专题3-平差数学模型与最小二乘原理(实习用—概论与开始统讲)概论
平差数学模型与最小二乘原理

平差数学模型与最小二乘原理
§ 1 测量平差概述 § 2 测量平差的数学模型 § 3 函数模型的线性化 § 4 最小二乘原理
§2-1 测量平差概述
在测量工作中,为了确定待定点的高程, 需要建立水准网,为了确定待定点的平面 坐标,需要建立平面控制网(包括测角网、 测边网、边角网),我们常把这些网称为 几何模型。每种几何模型都包含有不同的 几何元素,如水准网中包括点的高程、点 间的高差,平面网中包含角度、边长、边 的坐标方位角以及点的二维或三维坐标等 元素。这些元素都被称为几何量。
A L~
rn n1
A0
r 1
0 r 1
将 L~ L 代入,并令 W (AL A0 )
则
A W 0
上式即为条件平差的函数模型。以此模型为基础
的平差计算称为条件平差法。
2. 附有参数的条件平差法
在平差问题中,设观测值个数为n,必要 观测个数为t,则可以列出r=n-t个条件方 程,现又增设了u个独立量作为未知参数, 且0 <u<t,每增加一个参数应增加一个条 件方程,因此,共需列出r+u个条件方程, 以含有参数的条件方程为平差函数模型 的平差方法,称为附有参数的条件平差 法。
4. 附有限制条件的间接平差
其函数模型的一般形式为
L~ F (X~)
n1
( X~) 0
S 1
线性形式的函数模型为
测量平差概述
在诸多几何量中,有的可以直接测量,但更多 的是通过测定其它一些量来间接求出。如根据 一点的坐标,通过直接测定的角度和距离求定 另一些点的坐标;根据一点的高程,通过直接 测定的高差求定另一些点的高程等等。这也充 分说明要确定一个几何模型,并不需பைடு நூலகம்知道其 中所有元素的大小,只需知道其中的一部分就 可以了,其它元素可以通过它们之间的函数描 述而确定出来,这种描述所求量与已知量之间 的关系式称为函数模型。
第2章平差数学模型1

述
要确定一个几何模型,并不需要知道其中所有元素的大小,只需知道其中的 一部分就可以了,其它元素可以通过它们之间的函数描述而确定出来,这种 描述所求量与已知量之间的关系式称为函数模型。
2019/2/12
1
第二章 平差数学模型与最小二乘原理
第一节 概 述
⑴如图三角形ABC中,为了确定它的形状,只需要知道其中任意两个内角的大小 就可以了
c n n 1 c u u 1 c 1
~ ~ A L B X A 0 0
1 s uu
~ CX W0
s 1
附有条件的条件平差的基本思想是: 对于一个平差问题,若增选了 u 个 ~ 参数,不论 u<t 、 u=t 或是 u>t ,也 考虑到, L L 则: 不论参数是否独立,每增加一个参 ~ A B X W 0 数则肯定相应地增加 1 个方程,故 c n n 1 c u u 1 c 1 方程的总数为 r+u 个。如果在 u 个参 ~ CX W0 数中有 s 个是不独立的,或者说在 1 s s uu 1 这u 个参数中存在着s 个函数关系式, 则应列出 s 个形如( 2-2-20 )的限 这就是附有条件的条件平差的函数模型 制条件方程,除此之外再列出 c=r+u-s
第二章 平差数学模型与最小二乘原理
第一节 概
1.几何模型 在测量工作中,为了确定待定点的高程,需要建立水准网,为了确定待定点 的平面坐标,需要建立平面控制网(包括测角网、测边网、边角网),我们 常把这些网称为几何模型。 2.几何量 每种几何模型都包含有不同的几何元素,如水准网中包括点的高程、点间的 高差,平面网中包含角度、边长、边的坐标方位角以及点的二维或三维坐标 等元素。这些元素都被称为几何量。 3.函数模型
测量平差 平差数学模型与最小二乘原理PPT课件

间接平差法:
L~ F ( X~)
n1
t1
ntr
第21页/共33页
• 附有参数的条件平差法:
• 附有条件的间接c平F1(差L~法, X:~) 0 n t r c r u 0 u t
nsL~11(uX~1F)
( X~) u1
0
n t r u t s, u t
第22页/共33页
• 若平差的函数是非线性的,平差之前就要进行线性化。 • 线性化的方法是应用台劳级数展开,保留一次项
•
必要元素之间函数独立
• 问题 :
仅有必要观测能否完成测量工作?观测结果是否可靠?
• 多余观测: r=n-t
n>t
• 条件方程:
•
观测误差存在使得测量平差有必要,多余观测使得测
量平差得以实现
第11页/共33页
几何量符号表 示
•1、必要观测次数 t(个数和类型)
•2 、 实 际 观 测 次 数 n
•3、多余观测次数 r
D(ˆ1 ) D(ˆ2 ) D(ˆ ) min
第29页/共33页
• 一、参数估计及最优性质
•
数理统计理论证明,具有无偏性、最优性的估计量必然是一致性估计量,
所以测量平差中参数的最佳估值要求是最优无偏估计量。由于平差模型是线性的,
最佳估计也称为最优线性无偏估计。
第30页/共33页
•二 、 最 小 二 乘 原 理
• 三、必要观测
• 必要观测/必要元素:唯一确定一个确定几何、物理模型 • 的形状、大小所必须进行的观测称为必要观测,其符号 • 用符号t表示。
• 必要元素的特点: • (1)元素的个数仅与几何模型有关而与实际观测量无关 • (2)必要元素之间函数独立
平差数学模型与最小

1
教学ppt
2
教学ppt
3
教学ppt
4
第二章 平差数学模型与最小二乘原理
§2-1 测量平差概述
在测量工作中,为了确定待定点的高程,需要建 立水准网,为了确定待定点的平面坐标,需要建立 平面控制网(包括测角网、测边网、边角网),我 们常把这些网称为几何模型。每种几何模型都包含 有不同的几何元素,如水准网中包括点的高程、点 间的高差,平面网中包含角度、边长、边的坐标方 位角以及点的二维或三维坐标等元素。这些元素都 被称为几何量。
r=n-t
(2-1-1)
式中n是观测值个数,t是必要观测个数,r称为 多余观测个数,表示有r个多余观测值,在统计学 中也叫自由度。
教学ppt
12
既然一个几何模型能通过t个必要而独立的量唯一 的确定下来,这就意味着在该模型中,其它的量都可 以由这t个量确定下来,即模型中任何一个其它的量 都是这t个独立量的函数,都与这t个量之间存在有一 定的函数关系式。现在模型中有r个多余观测量,因 此,一定也存在着r个这样的函数关系式。
从上面例子可知,一旦几何模型确定了,就能够 唯一地确定该模型的必要观测元素的个数。我们把 能够唯一地确定一个几何模型所必要的元素,称为 必要观测元素。
教学ppt
9
必要观测元素的个数用t表示,称为必要观测个 数。对于上面三种情况,必要观测元素个数分别为 t=2,t=3和t=3。而对于后两种情况,不仅要考虑必 要观测元素的个数,还要考虑到元素的类型,否则 就无法唯一地确定模型。必要观测个数t只与几何模 型有关,与实际观测量无关。
L ~ 1L ~ 2L ~ 31 8 00
(2-1-3)
~~ siSn1L~1 siSn2L~2 0
空间误差分析平差数学模型与最小二乘原理PPT课件

第8页/共77页
§4-1 测量平差概述
• 5.多余观测 • 假设对模型中的几何量总共观测 n 个, n < t,无法确定模型; n = t,唯一地确定模型,但无法发现粗差 n > t,可以确定模型,还可以发现粗差
条件平差的自由度为多余观测数r,即条件 方程个数。
第22页/共77页
§4-2 函数模型
• 例1:已知点A、B高程;观测值:h1—h5
× hh~~14
~ h5 ~ h5
~ h2 ~ h3
0 0
H
A
~ h3
~ h4
H
B
0
hh~~14
~ h5 ~ h5
~ h2 ~ h3
0 0
h~1
~ h2
~ h3
§4-2 函数模型
h1
B X~1
A
h4
h5
h~~1 h2
X~1 X~1
HA X~2
D X~3 h2
~ h3
X~2
H
A
h3
h6
C X~2
t = 3,选3个参数
X~1 X~2
HB HC
X~3
HD
1 0
1 1
0 1
B
0
0
1 0
0 1
L~
~ h1
~ h2
L~ B X~ d
0
~ h2 ~ h5
~ h3 ~ h6
0 0
h1
~ h3
~ h4
~ h6
平差数学模型与最小二乘原理

而无法确定其大小,因此,必要元素不仅要考虑其个数, 而无法确定其大小,因此,必要元素不仅要考虑其个数, 而且要考虑以它的类型.由此可知, 而且要考虑以它的类型.由此可知,当某个几何模型给定 之后,能够唯一确定该模型的必要元素的个数t及其类型, 之后,能够唯一确定该模型的必要元素的个数t及其类型, 只与几何模型有关,与实际观测量无关. t只与几何模型有关,与实际观测量无关. 对于任一几何模型,它的t 对于任一几何模型,它的t个必要元素之间必要不存在函 数关系,亦即其只任一元素不能表达成其余( 数关系,亦即其只任一元素不能表达成其余(t-1)个元素 ~ ~ 的函数.例如,对于( 中的情况, 的函数.例如,对于(1)中的情况,若以L和 L作为必要 2 ~ ~ 1 元素, 元素,则 L1 L2间无函数关系;又如在(2)情况中, 与 间无函数关系;又如在( 情况中, ~ ~ ~ ~ ~ ~ 选 L , , ,则 L+ L L =180 ,三者之间存在函数关系, + 三者之间存在函数关系, L2 L3 3 1 1 2 就不能说t=3 实际必要元素只选了两个,而漏选了一个. t=3, 就不能说t=3,实际必要元素只选了两个,而漏选了一个. 因此必要元素t个量为函数独立量,简称独立量. 因此必要元素t个量为函数独立量,简称独立量. 在一个几何模型中,除了t个独立量以外, 在一个几何模型中,除了t个独立量以外,若再增加一个 则必然产生一个相应的函数关系式.仍以( 量,则必然产生一个相应的函数关系式.仍以(2)情况 ~~ ~ ~ ~ ~ 中,必要量选为 L1 L2 S1 若增加一个量L3,则存在 L+ L2 ,,, 1 ~=180 ,若再增加一个量 ~,则有 + L3 S2 ~ ~ ~ sin L2 S2 = S1 ~ 返回目录 sin L1
1.2教案《误差理论与测量平差》第二章 平差数学模型与最小二乘原理

授课题目:第二章 平差数学模型与最小二乘原理教学方法:理论讲授 教学手段:多媒体课件教学;以电子课件为主,投影及板书相结合为辅,使学生能够充分利用课堂有效的时间了解尽可能多的相关知识。
本章教学时数:4学时内容提要:主要介绍必要观测、多余观测、不符值、独立参数概念;测量平差的函数模型及两种平差的基本方程:条件方程和误差方程式;其它函数模型:附有参数的条件平差、附有限制条件的间接平差,以及平差的随机模型的概念及形态;平差基本方程的线性化,最小二乘原理。
教学要求:理解必要观测、多余观测、不符值、独立参数概念,掌握条件方程和误差方程式含义和最小二乘原理,会进行平差基本方程--条件方程和误差方程式的线性化。
本章重点:重点掌握测量平差数学模型的类型、建立方法,平差随机模型的意义和形态,以及最小二乘原理在测量平差中的应用。
教学难点:教学难点是对平差函数与随机模型含义与建立方法的理解。
本章教学总的思路:地理空间几何图形内部存在着严格的数学关系,测绘获得的是地理空间几何图形的基本元素,如角度(或方向值)、边长、高差的最佳估值,必须满足地理空间几何图形的基本数学关系,这是建立测量平差基本方程--条件方程和误差方程式的基础,在讲清楚这一点的基础上讲解基础方程的建立,进而推开讲解附有参数的条件方程、附有限制条件误差方程模型,并说明平差的随机模型的概念。
为解算的需要必须线性化条件方程式和误差方程式,其基本方法是利用泰勒级数展开基本方程并取其至一次项,从而完成线性化;在解释天然的平差模型为什么没有唯一解的原因基础上,讲解最小二乘原理,并举例验证,以此突破本课程难点内容的教学。
最后对教学重点内容作概括性总结,使学生加深理解与认知的程度。
§1测量平差概述本节教学时数:0.5学时本节重点:(1)测量元素-—角度(方向)、长度、高差、几何图的数学关系(2)观测值个数、必要观测数、多余观测数及其作用;(3)观测值、改正数、最优改正数、最优估值,平差的概念本节教学思路:以日常生活中最常见到的简单几何图三角形为例,说明测量观测值、平差值、几何图数学关系,平差模型与平差的概念,为下一节的讲讲解作好知识铺垫。
第二章-平差数学模型与最小二乘原理2009

ˆ ⎞ d lg sin L i ⎟ ˆ = lg sin( L + v ) = lg sin L + ⎛ ⎜ vi lg sin L i i i i ⎟ ⎜ dL ˆ ˆ =L i ⎠L ⎝ i i ˆ ⎞ ⎛ d lg sin L vi′′ i ⎟ = lg sin Li + ⎜ ⎟ ⎜ dL ˆ ρ ′′ ˆ =L i ⎠L ⎝ i i
§2.1 测量平差的数学模型
在日常生活和科学研究中,时常见到很多模型,一般主要有实物的模拟模型和数学模型。测量 平差的数学模型包括:函数模型和随机模型。一个实际的平差问题,都要建立某种函数模型,函数 模型是描述观测量与未知量之间的数学关系的模型。函数模型分为线性模型和非线性模型两类,测 量平差通常是基于线性模型的,当函数模型为非线性函数时,总是将其用泰勒公式展开,并取其一 次项化为线性形式。
ˆ + l , l = ( BX 0 + d − L ) V = Bx
其中
⎛ a1 ⎜ B = ⎜ a2 ⎜a ⎝ 3
b1 ⎞ ⎛ S01 − S1 ⎞ ⎟ ⎜ ⎟ b2 ⎟ , l = ⎜ S02 − S2 ⎟ ⎜S −S ⎟ b3 ⎟ ⎝ 03 3 ⎠ ⎠
这样,就把原来非线性的误差方程化为线性式。解答完毕。 在上面所举的例子中,满足条件方程的改正数 V 都有无穷多组。最小二乘条件平差,即依据条 件方程式,按 V PV = min 求出改正数及其平差值。
(2)方位角条件 1 个。 BA 边及 BC 边的方位角及边长为已知,则由 BA 边的方位角加 2 角及 5 角,应等于 BC 边的方位角。即
v 2 + v5 + w3 = 0 , w3 = TBA + L2 + L5 − TBC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lˆ S~11
L 1
S1
, 1
S1
L~ L
, S2~2
2
S2
,
2
L~ 3 S2
L 3
3
因r=n-t=5-3=2,可组成2个条件方程为
(L11) (L2 2 ) (L3 3 ) 180 (2-1-2)
sin(L )
(S ) (S )
2
2
2
S2
1
S1
sin(L )
1
1
(2-1-3)
若用观测值组成上述两个条件方程,则不能成立,即
L1 L2 L3 180 0
S2
S1
sin L2 sin L1
返回目录
(2-1-4)
造成条件方程不闭合,或者说存在闭合差,例如 (2-1-4)式中的,就是该三角形角度条件方程的闭合差。
由于观测不可避免地存在偶然误差,当n>t时,几何模型 中应该满足r=n-t个条件方程,实际存在闭俣差而并不满足, 如何调整观测值,即对观测值合理地加上改正数,使其达 到消除闭合差的目的,这是测量平差的主要任务。 一个测量平差问题,首先要由观测值和待求量间组成数 学模型,然后采用一定的平差原则对待求量进行估计,这 种估计要求是最优的,最后计算和分析成果的精度。
第二章 平差数学模型与最小二乘原理
本章介绍测量平差的基本概念,简要地给出基本平差
方法的数学模型,为以后各章系统学习各种平差理论打好
基础。最后介绍最小二乘原理,这是测量平差法所遵循的
准则。第一节Fra bibliotek测量平差概述
第二节
测量平差的数学模型
第三节
函数模型的线性化
第四节
参数估计与最小二乘原理
2-1 测量平差概述
量中+ L~,,3=则必18必要0º然量,S~2产选若生为再S~1一L~增ss1、ii个nnL~加2LL~、相~一12S~应1,个返的若量回函目增S~录2数,加关则一系有个式量。L~3,仍则以(存2在)L~情1+况L~2
由此可知,一个几何模型的独立量个数最多为t个,除 此之外,增加一个量必然要产生一个相应的函数关系式, 这种函数关系式,在测量平差中称为条件方程。
在测量工程中,最常见的是要确定某些几何量的大小。 例如,为了求定一些点的高程而建立了水准网,为了求定 某些点的坐标而建立了平面控制网或三维测量网。前者包 含点间的高差、点的高程等元素,后者包含角度、边长、 边的方位角以及点的二维或三维坐标等等元素。这些元素 都是几何量,以下统称这些网为几何模型。
为了确定一个几何模型,并不需要知道该模型中所有元 素的大小,而只需要知道其中部分元素的大小就行了,其 它元素可以通过它们来确定。例如:
在测量工程中,为了求得一个几何模型中各量的大小就 必须进行观测。如果总共观测了该模型中n个量的大小, 若观测个数少于必要元素的个数,即n<t,显然它无法确定 该模型,即出现了数据不足的情况;若观测了t个独立量, n=t,则可唯一地确定该模型。由于它们都是独立量,故不 存在任何条件方程,在这种情况下,如果观测结果中含有 粗差甚至错误,都将无法发现,在测量工作中是不允许这 样做的。为了能及时发现粗差和错误,并提高测量成果的 精度,就必须使n>t,若令
的元选就不函素L~1、能数,L~说。则2、t例L~L=~31与3,如,L则,~实2间对L~际1+无于必L函~(+2要L数~13元)=关1素中8系0只的º;选情,又了况三如两,者在个若之(,以间2)而L存~1和情漏在况L~选函2作中了数为,一关必个系要。,
因此必要元素t个量为函数独立量,简称独立量。
在一个几何模型中,除了t个独立量以外,若再增加一个
r=n-t
(2-1-1)
式中n为观测值个数,t称为必要观测数,r称为多余观 测数。多余观测数在测量中又称“自由度”。
返回目录
一个几何模型如果有r个多余观测,就产生r个条件方
程。由于观测值不可避免地存在观测误差,由观测值组成
上述条件方程必不能满足,仍以(2)中情况为例,若观
测了角度L1、L2、L3和边长S1、S2,考虑观测误差,有
(1)在图2-1的△ABC中,为了确定它的形状(相似形),只
要Lˆ3等知。道它其们中都任是意同2个一内类角型的的大元小素就(行角了度,)如。L~1, L~2或L~1, L~3或Lˆ2
(2)为了确定ΔABC的形状和大小(全等形),只要知道其
中如任L~1意、的L~2、2S角~1,1S边~1、、S~22、边L~13,角S~或1、3S~边2、的S~3,大小…就,行等了等,。
返回目录
(3)在图2-2的水准网中,为 了确定A、B、C、D4点之间高
度个或它的高们h~4、相差是h~对就同5、关行一h~6 或系了类, , 型h~1、只如的要元h~h~、21、知素h~…h6~道(3、等其高h~等中4 。3
差)。
能够唯一地确定一个几何 模型所必要的元素,简称必要 元素;必要元素的个数用t来表 示。对于上述三种情况,分别 是t=2,t=3和t=3。对于第二种情 况,3个元素中除了角度还至少 要包含一个边长,没有边长仍 然只能确定其形状;
某种特征或内在联系的模型。前者称为模拟模型,后者称 为数学模型。总称为抽象模型。
在测量工程中,涉及的是通过观测量确定某些几何量或 物理量大小等有关的数量问题,因而考虑的模型总是数学 模型。平差的数学模型与一般数学只考虑函数模型不同, 它还要考虑随机模型,因为观测量是一种随机变量。所以 平差的数学模型同时包含函数模型和随机模型两种,在研 究任何平差方法时必须同时予以考虑。
返回目录
而无法确定其大小,因此,必要元素不仅要考虑其个数, 而且要考虑以它的类型。由此可知,当某个几何模型给定 之后,能够唯一确定该模型的必要元素的个数t及其类型, t只与几何模型有关,与实际观测量无关。
对于任一几何模型,它的t个必要元素之间必要不存在函 数关系,亦即其只任一元素不能表达成其余(t-1)个元素
返回目录
2-2 测量平差的数学模型
一、条件平差法 二、间接平差法 三、附有参数的条件平差法 四、附有限制条件的间接平差法 五、平差的随机模型
返回目录
在日常生活和科学技术领域中,时常见到许多模型,一 般可将其分为两大类,一类是将实物尺寸放大或缩小而得 的模型,称为实物模型;另一类是用文字、符号、图表或 者对研究的对象进行抽象概括,用数学关系式来描述它的