固体物理学:第五章金属自由电子论1经典自由电子论

合集下载

固体物理学:第五章 第一节 费米分布函数和自由电子气比热容

固体物理学:第五章 第一节 费米分布函数和自由电子气比热容
费米分布函数对所有量子态求和等于系统中总电子数,由于能 量状态是准连续分布的,可以由求和变为积分:
N(E)是能态密度函数。
二、基态(T=0K)下的分布函数 和自由电子气的费米能
在零温下,分布函数:
其中 function)
称为亥维赛单元函数(Heaviside step
在基态下,所有能量小于或等于费米能的态都被占 据,而所有能量高于费米能的态都空着,费米面就 是价电子的最高能量,有
第五章 金属电子论
§5.1 费米分布函数和自由电子气比热容
一、费米分布函数
金属的物理性质主要取决于导带电子。在单电子近似 下,导带电子可以看作是一个近似独立的粒子系统。 系统中的电子具有一系列确定的本征态,这些态由能 带理论确定。 系统的宏观状态,可以用电子在这些本征态的分布来 描述,其平衡态分布函数就是费米分布函数:
温度高于德拜温度,晶格比热容其主导作用。 只有在低温下,电子对金属的比热容才有显著贡献。
在T趋近于0时,电子比热容按照T的线性函数趋于0, 而晶格比热容按照T3趋于0:

得到一个温度
以铜为例,取 得到
低于此温度电子比热容占优势。
测金属的低温比热容,一般做Cv/T和T2的曲线,我们 将得到一个直线,斜率即系数b,截距就是γ。
,估算值和计算值只差一个常数
从5.1.27,得到自由电子气的比热容:
利用
得到
因此

与经典气体不同,电子气的比热容与温度成正比。在室温 附近,它只是经典比热的1%左右,电子对比热容的贡献 微乎其微。这是因为大多数低于费米能的电子不参与热激 发,只有费米面附近的电子才对比热有贡献。 金属的总比热容应该包括晶格比热容和电子比热容:
它给出在温度T时,一个能量为E的量子态被电子占据的概率。 EF是费米能,也就是系统的化学势。它与系统温度和电子浓度有关。

固体物理 第五章 固体电子论基础1

固体物理 第五章  固体电子论基础1
5
5.一些金属元素的自由电子密度 一些金属元素的自由电子密度
元 素 Li Na K Cu Ag Mg Ca Zn Al In Sn Bi z 1 1 1 1 1 2 2 2 3 3 4 5 n/1028m-3 4.70 2.65 1.4 8.47 5.86 8.61 4.61 13.2 18.1 11.5 14.8 14.1 rs/10-10m 1.72 2.08 2.57 1.41 1.60 1.41 1.73 1.22 1.10 1.27 1.17 1.19 rs/a0 3.25 3.93 4.86 2.67 3.02 2.66 3.27 2.30 2.07 2.41 2.22 2.25
n= z
ρNA
M
ne2E j = nev = τ 2m
设电子平均自由程为l, 设电子平均自由程为 ,则 τ
2
zρNAe2E j= τ 2mM
(A m )
2
=l v
电流密度可写成
zρNAe E l j= × 2mM v
6.电导率σ 电导率
(A m )
2
j zρNAe l σ= = × 2mM v E
2
1.必须用薛定谔方程来描述电子的运动。 必须用薛定谔方程来描述电子的运动。 必须用薛定谔方程来描述电子的运动 电子的运动不同于气体分子的运动, 电子的运动不同于气体分子的运动,不能用经典 理论来描述。 理论来描述。 2.电子的分布服从量子统计 即费米 狄拉克分布。 电子的分布服从量子统计, 即费米-狄拉克分布 狄拉克分布。 电子的分布服从量子统计 电子的分布不再服从经典的统计分布规律。 电子的分布不再服从经典的统计分布规律。 3.电子的运动是在一个周期性势场中进行的。 电子的运动是在一个周期性势场中进行的。 电子的运动是在一个周期性势场中进行的 4.电子的能级是由一些能带组成。 电子的能级是由一些能带组成。 电子的能级是由一些能带组成

《固体物理学》房晓勇主编教材课件-第五章 金属电子论基础

《固体物理学》房晓勇主编教材课件-第五章 金属电子论基础
索末菲(A.Sommerfld)的量子自由电子理论
价电子由于受原子实的束缚较弱,而成为能在晶体内部

海 自由运动的自由电子。索末菲进一步假定,在自由电子的运 大

纳 动过程中,晶格周期场的影响可以忽略,电子间彼此无相互 道

百 作用。因此可将一个复杂的强关联的多体问题,转化为在平 致
川 均势场中运动的单电子问题,在首先求得单电子的能级的基

dN
=
2
⎛ ⎜⎝
L 2π
⎞3 ⎟⎠
dk
=
V 4π
3
dk
(5 − 13)
? 根据泡刺不和容原理,每一个波矢状态只 可以容纳两个自旋方向相反的电子。 海南大学

2. 能级密度分布
(1)电子能级密度定义:
lim G (E ) =
ΔZ = dZ

ΔE →0 ΔE dE
E + dE ky ds
(5 − 16)

第五章 金属电子论基础
在固体材料中,三分之二以上的固态纯元素物质属于金
属材料。由于金属具有极好的导电、导热性能及优良的机械 海 性能.是一种非常重要的实用材料,所以,通过对金属材料 大
纳 功能的研究,可以了解金属材料的性质,同时椎动现代固体 道
百 川
理诧的发展。另一方面.对金属材料的了解,也是认识非金 属材料的基础。


每个电子都可以建立一个独立的薛定谔方程:


2
− ∇ 2ψ (r ) = Eψ (r ) (5 − 4 )

2m
E---电子的能量
ψ----电子的波函数(是电子位矢 r的函数)
海南大学

福州大学固体物理第五章

福州大学固体物理第五章
2
2
2
εK
k
(k x k y k z )
2m
2m
这就是色散关系,能量随波矢的变化是抛物线函数。
对于一个三维晶体,需要的量子数为:
(1)波矢k(三个分量kx、ky、kz)
(2)自旋量子数 ms 1
2
给定了 k 就确定了能级,k 代表同能级上自旋相反的
一对电子轨道。
在波矢空间自由电子的等能面是一个球面

2 2
εk
(k x k y2 k z2 )
2m
在波矢空间是一球面方程,不同能量的等能面是一
系列同心球面。
➢费米能级和费米面:
在T=0K时,电子的能级与轨道填充时有两个原则:
① 先填能量低的能级
② 服从泡利原理
在T=0K时,由N个电子组成的自由电子系
2
1
3
相应的费米能:
2
kF
2
EF

(3 2 n) 2 / 3
2me
2m
2
也是由电子气的密度唯一地决定。
费米速度:
k F
vF
(3 2 n)1/ 3
m
m
也唯一决定于电子气密度,电子气的密度越大,
F .VF .k F
都越大。
思考: 晶体膨胀时,费米能级如何变化?
如一些典型金属的费米面参数:
面,即E到E+dE之间的体积,可以转化为半径k
到k+dk的两个球面之间的体积。转化公式:
k 2mE /
在波矢空间,波矢为k的球的球体体积为:4/3πk3,
每个k值占的体积为(2π/L)3,每个k又对应自旋相反的一
对电子,则:

自由电子论

自由电子论

ne2 1 0 ' i " m 1 i 1 i
0

ne2
m
其中 0 是直流电导率。以上推导见阎守胜书 p22

'

1
0 2
2
,
"

0 1 2
2
,
实数部分体现了与电压同位相的电流,也就是产生焦耳热
的那个电流,而虚部则体现的是与电压有 2 位相差的电流, 也就是感应电流。

—— Richardson-Dushman公式
其中
A


mekB2
2 2 3
W V0 EF0
在上面的推导中,用到两个积分公式:
exp
mv
2 y
2kBT
dvy

exp

mvz2 2kBT
dvz

2 kBT
i t

H



0
i


E t
故相对介电常数为:r

0

1

i
0

将上面求出的交流电导率代入该式,有:

r r ' ir " 1 0
0 1 2 2
i
0
0 1 2 2
示为: Ey E0 exp i qx t
运动方程的稳态解为:
e 1 v y m 1 it E y
电流密度 jy n e vy
ne2 1 0 ' i " m 1 i 1 i

第五章:金属的电子理论

第五章:金属的电子理论

dN ( E ) 3 2me 2 dE 2
3/ 2
3/ 2
E1/ 2
V 3 2
V 2me 2 2 2 3N ( E ) 2E
E1/ 2
DOS: number of electrons/unit energy in a range E ~ E + dE
自由电子模型总结
• 即使在金属中,传导电子的电荷分布( charge distribution)收到 离子芯强烈静电势的影响。因此,自由电子模型描述传导电子的运 动特性(kinetic properties)最为合适。传导电子与离子之间的相 互作用将在能带理论中讨论。 • 最简单的金属是碱金属:Li, Na, K, Rb, Cs。在这些单价金属中,N 原子构成的晶体有N 个电子和N 个正离子。 • 自由电子模型产生于在量子理论建立之前。经典Drude模型成功导 出欧姆定律(Ohm’s law),以及电导和热导的关系。但是,由于 使用了Maxwell经典统计分布,它不能解释比热容(heat capacity) 和磁化率(magnetic susceptibility )。后来Sommerfeld在量子理 论基础上重建了该模型。
~ 10eV
1/ 3 2 pF kF 3 N ~ 108 cm / sec vF V me me me
2/3 2 2 2 EF 2 3 N ~ 105 K TF kF kB 2me kB 2me kB V
态密度(Density of states, DOS)
L N (E) 2 2
dN ( E ) L 2me 1 N ( E ) 2me E , D( E ) dE E 2

固体物理:第五章 晶体中电子能带理论

固体物理:第五章 晶体中电子能带理论

电子在一个具有晶格周期性的势场中运动
V r V
r
Rn
其中 Rn 为任意格点的位矢。
2 2 2m
V r
E
2. 布洛赫定理
当势场具有晶格周期性时,波动方程的解具有如下性质:
(
r
Rn
)
eikRn
(
r
),
其中 k
为电子波矢,Rn
n1 a1 n2 a2 n3 a3
是格矢。
个能级分裂成N个相距很近的能级, 形成一个准连续的能带。 N个原子继续靠近,次外壳层电子也开始相互反应,能级 分裂成能带。
能带理论
能带论是目前研究固体中的电子状态,说明固体性质最重 要的理论基础。
能带理论是用量子力学的方法研究固体内部电子运动的理 论。它曾经定性地阐明了晶体运动的普遍特点,并进而说 明了绝缘体与半导体、导体的区别所在,解释了晶体中电 子的平均自由程问题。
原子中的电子处在不同的能级上,形成电子壳层
原子逐渐靠近,外层轨道发生电子的共有化运动——能级分裂
原子外壳层交叠的程度最大,共有化运动显著,能级分裂的很厉害, 能带很宽;
原子内壳层交叠的程度小,共有化运动很弱,能级分裂的很小,能 带很窄。
N个原子相距很远时,相互作用忽略不计。 N个原子逐渐靠近,最外层电子首先发生共有化运动,每
第五章 晶体中电子 能带理论
表征、计算和实验观测电子结构是固体物理学的核心问题; 这是因为原则上研究电子结构往往是进一步解释或预言许 多其他物理性质的必要步骤。
晶体电子结构的内涵是电子的能级以及它们在实空间和动 量空间中的分布。
玻尔的原子理论给出这样的原子图像:电子在一些特定的可能轨道 上绕核作圆周运动,离核愈远能量愈高,当电子在这些可能的轨道 上运动时原子不发射也不吸收能量,只有当电子从一个轨道跃迁到 另一个轨道时原子才发射或吸收能量,而且发射或吸收的辐射是单 频的。

经典自由电子论

经典自由电子论

2 m
2 T eΒιβλιοθήκη 2 3k Bne 2 2m
3.1.3 Drude模型的局限


Drude模型最成功之处在于解释了维德曼-弗兰茨定律。 与很多更精致、更复杂的理论得出的值相差不多。 但后来固体物理证明,Drude模型关于维德曼-弗兰茨 定律的证明是建立在两个大错误的互相抵消上,即室 温下的电子比热容高估了100倍,而电子的平均速度 低估了100倍。 电子热容问题:比热和温度无关,结果过大(100倍) 电导率与温度的关系T1/2(实际上T) 不能解释一、二价金属的导电能力的问题。
第2章 金属电子理论 (固体电子理论)
3.1 经典自由电子论
引言

为什么研究固体从金属开始? 自然界最基本的物质状态之一,元素周期表中 有2/3的元素属于金属。应用广泛(电导、热 导、光泽、延展),当时对金属的了解比其它 固体多。

当时人们对金属的了解有多少? 有良好的导电,导热性能 有较好的延展性和可塑性 维德曼-弗兰茨定律(Wiedemann-Franz law)

1 j nvx T x vx T x vx 2 d dT d 1 nvx x 2vx dT dx dx 2 d 3 dT 2 cv nvx cv kB dT 2 dx

1 1 eE vd vd a 2 2 2m

电流密度——单位时间内通过单位面积的电荷量。
ne 2 E nevd 2m 2 ne j E, 2m
电导率
其中,n为单位体积内的电子数(电子浓度),m为电子 质量,e为电子电荷量。 欧姆定律
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档