自由电子论1讲解
合集下载
固体物理-第三章 金属自由电子论讲解

N=I0G(EF)+ I1G’(EF)+ I2G’’(EF)+….. 其中, I0=- (-f/E) dE, I1=-(E-EF)(-f/E)dE,
3.1.量子自由电子理论
I2=(1/2!)-(E-EF)2(-f/E) dE 不难算出, I0=1(d-函数积分), I1=0 (根据d-函数的性质) 为了计算I2, 而令h=(E-EF)/kBT,于是, I2=[(kBT)2/2]-{h2/[(eh+1)(e-h+1)] }dh=(pkBT)2/6
波长),可见k为电子的波矢, 是3 维空间矢量. r:电 子的位置矢量。
由波函数的归一化性质:vy*(r) y(r)d(r)=1, v:金属体积, 假设为立方体,边长为L,把3.1.1.3式 代入归一化式子, 得: A=L-3/2=V-1/2, 所以
y(r)= V-1/2eik•r 3.1.1.4, 此即自由电子的本征态。 由周期性边界条件, y(x,y,z)= y(x+L,y,z) = y(x,y+L,z) = y(x,y,z+L)
一状态的电子具有确定的动量ħk和能量ħ2k2/(2m),因而 具有确定的速度,v=ħk/m,故一个k全面反映了自由电子 的一个状态,简称态。
2. k-空间
以kx, ky , kz 为坐标轴建立的 波矢空间叫k-空间。电子的 本征态可以用该空间的一点
来代表。点的坐标由3.1.1.5 式确定。
3.1.量子自由电子理论
T>0K的费米能EF 把3.1.2.2和3.1.3.1代入3.1.3.2, 分步积分, 得:
N= (-2C/3) 0 E3/2(f/E) dE 3.1.3.3 令G(E)= 2C E3/2/3, 3.1.3.3.式化简为 N= 0G(E) (-f/E) dE 3.1.3.4 (-f/E)函数具有类似d函数的特性,仅仅在EF附近kBT范 围内才有显著的值,且为E-EF偶函数. 由于(-f/E)函数 具有这些性质,把G(E)在EF附近展开为泰勒级数, 且积分 下限写成 -,不会影响积分值. 3.1.3.4化为:
3.1.量子自由电子理论
I2=(1/2!)-(E-EF)2(-f/E) dE 不难算出, I0=1(d-函数积分), I1=0 (根据d-函数的性质) 为了计算I2, 而令h=(E-EF)/kBT,于是, I2=[(kBT)2/2]-{h2/[(eh+1)(e-h+1)] }dh=(pkBT)2/6
波长),可见k为电子的波矢, 是3 维空间矢量. r:电 子的位置矢量。
由波函数的归一化性质:vy*(r) y(r)d(r)=1, v:金属体积, 假设为立方体,边长为L,把3.1.1.3式 代入归一化式子, 得: A=L-3/2=V-1/2, 所以
y(r)= V-1/2eik•r 3.1.1.4, 此即自由电子的本征态。 由周期性边界条件, y(x,y,z)= y(x+L,y,z) = y(x,y+L,z) = y(x,y,z+L)
一状态的电子具有确定的动量ħk和能量ħ2k2/(2m),因而 具有确定的速度,v=ħk/m,故一个k全面反映了自由电子 的一个状态,简称态。
2. k-空间
以kx, ky , kz 为坐标轴建立的 波矢空间叫k-空间。电子的 本征态可以用该空间的一点
来代表。点的坐标由3.1.1.5 式确定。
3.1.量子自由电子理论
T>0K的费米能EF 把3.1.2.2和3.1.3.1代入3.1.3.2, 分步积分, 得:
N= (-2C/3) 0 E3/2(f/E) dE 3.1.3.3 令G(E)= 2C E3/2/3, 3.1.3.3.式化简为 N= 0G(E) (-f/E) dE 3.1.3.4 (-f/E)函数具有类似d函数的特性,仅仅在EF附近kBT范 围内才有显著的值,且为E-EF偶函数. 由于(-f/E)函数 具有这些性质,把G(E)在EF附近展开为泰勒级数, 且积分 下限写成 -,不会影响积分值. 3.1.3.4化为:
清华大学固体物理:第一章 自由电子论

1 金属中自由电子的量子态
金属中的传导电子好比理想气体,相互之间没有相互作用,各自独立地在平均势场中运动,通常取
平均势场为能量零点。要使自由电子逸出体外,必须克服电子的脱出功,因此金属中自由电子的能态,
可以从在一定深度的势阱中运动的粒子能态估算,通常设势阱深度是无限的,设金属中自由电子的平均
势能为零,金属外电子的平均势能为无穷大,则金属中自由电子的薛定谔方程为:
(1) 在两次碰撞间隙,忽略给定电子和其它电子及离子的相互作用。没有外加电磁场时,电子作匀速直 线运动,在有外加电磁场时,电子受电磁力,运动遵从牛顿运动定律。忽略其它电子和离子产生的复杂 的附加场。在两次碰撞间隙,忽略电子-电子之间的相互作用称为独立电子近似;忽略电子-离子之间 的相互作用称为自由电子近似。
x21 x y22 y
0 0
d
2 3 z
dz 2
k z2 3
z
0
(1.2.4)
这样问题简化为三个一维无限深势阱中粒子的量子态。设金属体是边长为 L 的立方体,周期性边界条件
为:
x L, y, z x, y, z x, y L, z x, y, z x, y, z L x, y, z
i
0
0 1
2
2
(1.1.26)
介质的复数折射率定义为:
n~ ~r12 n i
(1.1.27)
这里 n 是通常的折射率, 是消光系数。在光学实验中,通常不直接测量 n 和 ,而是测量反射率 R 和
吸收系数。它们之间的关系为:
R
n n
12 12
2 2
(1.1.28)
低频时 1 , ~r i r " ,因此:
H Ex
《自由电子论》课件

自由电子的散射和碰撞
自由电子在固体中的运动受到晶格 振动的影响,会发生散射和碰撞
散射和碰撞也会影响自由电子的传 输和输运性质
添加标题
添加标题
添加标题
添加标题
散射和碰撞会导致自由电子的能级 发生变化,影响其分布
散射和碰撞是自由电子论中重要的 物理过程,对理解固体中的电子行 为具有重要意义
Part Four
金属导电的应用: 金属导电广泛应 用于电力传输、 电子设备等领域
自由电子的应用前景
半导体材料:自由 电子在半导体材料 中的运动和相互作 用,是半导体器件 工作的基础。
超导材料:自由电 子在超导材料中的 运动和相互作用, 是超导现象的基础。
磁性材料:自由电 子在磁性材料中的 运动和相互作用, 是磁性现象的基础 。
子云
自由电子的浓度和能量分布
自由电子的浓度:在金属中,自由电子的浓度与温度和压力有关,温度越高,浓度越大。 自由电子的能量分布:自由电子的能量分布遵循费米-狄拉克分布,能量越高,电子数越少。 自由电子的能级:自由电子的能级由电子的波长和能量决定,能级越高,电子的波长越短。 自由电子的散射:自由电子在金属中会发生散射,散射会导致电子的能级和浓度发生变化。
自由电子在电磁场 中的行为
自由电子在电场中的行为
自由电子在电场中受到电场力的作用,产生加速度,从而改变运动方向和 速度。
自由电子在电场中运动时,会与电磁波相互作用,产生能量交换和散射等 现象。
自由电子在电场中可以表现出波动性和粒子性,其行为与经典粒子不同, 需要用量子力学描述。
自由电子在电场中的行为与材料性质、温度、电磁波频率等因素有关,可 以用于研究物质的光电性质和电子输运等问题。
Part Three
自由电子论

ne2 1 0 ' i " m 1 i 1 i
0
ne2
m
其中 0 是直流电导率。以上推导见阎守胜书 p22
'
1
0 2
2
,
"
0 1 2
2
,
实数部分体现了与电压同位相的电流,也就是产生焦耳热
的那个电流,而虚部则体现的是与电压有 2 位相差的电流, 也就是感应电流。
—— Richardson-Dushman公式
其中
A
mekB2
2 2 3
W V0 EF0
在上面的推导中,用到两个积分公式:
exp
mv
2 y
2kBT
dvy
exp
mvz2 2kBT
dvz
2 kBT
i t
H
0
i
E t
故相对介电常数为:r
0
1
i
0
将上面求出的交流电导率代入该式,有:
r r ' ir " 1 0
0 1 2 2
i
0
0 1 2 2
示为: Ey E0 exp i qx t
运动方程的稳态解为:
e 1 v y m 1 it E y
电流密度 jy n e vy
ne2 1 0 ' i " m 1 i 1 i
自由电子论1课件

固体物理章节安排可能有多种方式,它体现了作者的认识和意图,我 们在学习具体内容的过程中,也要注意从整体上把握好各部分内容之间的 链接,他们之间的相互关系等。
4.2 量子自由电子论(Sommerfeld) :
一. 金属中自由电子的运动状态 二. 能态密度 三. 基态能量 四. T>0K 时电子的分布和能量
0.983 1.833 15%
Cu:fcc a 3.61
金属中 r 1.28
离子实占体积的 75%
数据取自Kittel书
哪里有电子的自由?! 所以当时是大胆假设
电磁学中曾给出按Drude自由电子模型导出了电导率表达 式,解释了欧姆定律:
ne2 l
2mv
这里, l 是平均自由程,即两次碰撞之间的平均行程,
说明:
★ Blakemore: Solid State Physics (1985) 一书在晶体结构、晶格振 动之后,以金属中的电子为第3章标题,统一平等的论述了:金属的特征; 经典自由电子论;量子自由电子论;固体的能带;电子运动动力学;超导 等6节。突出了自由电子论在解释金属性质上的历史作用和现实意义,把能 带论和它的关系讲的比较清晰,有利于理解。
既然Drude 模型在定性方面是正确的,那么问题的来源就是 不能把电子气看作是经典粒子,不应服从 Maxwell-Boltzman 经 典统计规律,而应该服从量子统计规律。1927年,Sommerfeld 应用量子力学重新建立了自由电子论,正确地解释了金属的大多 数性质,使自由电子论成为解释金属物理性质的一个方便而直观 的模型。虽然以后能带论以更加严格的数学处理得到了更加完美 的理论结果,但在很多情形下,我们仍然乐于方便地使用自由电 子论来讨论金属问题。
这个无法调和的矛盾在量子力学诞生后才得以正确解决。服 从量子规律的自由电子即可以同时和谐的解释上述性质。
4.2 量子自由电子论(Sommerfeld) :
一. 金属中自由电子的运动状态 二. 能态密度 三. 基态能量 四. T>0K 时电子的分布和能量
0.983 1.833 15%
Cu:fcc a 3.61
金属中 r 1.28
离子实占体积的 75%
数据取自Kittel书
哪里有电子的自由?! 所以当时是大胆假设
电磁学中曾给出按Drude自由电子模型导出了电导率表达 式,解释了欧姆定律:
ne2 l
2mv
这里, l 是平均自由程,即两次碰撞之间的平均行程,
说明:
★ Blakemore: Solid State Physics (1985) 一书在晶体结构、晶格振 动之后,以金属中的电子为第3章标题,统一平等的论述了:金属的特征; 经典自由电子论;量子自由电子论;固体的能带;电子运动动力学;超导 等6节。突出了自由电子论在解释金属性质上的历史作用和现实意义,把能 带论和它的关系讲的比较清晰,有利于理解。
既然Drude 模型在定性方面是正确的,那么问题的来源就是 不能把电子气看作是经典粒子,不应服从 Maxwell-Boltzman 经 典统计规律,而应该服从量子统计规律。1927年,Sommerfeld 应用量子力学重新建立了自由电子论,正确地解释了金属的大多 数性质,使自由电子论成为解释金属物理性质的一个方便而直观 的模型。虽然以后能带论以更加严格的数学处理得到了更加完美 的理论结果,但在很多情形下,我们仍然乐于方便地使用自由电 子论来讨论金属问题。
这个无法调和的矛盾在量子力学诞生后才得以正确解决。服 从量子规律的自由电子即可以同时和谐的解释上述性质。
第五章 金属自由电子论

∞ 0
N = ∫ f ( E ) N ( E ) dE
T=0
0 EF
∫
0
3 2 0 N ( E ) dE = ∫ CE dE = C ( EF ) 2 3 0 1 2
3 2
0 EF
V ( 2m ) = 3π 2 3
2
3 2
(E )
0 F
2 3
2 2N 2 0 2 ∴ EF = 3π = (3π n ) 3 2m V 2m
3 4 3 V 4 ( 2m ) 2 Z ( E ) = 2 ρ (k ) π k = 2 3 π E 3 3 8π 3
3 2
3 V ( 2m ) 2 = E 2 3 3π 3 2
定义:能态密度
1 1 dZ V ( 2m ) N (E) = = E 2 = CE 2 dE 2π 2 3
2. Pauli顺磁 这里只考虑T →0的极端情况。
E
当B=0时,由于电子 自旋方向相反的两种 取向的几率相等,所 以,整个系统不显示 磁性,即M=0。 当B ≠ 0时,自旋磁矩 在磁场中的取向能:
B=0 -B EF
0
B
N(E)/2
0
N(E)/2
B平行于B: -BB; B反平行于B: + BB
导致两种自旋电子的能级图发生移动,相应的费米 能相差2 BB。因此,电子的填充情况要重新调整, 即有一部分电子从自旋磁矩反平行于B转到平行于B 的方向,最后使两边的费米能相等。
(E ) f ( E ) ≈ exp = exp k T k BT B
E exp k BT
这时,Fermi-Dirac分布过渡到经典的Boltzmann分布。 且f(E)随E的增大而迅速趋于零。这表明, E- >几个 kBT的能态是没有电子占据的空态。
N = ∫ f ( E ) N ( E ) dE
T=0
0 EF
∫
0
3 2 0 N ( E ) dE = ∫ CE dE = C ( EF ) 2 3 0 1 2
3 2
0 EF
V ( 2m ) = 3π 2 3
2
3 2
(E )
0 F
2 3
2 2N 2 0 2 ∴ EF = 3π = (3π n ) 3 2m V 2m
3 4 3 V 4 ( 2m ) 2 Z ( E ) = 2 ρ (k ) π k = 2 3 π E 3 3 8π 3
3 2
3 V ( 2m ) 2 = E 2 3 3π 3 2
定义:能态密度
1 1 dZ V ( 2m ) N (E) = = E 2 = CE 2 dE 2π 2 3
2. Pauli顺磁 这里只考虑T →0的极端情况。
E
当B=0时,由于电子 自旋方向相反的两种 取向的几率相等,所 以,整个系统不显示 磁性,即M=0。 当B ≠ 0时,自旋磁矩 在磁场中的取向能:
B=0 -B EF
0
B
N(E)/2
0
N(E)/2
B平行于B: -BB; B反平行于B: + BB
导致两种自旋电子的能级图发生移动,相应的费米 能相差2 BB。因此,电子的填充情况要重新调整, 即有一部分电子从自旋磁矩反平行于B转到平行于B 的方向,最后使两边的费米能相等。
(E ) f ( E ) ≈ exp = exp k T k BT B
E exp k BT
这时,Fermi-Dirac分布过渡到经典的Boltzmann分布。 且f(E)随E的增大而迅速趋于零。这表明, E- >几个 kBT的能态是没有电子占据的空态。
经典自由电子论

2 m
2 T eΒιβλιοθήκη 2 3k Bne 2 2m
3.1.3 Drude模型的局限
Drude模型最成功之处在于解释了维德曼-弗兰茨定律。 与很多更精致、更复杂的理论得出的值相差不多。 但后来固体物理证明,Drude模型关于维德曼-弗兰茨 定律的证明是建立在两个大错误的互相抵消上,即室 温下的电子比热容高估了100倍,而电子的平均速度 低估了100倍。 电子热容问题:比热和温度无关,结果过大(100倍) 电导率与温度的关系T1/2(实际上T) 不能解释一、二价金属的导电能力的问题。
第2章 金属电子理论 (固体电子理论)
3.1 经典自由电子论
引言
为什么研究固体从金属开始? 自然界最基本的物质状态之一,元素周期表中 有2/3的元素属于金属。应用广泛(电导、热 导、光泽、延展),当时对金属的了解比其它 固体多。
当时人们对金属的了解有多少? 有良好的导电,导热性能 有较好的延展性和可塑性 维德曼-弗兰茨定律(Wiedemann-Franz law)
1 j nvx T x vx T x vx 2 d dT d 1 nvx x 2vx dT dx dx 2 d 3 dT 2 cv nvx cv kB dT 2 dx
1 1 eE vd vd a 2 2 2m
电流密度——单位时间内通过单位面积的电荷量。
ne 2 E nevd 2m 2 ne j E, 2m
电导率
其中,n为单位体积内的电子数(电子浓度),m为电子 质量,e为电子电荷量。 欧姆定律
固体物理第二章金属自由电子论

u为平均附加速度: v
v :电场附加给电子的平均速度(平均附加速度)。?? 10
考虑某一个电子,从上次碰撞发生起,有t时间的行 程。如果无外电场,其速度为v0。根据特鲁德模型德假 设,碰撞后电子出现的方向是随机的,因此v0将对总体 的电子平均速度毫无影响,即:
v0 0
但在外电场存在条件下,在上一次碰撞后立即附加
上一个速度:
eEt vt m
(E为外加电场,m为电子质量)。因此电子平均速度 只是由各电子的附加速度取平均获得。
vv0vt
eE
m
t2 t1
11
欧姆定律E=j ,其中E为外加电场强度、为电阻率、j 为电流密度。
成功用微观量解释了宏观量!
12
特鲁德模型的其他成功之处
Nat. Photon. 1, 641, 2007
EF0 ~ 几个eV
定义 Fermi 温度:
TF
E
0 F
kB
物理意义:设想将EF0转换成热振动能,相当于多高温度 下的振动能。
金属:TF: 104 ~ 105 K 36
一些金属元素费米能与费米温度的计算值
元素
Li Na K Rb Cs Cu Ag Au Be
EF0 (eV) 4.72 3.23 2.12 1.85 1.58 7.00 5.48 5.51 14.14
怎么求dN! 接下来问题就来了! dU EdN
Here comes the problem U EdN
16
§2.2 Sommerfeld的自由电子论
核心问题
怎么求dN!
对于理想气体貌似有某个方法 对于dV范围内的分子数为: dN=dV内分子密度×dV
对于dE范围内的:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能带理论
声子和 Bloch电 子在外场中的行 为及相互作用
合作解释 各个专题 各种性质
例如:
价电子的运动
提醒:两种理论的实验研究,不单是理论 的验证和应用,更是理论的有力补充。例 如色散关系、费米面和态密度的测量。
C Ce Cl
e l
第五章 金属自由电子论
5.1 经典自由电子论(Drude-Lorentz) 5.2 量子自由电子论(Sommerfeld ) 5.3 金属的热容和顺磁磁化率
a0
4 0
me2
2
0.529 1010 m=0.0529nm
大多数金属自由电子的 rs / a0 在 2 和 3 之间,
碱金属自由电子的 rs / a0 在 3 到 6 之间。
例如Cu的 n 8.47 1028 m3
rs ao
2.67, rs
0.141nm
~1.4 Å
注意:rs 不是电子自身大小!是它在晶体中可以占有的
电 等 等
金属及其电导理论
自由电子论
近自由电子模型
能带理论
金属导电理论 (输运理论)
金属的电导、热导、热电及热、磁和光 学性质,在电场、磁场中的各种现象。
其它专题:
半导体理论 电介质理论 磁性物理学
观点:固体(晶体)理论的两大支柱(核心理论):
离子实的运动 晶格动力学理论 晶体周期性结构 绝热近似下分别考虑
自由电子模型是固体理论的最早尝试,一个非常简单的模型 竟然给出了意想不到的结果,它改变了我们对固体的认识, 也指出了理论上逐步逼近真实情况的途径。它的成功告诉我 们:只有抓住相关问题物理过程的本质,才能作出最恰当的 近似,最简单的模型也能解释很复杂的现象。
1897年Thomson发现电子,1900年Drude 就大胆地将当时 已经很成功的气体分子运动论用于金属,提出用自由电子气 模型来解释金属的导电性质,他假定:金属晶体内的价电子 可以自由运动,它们在晶体内的行为宛如理想气体中的粒子, 故称作自由电子模型,以此模型可以解释欧姆定律。几年之 后 Lorentz 又假定自由电子的运动速度服从 MaxwellBoltzman分布, 由此解释了 Wiedemann-Franz 定律。
半导体
金属
室温下
10-18 ~10-6 10-5 ~10+5
106 ~108
2. 等温条件下,服从欧姆定律: J E
3. 高热导率 。在足够高的温度下热导率与电导率之比等
于一个普适常数乘以温度。
Wiedemann-Franz 定律 :LT
或:
L
T
2
3
kB e
2
4. 载流子浓度与温度无关; 5. 在可见光谱区有几乎不变的强的光学吸收;反射率大或
自由电子论在解释金属性质上获得了相当的成功,虽然之后 发展起来的能带论,适用范围更具有普遍性,理论说明更加 严格,定量计算的结果更符合实际,但由于自由电子论的简 明直观特点,直到今天依然常被人们所利用。
金属的性质:观察和实验得到的认识 1. 高电导率σ;在一定温度以上σ反比于温度 T。
(1 m1) 绝缘体
一百余个化学元素中,在正常情况下,约有75种元素晶体处 于金属态,人们经常使用的合金更是不计其数。
金属因具有良好的电导率、热导率和延展性等特异性质,最 早获得了广泛应用和理论上的关注。
尝试对金属特性的理解(自由电子论和能带论)既是现代固 体理论的起步,也是现代固体理论的核心内容,而且对金属 性质的理解也是对非金属性质理解的基础。
说有金属光泽。
6. 有良好的延展性,可以进行轧制和锻压。
关于金属的理论必须以全面和谐的解释上述性质为准。
高纯Cu的热导率和电导 率的温度依赖性:
温度 T ↑ 电导率 σ↓
热导率
Lorentz常数的变化
(在一定温区内是常数)
从理论上来解释固体的性质并不是一件容易的事情,因为任 何宏观固体都是由很多原子(~ 1023/cm3)组成的,而每个 原子又是由原子核和众多电子组成的,所以既便今天我们已 经掌握了微观粒子的运动规律,又有了大型计算机的帮助, 但对这样一个复杂的多体问题也仍然是无法完整求解的,所 以我们只能通过各种合理的近似去接近真实的情况,成功的 固体理论都是合理近似的结果。
要比理想气体的密度高上千倍。如果将每个电子平均占据的
体积等效成球体,其等效球半径 :
1 n
4
3
rs3
rs
3
4n
1/ 3
~ 1010 m
如此高浓度的电子,仍然可以以自由粒子运动的方式来描 述,是量子力学出现后才得到解释的。
补充知识:微观粒子尺寸习惯上常用玻尔半径(Bohr radius)做单位:
5.4 金属的电导率和热导率
5.5 金属的热电子发射和接触电势
5.6 金属的交流电导率和光学性质
5.7 Hall效应和磁阻
5.8 自由电子模型的局限性
参考:阎守胜书 第一章 黄昆 书 6.1,6.2 p275 Kittel 8版第6章
5.1 经典自由电子论(Drude-Lorentz)
金属在固体性质的研究和应用中占据着重要位置:
这些成功使自由电子模型得到承认。虽然之后发现经典模型 并不能解释金属比热、顺磁磁化率等多种金属性质,不过这 些困难并不是自由电子模型本身造成的,而是采用经典气体 近似所造成的,改用量子理论矫正自由电子的行为后,上述 困难得到了圆满解决,因此自由电子模型成为固体理论研究 一个成功尝试,是理解金属、特别是简单金属物理性质的有 力工具。
平均空间。
· Drude 模型把金属简单地看成是由自由电子组成的理想气体, 因此可以套用处理理想气体的方法来处理金属的各种特性。
· Drude Model 中的唯一的参量:电子密度(浓度)
n
NA
Zm
A
6.022 1023
Zm
A
其中 NA是Avogadro常数,Z是每个原子贡献的价电子数目, m 是金属的质量密度(kg/m3),A 是元素的原子量。 我们要注意到:对于金属,n 的典型值为1029/m3。这个值
晶体结构
晶体对幅射波 的衍射现象
晶体结合
晶体结合能 和弹性性质
晶格振动
晶体热容热导与 热膨胀,与幅射 波的相互作用。 红外光学性质。
晶体缺陷
晶体范型形变 合金强度理论 原子扩散理论 色心 晶体生长
力
、
热
、
究晶体 磁
性质的基础
、 超
导
实际晶体是有 、
缺陷的处于热 介
振动状态下的 周期结构。
声子和 Bloch电 子在外场中的行 为及相互作用
合作解释 各个专题 各种性质
例如:
价电子的运动
提醒:两种理论的实验研究,不单是理论 的验证和应用,更是理论的有力补充。例 如色散关系、费米面和态密度的测量。
C Ce Cl
e l
第五章 金属自由电子论
5.1 经典自由电子论(Drude-Lorentz) 5.2 量子自由电子论(Sommerfeld ) 5.3 金属的热容和顺磁磁化率
a0
4 0
me2
2
0.529 1010 m=0.0529nm
大多数金属自由电子的 rs / a0 在 2 和 3 之间,
碱金属自由电子的 rs / a0 在 3 到 6 之间。
例如Cu的 n 8.47 1028 m3
rs ao
2.67, rs
0.141nm
~1.4 Å
注意:rs 不是电子自身大小!是它在晶体中可以占有的
电 等 等
金属及其电导理论
自由电子论
近自由电子模型
能带理论
金属导电理论 (输运理论)
金属的电导、热导、热电及热、磁和光 学性质,在电场、磁场中的各种现象。
其它专题:
半导体理论 电介质理论 磁性物理学
观点:固体(晶体)理论的两大支柱(核心理论):
离子实的运动 晶格动力学理论 晶体周期性结构 绝热近似下分别考虑
自由电子模型是固体理论的最早尝试,一个非常简单的模型 竟然给出了意想不到的结果,它改变了我们对固体的认识, 也指出了理论上逐步逼近真实情况的途径。它的成功告诉我 们:只有抓住相关问题物理过程的本质,才能作出最恰当的 近似,最简单的模型也能解释很复杂的现象。
1897年Thomson发现电子,1900年Drude 就大胆地将当时 已经很成功的气体分子运动论用于金属,提出用自由电子气 模型来解释金属的导电性质,他假定:金属晶体内的价电子 可以自由运动,它们在晶体内的行为宛如理想气体中的粒子, 故称作自由电子模型,以此模型可以解释欧姆定律。几年之 后 Lorentz 又假定自由电子的运动速度服从 MaxwellBoltzman分布, 由此解释了 Wiedemann-Franz 定律。
半导体
金属
室温下
10-18 ~10-6 10-5 ~10+5
106 ~108
2. 等温条件下,服从欧姆定律: J E
3. 高热导率 。在足够高的温度下热导率与电导率之比等
于一个普适常数乘以温度。
Wiedemann-Franz 定律 :LT
或:
L
T
2
3
kB e
2
4. 载流子浓度与温度无关; 5. 在可见光谱区有几乎不变的强的光学吸收;反射率大或
自由电子论在解释金属性质上获得了相当的成功,虽然之后 发展起来的能带论,适用范围更具有普遍性,理论说明更加 严格,定量计算的结果更符合实际,但由于自由电子论的简 明直观特点,直到今天依然常被人们所利用。
金属的性质:观察和实验得到的认识 1. 高电导率σ;在一定温度以上σ反比于温度 T。
(1 m1) 绝缘体
一百余个化学元素中,在正常情况下,约有75种元素晶体处 于金属态,人们经常使用的合金更是不计其数。
金属因具有良好的电导率、热导率和延展性等特异性质,最 早获得了广泛应用和理论上的关注。
尝试对金属特性的理解(自由电子论和能带论)既是现代固 体理论的起步,也是现代固体理论的核心内容,而且对金属 性质的理解也是对非金属性质理解的基础。
说有金属光泽。
6. 有良好的延展性,可以进行轧制和锻压。
关于金属的理论必须以全面和谐的解释上述性质为准。
高纯Cu的热导率和电导 率的温度依赖性:
温度 T ↑ 电导率 σ↓
热导率
Lorentz常数的变化
(在一定温区内是常数)
从理论上来解释固体的性质并不是一件容易的事情,因为任 何宏观固体都是由很多原子(~ 1023/cm3)组成的,而每个 原子又是由原子核和众多电子组成的,所以既便今天我们已 经掌握了微观粒子的运动规律,又有了大型计算机的帮助, 但对这样一个复杂的多体问题也仍然是无法完整求解的,所 以我们只能通过各种合理的近似去接近真实的情况,成功的 固体理论都是合理近似的结果。
要比理想气体的密度高上千倍。如果将每个电子平均占据的
体积等效成球体,其等效球半径 :
1 n
4
3
rs3
rs
3
4n
1/ 3
~ 1010 m
如此高浓度的电子,仍然可以以自由粒子运动的方式来描 述,是量子力学出现后才得到解释的。
补充知识:微观粒子尺寸习惯上常用玻尔半径(Bohr radius)做单位:
5.4 金属的电导率和热导率
5.5 金属的热电子发射和接触电势
5.6 金属的交流电导率和光学性质
5.7 Hall效应和磁阻
5.8 自由电子模型的局限性
参考:阎守胜书 第一章 黄昆 书 6.1,6.2 p275 Kittel 8版第6章
5.1 经典自由电子论(Drude-Lorentz)
金属在固体性质的研究和应用中占据着重要位置:
这些成功使自由电子模型得到承认。虽然之后发现经典模型 并不能解释金属比热、顺磁磁化率等多种金属性质,不过这 些困难并不是自由电子模型本身造成的,而是采用经典气体 近似所造成的,改用量子理论矫正自由电子的行为后,上述 困难得到了圆满解决,因此自由电子模型成为固体理论研究 一个成功尝试,是理解金属、特别是简单金属物理性质的有 力工具。
平均空间。
· Drude 模型把金属简单地看成是由自由电子组成的理想气体, 因此可以套用处理理想气体的方法来处理金属的各种特性。
· Drude Model 中的唯一的参量:电子密度(浓度)
n
NA
Zm
A
6.022 1023
Zm
A
其中 NA是Avogadro常数,Z是每个原子贡献的价电子数目, m 是金属的质量密度(kg/m3),A 是元素的原子量。 我们要注意到:对于金属,n 的典型值为1029/m3。这个值
晶体结构
晶体对幅射波 的衍射现象
晶体结合
晶体结合能 和弹性性质
晶格振动
晶体热容热导与 热膨胀,与幅射 波的相互作用。 红外光学性质。
晶体缺陷
晶体范型形变 合金强度理论 原子扩散理论 色心 晶体生长
力
、
热
、
究晶体 磁
性质的基础
、 超
导
实际晶体是有 、
缺陷的处于热 介
振动状态下的 周期结构。