金属中自由电子气能量的研究
固体物理-第三章 金属自由电子论讲解

3.1.量子自由电子理论
I2=(1/2!)-(E-EF)2(-f/E) dE 不难算出, I0=1(d-函数积分), I1=0 (根据d-函数的性质) 为了计算I2, 而令h=(E-EF)/kBT,于是, I2=[(kBT)2/2]-{h2/[(eh+1)(e-h+1)] }dh=(pkBT)2/6
波长),可见k为电子的波矢, 是3 维空间矢量. r:电 子的位置矢量。
由波函数的归一化性质:vy*(r) y(r)d(r)=1, v:金属体积, 假设为立方体,边长为L,把3.1.1.3式 代入归一化式子, 得: A=L-3/2=V-1/2, 所以
y(r)= V-1/2eik•r 3.1.1.4, 此即自由电子的本征态。 由周期性边界条件, y(x,y,z)= y(x+L,y,z) = y(x,y+L,z) = y(x,y,z+L)
一状态的电子具有确定的动量ħk和能量ħ2k2/(2m),因而 具有确定的速度,v=ħk/m,故一个k全面反映了自由电子 的一个状态,简称态。
2. k-空间
以kx, ky , kz 为坐标轴建立的 波矢空间叫k-空间。电子的 本征态可以用该空间的一点
来代表。点的坐标由3.1.1.5 式确定。
3.1.量子自由电子理论
T>0K的费米能EF 把3.1.2.2和3.1.3.1代入3.1.3.2, 分步积分, 得:
N= (-2C/3) 0 E3/2(f/E) dE 3.1.3.3 令G(E)= 2C E3/2/3, 3.1.3.3.式化简为 N= 0G(E) (-f/E) dE 3.1.3.4 (-f/E)函数具有类似d函数的特性,仅仅在EF附近kBT范 围内才有显著的值,且为E-EF偶函数. 由于(-f/E)函数 具有这些性质,把G(E)在EF附近展开为泰勒级数, 且积分 下限写成 -,不会影响积分值. 3.1.3.4化为:
金属中自由电子气能量的研究

金属中自由电子气能量的研究
金属中的自由电子气能量研究
随着科学技术的发展,研究金属中自由电子气能量非常重要。
金属是一种由电子组成的复杂物质,由此产生了自由电子,以及由此产生的气能。
自由电子气能量在影响金属的性能和变化方面是重要的考虑因素,因此研究自由电子气能量的重要性无可非议。
自由电子气能量的主要结构来自电子的受热运动,它是由电子运动温度和总能谱电子密度两个分量组成的,电子温度由电子运动温度和相对温度变化而确定,而电子密度则是由金属结构决定的,电子运动密度则是由金属存在电子无序和有序结构而决定。
基于电子运动温度和总能谱,我们可以获得自由电子气能,其计算结果表明金属的关键参数是金属的化学性质。
由于这种电子气能量影响金属的物理性质,因此有关的研究可以帮助我们了解金属的本质。
有关自由电子气能的研究还很新颖,刚开始的几十年,各大研究团队都致力于深入研究,他们借助各种理论工具和试验装置,仔细观察和测量金属材料中自由电子气能量。
此外,针对此类特定机构,人们还可以运用第一性原理计算方法估算出自由电子气能量,考虑到电子之间及电子与原子之间振动-旋转-翻转(VRT)效应,以及电子-原子受相互干涉的简单结构等,以求更精准的结果。
当前,自由电子气能的研究已经取得了较为显著的成果,有助于我们了解金属材料的物理特性,也可以帮助我们准确地认识和掌握金属,以便使其更好地应用于各种领域。
总之,研究金属中自由电子气能量极为重要,是推动金属材料研究和应用发展的关键点。
按照目前的趋势,我们相信在接下来的几十年中,将可以在金属的利用上取得更大的进展。
第5章金属自由电子论

第5章金属自由电子论
5.2 量子自由电子论
于是自由电子的状态密度为:
3
g(E)d dE Z2V22m 2 2E1 2cE 1 2
可见自由电子的态密度g(E)乃是能量E的函数,显然g(E)~E 的关系曲线是抛物线的一支。g(E)
态数 ,电子态密度函数
kx
k与能量 E的关系:
kz
dK
ky
kx2ky 2kz22 m 2 , Ek22 m 2 E
第5章金属自由电子论
5.2 量子自由电子论
等k值面为球面,在零到k的范围内,K空间的体积为 4k 3 3
因为在K空间中每 2 3 的体积内有一个满足周期性边界的
V
k值,故从零到k的范围内,总的k的取值数目为:
室温下 1 mol 一价金属的比热为:
C vC vlC ve3R2 3R4.5R
实验表明:室温下,金属的比热接近3R,全部由晶格贡献。 金属中自由电子起着电和热的传导作用,却对比热几乎没 贡献。
第5章金属自由电子论
5.1 经典自由电子论
经典理论自由电子论无法解释这一现象。直到索末菲把量 子力学应用到自由电子系统,才得到圆满的解释。
L Y
5.2 量子自由电子论
于是电子能量可写为:
E 2 2m
k
2 x
k
2 y
k
2 z
2 2
2m L
2
nx2
n
2 y
nz2
可见,自由电子能量依赖 于一组量子数(nx,ny,nz),能量只能 是一系列分离的数值,这些分离的能量被称为能级。按照泡 利原理,每个电子能级允许容纳两个自旋相反的电子。
金属材料的热传导与热导率计算

金属材料的热传导与热导率计算热传导是金属材料中能量的传递过程,它是热力学中一个重要的研究领域。
了解金属材料的热传导特性和热导率计算方法对于材料科学和工程应用具有重要意义。
热传导是指由高温区域向低温区域传递热量的过程。
在金属材料中,传导过程主要由金属中的自由电子和晶格振动引起。
自由电子在金属中形成电子气,负责快速的热传导,而晶格振动则通过声子的传递来实现热量的传递。
自由电子和声子同时参与热传导的机制使得金属具有良好的热导率。
热导率是衡量物质传热能力的物理量,它定义为单位时间内传导热量通过单位面积的能力。
通过计算热导率,我们可以评估材料的导热性能。
对于金属材料,热导率通常用热电偶法、横向热传导法或激光闪烁热解法进行实验测量。
计算金属材料的热导率可以借助于热传导方程。
热传导方程描述了热量在材料内部传导的过程,可以用来计算温度分布和热流密度。
一维情况下的热传导方程为:q = -k(dT/dx)其中,q为热流密度,k为热导率,dT/dx为温度梯度。
该方程描述了沿着坐标轴x方向的热量传递过程。
对于复杂的金属材料,热传导方程一般需要使用二维或三维形式。
要计算金属材料的热导率,需要了解材料的物理性质。
金属的热导率与其晶体结构、晶粒尺寸、杂质含量、温度和外界条件等有关。
例如,单晶金属通常具有更高的热导率,因为它们具有更好的结晶态和较少的结构缺陷。
晶粒尺寸的减小和杂质的添加会降低金属的热导率。
此外,温度对热导率也有重要影响,一般来说,温度升高会增加金属的热导率。
为了计算金属材料的热导率,可以使用量子力学计算方法。
量子力学方法可以考虑金属的电子和声子运动,从而预测金属的热传导性能。
基于第一性原理的计算方法,如密度泛函理论,可以详细地描述金属的电子结构和振动特性,从而确定金属的热导率。
此外,还可以使用经验计算方法来估计金属的热导率。
这些经验计算方法基于实验数据和统计学关系,通过建立数学模型来预测金属的热导率。
例如,Debye模型和Wiedemann-Franz定律等经验定律可以用来估计金属的热导率。
第十六讲金属中自由电子气模型

- - -( 7)
3(z L) = 3(z)
用 通 解 的 前 一 种 表 示 , 分 别 假 定 波 沿 x,y,z 负 方 向 传 播 , 可 得
波矢:
kx =
2n x L
ky
=
2n y L
kz
=
2n z L
( 8)
单
电
子
波
函
数
(n :ψ
x, (x
ny, ,y,z
n )
z
为正 = 1(
负整
x ) 2 (
此时费密-狄喇克统计分布为 (见图 p112 图 6.3)
1
lim T 0
f ( E ,T ) 0
E (0) E (0)
其 中 μ (0)为 绝 对 零 度 时 的 化 学 势 。
- - (17)
电 子 气 基 态 :能 量 在 μ (0)以 下 的 状 态 全 被 电 子 占 满 ,能 量超 过 μ (0)
第十六讲 金属中自由电子气模型
第六章 金属电子论 问题:对金属中相互作用、运动着的大量电子,怎样进行理论处理?
如何从理论上说明电子对金属优良的电导、热导和比热的贡献? 如何从电子的运动状态解释电子热发射、光电效应和场电子发 射等重要现象? 本章用 量子的电子气体模型: 金属中的价电子组成电子气体(就象气体分
见 p112 图 6.3 f(E,T) ~ E 曲线
T > 0,
在
kBT
f
(,T
)
1 2
范围内,f (E,T )从 1下降到 0
由能态密度公式(13)
g(E) CE1/ 2
和公式(14)
C 4 ( 2m)3/ 2
h2
(完整版)第四章金属自由电子理论

第四章 金属自由电子理论1.金属自由电子论作了哪些假设?得到了哪些结果?解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。
根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。
2.金属自由电子论在k 空间的等能面和费米面是何形状?费米能量与哪些因素有关?解:金属自由电子论在k 空间的等能面和费米面都是球形。
费米能量与电子密度和温度有关。
3.在低温度下电子比热容比经典理论给出的结果小得多,为什么?解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。
4.驰豫时间的物理意义是什么?它与哪些因素有关?解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。
驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。
5.当2块金属接触时,为什么会产生接触电势差?解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,所以这2块金属接触时,会产生接触电势差。
6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。
试求: (1)电子的状态密度; (2)电子的费米能级; (3)晶体电子的平均能量。
解:(1)该一维金属晶体的电子状态密度为:dEdkdk dZ dE dZ E ⋅==)(ρ …………………………(1) 考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为:dk Ldk dZ π=∆=k 2 …………………………(2) 又由于 mk E 222η=所以 mkdk dE 2η= …………………………(3) 将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该一维金属晶体中自由电子的状态密度为:EmL E 22)(ηπρ= (4)(2)由于电子是费米子,服从费米—狄拉克统计,即在平衡时,能量为E 的能级被电子占据的几率为:11)(+=-TK E E B F eE f (5)于是,系统中的电子总数可表示为:⎰∞=)()(dE E E f N ρ (6)由于0=T K ,所以当0F E E >,有0)(=E f ,而当0F E E ≤,有1)(=E f ,故(6)式可简化为:⎰=)(FE dE E N ρ=⎰0022FE dE E m L ηπ=240FmE L ηπ由此可得: 222208mL N E Fηπ= (7)(3)在0=T K 时,晶体电子的平均能量为: ⎰∞=0)()(1dEE E Ef N E ρ=dE EmL E N FE 2210⎰⋅ηπ=230)(232F E m N L ηπ=022223124F E mL N =ηπ 7.限制在边长为L 的正方形中的N 个自由电子,电子的能量为)(2),(222y x y x k k mk k E +=η。
电子行业金属自由电子气模型

电子行业金属自由电子气模型引言自由电子气模型是描述金属中电子行为的重要理论模型之一。
在电子行业中,金属材料具有良好的导电性和热导性,这一特性正是由于金属中存在着大量的自由电子。
本文将详细介绍电子行业金属中自由电子气模型的基本原理。
自由电子气模型的基本原理自由电子气模型的基本原理是假设金属中的自由电子在晶体中自由运动,并且彼此之间无相互作用。
这个假设是基于金属中的电子大量和密度较大,使得它们之间的相互作用可以忽略不计。
而晶体的周期性结构对电子运动所产生的影响可以用晶格周期势能来描述。
在自由电子气模型中,每个电子都可以被看作是一个自由粒子,其能量由动能和势能共同决定。
由于假设电子之间无相互作用,并且忽略自旋和磁场的影响,可以将自由电子气模型简化为一维、二维或三维的能带结构。
能带结构能带结构描述了金属中电子的能量分布情况。
根据自由电子气模型,电子能量随动量的变化形成能带。
在一维情况下,能带是连续的,电子在能带中可以具有任意动量。
而在二维和三维情况下,能带则呈现出带状结构,电子在能带中只能具有特定的动量。
根据泡利不相容原理, 每个能级只能容纳两个电子(自旋相反)。
因此,在一维情况下,每个能级只能容纳一个电子,而在二维和三维情况下,每个能级可以容纳多个电子。
能带结构可以分为导带和价带。
导带是指位于较高能量的带,其中的电子具有较高的能量,可以随意运动。
价带是指位于较低能量的带,其中的电子具有较低的能量,并且在金属中形成近满带,起到稳定晶体结构的作用。
费米能级费米能级是能带结构中的一个重要参数,它代表了电子在金属中填充的最高能级。
根据赛曼效应,当温度趋近于绝对零度时,费米能级上方的能级将几乎全部被填充,而费米能级以下的能级将几乎为空。
费米能级决定了电子在金属中的运动性质,对导电性和热导性有很大影响。
在金属中,费米能级附近的能级比较稠密,形成了电子态密度的峰值,使得金属能够有效地传导电流和热量。
自由电子气模型的应用自由电子气模型是研究金属导电性和热导性的基础理论之一。
金属自由电子气理论

金属自由电子气理论特鲁德电子气模型:特鲁德提出了第一个固体微观理论利用微观概念计算宏观实验观测量自由电子气+波尔兹曼统计→欧姆定律 电子平均自由程+分子运动论→电子的热导率特鲁德(Paul Drude )模型的基本假设11.自由电子近似:传导电子由原子的价电子提供,离子实对电子的作用可以忽略不计,离子实的作用维持整个金属晶体的电中性,与电子发生碰撞。
2.独立电子近似:电子与电子之间的相互作用可以忽略不计。
外电场为零时,忽略电子之间的碰撞,两次碰撞(与离子实碰撞)之间电子自由飞行(与经典气体模型不同,电子之间没有碰撞,电子只与离子实发生碰撞,这一点我们将在能带论中证明是错误的。
)特鲁德(Paul Drude )模型的基本假设23.玻尔兹曼统计:自由电子服从玻尔兹曼统计。
4.弛豫时间近似:电子在单位时间内碰撞一次的几率为1/τ,τ称为弛豫时间(即平均自由时间)。
每次碰撞时,电子失去它在电场作用下获得的能量,即电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。
特鲁德模型的成功之处——成功解释了欧姆定律欧姆定律E j ρ=(或j E σ=),其中E 为外加电场强度、ρ为电阻率、j 为电流密度。
202()1I j nev ne S j E eEt m v v E j m ne eE m v m τρτστρ⎧==-⎪⎧=⎪⎪-⎪⎪=+⇒⇒=⎨⎨⎪⎪==⎪⎪⎩=-⎪⎩2.经典模型的另一困难:传导电子的热容根据理想气体模型,一个自由粒子的平均热量为3/2B k T ,故333(),222A B e U U N k T RT C R T ∂====∂33/29v ph e C C C R R =+=+≈(卡/molK.)但金属在高温时实验值只有6(卡/molK.),即3v C R ≈。
4.2 Sommerfeld 的自由电子论1925年:泡利不相容原理 1926年:费米—狄拉克量子统计 1927年:索末菲半经典电子论抛弃了特鲁德模型中的玻尔兹曼统计,认为电子气服从费米—狄拉克量子统计得出了费米能级,费米面等重要概念,并成功地解决了电子比热比经典值小等经典模型所无法解释的问题。