间无相互作用; (2)金属内部势场为恒定势场(价电子各自在势能等于平 均势能的势场中运动);
(3)价电子速度服从费米—狄拉克分布。
考虑到每个波矢状态代表点可容纳自旋相反的两个电子,
dZ22V πC3(k空E 间 ~EdE两等能面)间
22VπC3 dsdk
dE(KE)d k EdE ky ds
E
dk
22VπC3 E dksEdE
kx
能态密度:
N(E) dZ
dE
22VπC3
E
ds kE
例1:求金属自由电子气的能态密度
法1. 金属中自由电子的能量
E 2k 2 2m
k 2 2mE 2
dZ22VπC34πk2dk
dZ22VπC34πk2dk
EdE ky
dZ22 V π C34π2 m 2 E 2
m dE 2mE
E
kx
42ππVC 3
(2m)32 3
E12
dE
3
4πVC2hm 2
21
E 2dE
N(E) dZ cE1 2
dE
其中 C 4πVc 2hm2 3 2
1.费米能量
在热平衡时,能量为E的状态被电子占据的概率是
1 f(E)e(EEF) kBT1
EF---费米能级(等于这个系统中电子的化学势),它的意 义是在体积不变的条件下,系统增加一个电子所需的自由能。 它是温度T和晶体自由电子总数N的函数。
2. f(E)~(EEF)图象
1 f(E)
e 1 (EEF) kBT
E~E+dE间的电子状态数:N(E)dE
E~E+dE间的电子数: 系统总的电子数: 分两种情况讨论:
f(E)N(E)dE
N0f(E)N(E)d E
(1)在T=0K时,上式变成:
N EF 0 N(E)dE 0
将自由电子密度N(E)=CE1/2代入得:
N0 EF 0C1E 2dE3 2CEF 0 32
E=EF的等能面称为费米面。
在绝对零度时,费米面以内 的状态都被电子占据,球外没有 电子。
T0时,费米球面的半径kF 比绝对零度时费米面半径小, 此时费米面以内能量离EF约kBT 范围的能级上的电子被激发到 EF之上约kBT范围的能级。
费米能级
E
0 F
(a) T=0k
EF
(b) T0K
4.求EF的表达式
回来,而是离开金属,同时必有一个同态电子从相对表面的对
应点进入金属中来。
k
波矢, 2 π
k
为电子的德布罗意波长。
电子的动量:p k
电子的速度:v p k mm
由正交归一化条件: Vk(r)2dr1
A 1 VC
由周期性边界条件:
x L, y,z x, y,z
x, y L,z x, y,z
E
2 k 2 2m
2m 2 (kx2 ky2 kz2)
dE 2k dk m
2 k k E m
N(E)
2
VC (2π)3
4πk2 2k
2(2VπC)3
m4πk 2
m
2(2VπC)3
m4π 2
2mE
2(2VπC)3
m4π 2
2mE
dZ dE
4πVC
(2m)32 h3
E12
E
CE12
法2. 金属中自由电子的能量
0
3 5
E
0 F
由上式可以看出即使在绝对零度时电子仍有相当大的平
2.薛定谔方程及其解
为计算方便设金属是边长为L的立方体,又设势阱的深度
是无限的。粒子势能为
V ( x ,y ,z ) 0 ; 0 x ,y ,z L V ( x ,y ,z ) x ,y ,z 0 ,以 x ,y ,z 及 L
每个电子都可以建立一个独立的薛定谔方程:
2 2(r)E(r)
2m