高中数学函数的表示方法课件
人教版高中数学必修一第一章函数的概念课件PPT

解 对于集合A中任意一个实数x,按照对应关系f:x→y=0在集合B中 都有唯一一个确定的数0和它对应,故是集合A到集合B的函数.
反思与感悟
解析答案
跟踪训练1 下列对应是从集合A到集合B的函数的是( C ) A.A=R,B={x∈R|x>0},f:x→|1x| B.A=N,B=N*,f:x→|x-1| C.A={x∈R|x>0},B=R,f:x→x2
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
返回
第一章 1.2 函数及其表示
1.2.1 函数的概念
人教版高中数学必修一1.2.2函数的表示法 (1)ppt课件

例5、下列映射是不是A到B的一一映射?
A
B
A
B
f
1
3
f
1
3
2
5
3
7
5 2
7
3
9
4
9
4
1
(1)
(2)
解:(1) 是
(2) 不是。由于B中元素1在集合A中没有原像
例6、 下列对应是不是A到B的映射? 1 A={1,2,3,4},B={3,4,5,6,7,8,9} ,f:乘2加1 2 A=N+,B={0,1} ,f: x 除以2得的余数 3 A=R+,B=R,f:求平方根 4 A={x|0≤ x<1},B={y|y≥1} f:取倒数
5 , 1 5 < x 2 0 , 2 1
图公交车票价.gsp
05
10
15
20
我们把上述两例中的函数叫做分段函数: 即分区间定义的函数. 分段函数的图象要分段作出!
注意: (1)有时表示函数的式子可以不止一个,对于分几个 表示的函数,不是几个函数,而是一个函数,我们把它 分段函数.
(2) 函数图象既可以是连续的曲线,也可以是直线、 线、离散的点等等。
注意:解析法表示函数是中学研究函数的主要表示方法;用 法表示函数时,必须注明函数的定义域.
2.图像法:用函数图像表示两个变量之间的对应关系。
如:心电图,气象台应用自动记录器描绘温度随时间变 化的曲线,股市走向图等都是用图象法表示函数关系的.
例如: 我国人口出生率变化曲线:
图像法的优点: 能直观形象的表示出函数的变化情况。
(1)对于任何一个实数a,数轴上都有唯一的点P和它对
(2)对于坐标平面内任何一个点A,都有唯一的有序实数 (x,y)和它对应;
高中数学 第二章 函数 2.1.2 函数的表示方法课件 b必修1b高一必修1数学课件

答案:1 2
12/13/2021
第四十页,共四十四页。
4.已知 f(x+1)=x2-2x,则 f( 2)=________. 解析:设 x+1=t,则 x=t-1. 则 f(t)=(t-1)2-2(t-1) =t2-4t+3. 所以 f(x)=x2-4x+3, 所以 f( 2)=( 2)2-4 2+3=5-4 2. 答案:5-4 2
12/13/2021
第十八页,共四十四页。
法二:设 x+4=t≥4,则 x=t-4,x=(t-4)2, 所以 f(t)=(t-4)2+8(t-4)=t2-16. 所以 f(x)=x2-16(x≥4). 所以 f(x2)=x4-16(x≤-2 或 x≥2). (3)由 2f(x)+f1x=2x,① 将 x 换成1x,则1x换成 x,得 2f1x+f(x)=2x,② ①×2-②,得 3f(x)=4x-2x,即 f(x)=43x-32x.
第二章 函 数
2.1.2 函数的表示(biǎoshì)方法
12/13/2021
第一页,共四十四页。
第二章 函 数
1.掌握函数的三种表示方法:解析法、图象法、 列表法. 2.了解简单的分段函数. 3.掌握函数解析式 的求法.
12/13/2021
第二页,共四十四页。
1.函数的表示方法
12/13/2021
第十三页,共四十四页。
(4)该函数中 y=1(x≥1)表示平行于 x 轴的一条射线.
12/13/2021
第十四页,共四十四页。
作函数图象时应注意的事项 (1)画函数图象时首先关注函数的定义域,即在定义域内作图; (2)图象是实线或实点,定义域外的部分有时可用虚线来衬托 整个图象; (3)要标出某些关键点,例如图象的顶点、端点、与坐标轴的 交点等.要分清这些关键点是实心点还是空心点.
人教高中数学必修1课件:1.2.2函数的表示法第1课时函数的表示法精讲优练课型

1.2. 2函数的表示法第1课时函数的表示法【即时小测】1 •思考下列问题: ⑴所有的函数都能用列表法来表示吗?提示:并不是所有的函数都能用列表法来表示,如函数y二2x+l f xe R.因为自变量X w R不能一一列出,所以不能用列表法来表示•(2)用解析法表示函数是否一定要写出自变量的取值范围?提示:函数的走义域是函数存在的前提,写函数解析式的时候L般要写出函数的定义域.2・已知函数f(x)由下表给出:则f(f(2))= ____________【解析】由表格可知十⑵二4所以f(f⑵)=f⑴二0・答案:03・CU咨 f (x —l)"(x —l)2』=f(X)3晝聖【sm ffiXIlHbpMIXHt+l、s u w (t T t 2・0H (x T x 2・嘯4.已知函数y=f (x)的图象如图所示,则其定义域是3~~03^【解析】因为函数y二f(x)图象上所有点的横坐标的取值范围是[23],所以其定义域为[么3]・答案:[23]5.已知f (n) =2f (n+1), f (1) =2,则f (3)= 【解析】f(n) = 2f(n + l),f(l) = 2, 所以俭)= 2f(2)=4f⑶,故f⑶二( 答案:2 2【知识探究】知识点函数的三种表示方法观察如图所示内容,回答下列问题:(函数的表示方法)——(图象法)问题1 :应用三种方法表示函数时应注意什么问题?问题2:函数的三种表示方法各有什么优缺点?【总结提升】1 •对函数三种表示法的说明列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示•在应用三种方法表示函数时要注意:⑴解析法:必须注明函数的定义域(2)列表法:选取的自变量要有代表性,应能反映定义域的特征.⑶图象法:是否连线.2.函数三种表示方法优缺点比较"能形象、直观地表示壓函数的变化情况点 小、 只能近似求出自变量所对应的函数值,而 R 有时误差较大 K ____________ /【题型探究】类型一待定系数法求函数解析式【典例】1.已知f(X)是一次函数,且f (f (x)) =4x+3,则函数f(X)的解析式为_____________ ■2.已知二次函数y=f (x)的最大值为13,且f(3)=f(-l)=5,求f (x)的解析式.【解题探究】1•典例1中一次函数解析式的形式是什么? 提示:一次函数解析式的形式为f(x)二ax+b (a工0) •2.典例2中二次函数的一般形式是什么?提示:二次函数的一般形式是f(x)二ax?+bx+c (a H 0) •【s s】l ・ffi f (x T ax +b (a H O )・ m=f (fH +b T爾糊f s H 2X +一烘f (X)H —w x —w2•方法一:利用二次函数的一般式求解.设f(x)=ax2+bx+c(a^0).由条件知,点⑶5),(也5),("3)在f(x)的图象上9a+3b+c = 5, fa = -2所以a — b+c = 5,所以f的斤邂时x+lg = ii方法二:利用二次函数的顶点式求解.由f(3)=f(・l),可知:对称轴为x“,又最大值为D故可设f(x)二a(x・l)2+13.将f⑶=5代入得a=2・所以f(x) = -2(x-l)2+13jpf(x) = -2x2+4x+ll.【方法技巧】待定系数法求函数解析式(1)适用范围:已知所要求的解析式f(x)的类型,如是一次函数、二次函数等等,即可设出f(x)的解析式,然后根据已知条件确定其系数.(2)待定系数法求函数解析式的步骤:①设出所求函数含有待定系数的解析式;③解方程或方程组,得到待定系数的值;④将所求待定系数的值代回所设解析式.【变式训练】已知二次函数f (X )的图象过点A(0, -5), B (5, 0),其对称 轴为x=2,求其解析式.【解析】因为抛物线的对称轴为x=2, 所以设二次函数的解析式为f(x)=a(x-2)2+k(a^O).把(0,-5),(5,0)分别代入上式得丽劇嗨斛*9・ 龈敲MX 』",类型二换元法(或配凑法)、方程组法求函数解析式【典例】求满足下列条件的函数f(x)的解析式.(1)函数f(X)满足f ( +l)=x+2 .(2)函数f (x)满足2f 占)+f (x) =x《HO).1X【解题探究】1.典例⑴中的5 +1)中的低+1与x+2低能否建立联系?提示:典例⑴中的X+2 =( +1)2-1.2 •典例(2)中x和有越关爲1提示:互为倒数关黍・(1£)「益(3欝“人1:埠只Ig lx V ^.J (T :+r (T +)J M £ V0+x只因:(+s2e H +s g(一丄jpex) J XH (X )J E5£ rH」u z +z(I £H e 4M £"(IeHxliio 存g芥企 叟+W IK ®l 4W 运(I⑵由题意知f(x) + 2f( i=x f令X二(tHO) fx t则i=t f则f(卅2f(t)二a即班?+2f(x)・(于是得剧关于f(肯f(x)的方程自—i ■x X Xf(x) + 2f』) =xf(-) + 2f(x) = I 2 x1解得f(x)拄-°)・XXX【延伸探究】1.(变换条件)典例(1)中若将条件“f(+l)=x+2 “f(2x-l)p2+x+l”,则f(x)的解析式是什么?【解析】设2x-l=t f则X二t+1所以f(t)二亍Q nX/、t+1 ° t+1 7即f(x)二一r+一+i 二一+t+—.2 2 4 41 97一x~+x -一・4 42.(变换条件)典例(1)中若将条件“f (低+ l)=x+2低”变为“f(l+ 1 )=i+x21 ”,则f(x)的解析式是什么?【解析】平(1 + * X1+?]因為寻岂占诫溜胡析幽)+hf(x)=x24c+ 1 , XG(-OO f 1) U (1 , +8).X【方法技巧】换元法(或配凑法)、方程组法求函数解析式的思路⑴已知f (g (x)) =h (x),求f (x),常用的有两种方法:①换元法,即令t=g (x),解出禺代Ah(x)中,得到一个含t的解析式,即为函数解析式,注意:换元后新元的范围②配凑法,即从f (g(X))的解析式中配凑出即用g(x)来表示h (x),然后将解析式中的g (x)用x代替即可.(2)方程组法:当同一个对应关系中的含有自变量的两个表达式之间有互为相反数或互为倒数关系时,可构造方程组求解.【补偿训练】已知f(x-l)=xMx-5,则f(x)的解析式是()【解析】选A.方法一:设t 二则x=t+l,因为f(x-l)=x2+4x ・5, 所以 f(t) = (t+l)2+4(t+l)-5=t 2+6t ff (x)的解析式是f (x)=x 2+6x.方法二:因为 f (x-1)=x 2+4x- 5=(x-1)2+6 (x-1),所以 f(x)=x 2+6x. 所以f (X )的解析式是f (X )二x2+6x.A. f (x) =x 2+6xC. f (x) =x 2+2x-3 B. f (x) =x 2+8x+7 D. f (x) =x 2+6x-10类型三函数的图象及其应用【典例】作出下列函数的图象:(1)y=2x+l, x G [0, 2]・(2)y=x2-2x, x E [0, 3) •(3)y=.【解题探究】典例中可以使用什么方法来画函数图象? 提示:典例中函数的图象可通过描点法来画.1X【解析】⑴当x=0时"二1;当x=2时"二5・所画图象如图(1)所示.⑵因为0<x<3f所以这个函数的图象是抛物线y=x2-2x介于0«xv3 之间的一部分,如图(2)所示.⑶函数图象如图⑶所示・图(1)----------- i―I——>0 2 X图⑵图⑶【方法技巧】描点法作函数图象的步骤及关注点(1)步骤:①列表:取自变量的若干个值,求出相应的函数值,并列表表示;②描点:在平面直角坐标系中描出表中相应的点;③连线:用平滑的曲线将描出的点连接起来,得到函数图象・(2)关注点:①画函数图象时首先关注函数的定义域,即在定义域内作图;②图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象;③要标出某些关键点,例如图象的顶点、端点、与坐标轴的交点等•要分清这些关键点是实心点还是空心点.【变式训练】作出函数尸x2-2x-2, xG [0, 3]的图象并求其值域.【解析】因为y=(x-l)2-3f所以函数y二x^2x・2的对称轴为x=4顶点为(1厂3)涵数过点(0厂2)®),具图象如图所示.由图象知函数的值域为[乜1]・• -1 - •【补偿训练】画出函数图象:y=x2-2, xWZ且|x| W2・【解析】因为y=x2・2,xwZ且|x|s2,所以x二・2厂:L,0丄2;对应y的值为2・—2厂12图象如图:\y■-2 -1 0 1 2*■2r • -1 - •易错案例换元法求函数解析式【典例】已知f (x 2+2) =x 4+4x 2,则f (x)的解析式为_严识$【失误案例】 【错解分析】分析解题过程,你知道错哪里吗?)专牛十44,d'化力十? mt"提示:错误的根本原因是忽略了函数f(x)的走义域上面的解法看上去似乎是无懈可击撚而从具结论间f(x)二x?・4来看,并未注明f(x)的走义域,那么按一般理解,就应认为直走义域是全体实数.但是f(x)=x2・4 的定义域不是全体实数.【自我矫正】因为f(x2+2)=x4+4x2=(x2+2)2・4, 令t=x2+2(tn2),则f (t)=t2-4(t>2)f所以f(x)=x2・4(xn2).答案:f(x)=x2-4(x>2)【防范措施】关注换元法求函数解析式时对定义域的要求任何一个函数都由定义域、值域和对应关系f三要素组成•所以, 当函数f (g (x)) 一旦给出,则其对应关系f就已确定并且不可改变,那么f的“管辖范围”(即g(x)的值域)也就随之确定•因此,我们由f (g (x))求f (x)时,求得的f (x)的定义域就理应与f (g (x))中的f的“管辖范一致才妥. 围”课时撮井作此/点击进入Word版可编辑套题。
人教版高中数学必修1《函数的表示法》高一上册PPT课件(第1.2.2-1课时)

PART 03
合作探究·攻重难
TO WORK TOGETHER TO FIND OUT WHAT'S GOING ON
高中数学精品系列课件
[合作探究· 攻重难]
函 数表 示 法的 选 择
例1某商场新进了10台彩电,每台售价3000元,试求售出台数x与收款数y之间的函数关系,分别用列表法、图
象法、解析法表示出来. [解] ①列表法如下:
高中数学精品系列课件
[解] (1)不能用解析法表示,用图象法表示为宜. 在同一个坐标系内画出这四个函数的图象如下:
人教版高中数学必修一精品课件
高中数学精品系列课件
(2)王伟同学的数学成绩始终高于班级平均水平, 学习情况比较稳定而且成绩优秀, 张城同学的数学成绩 不稳定,总是在班级平均水平上下波动,而且波动幅度较大.赵磊同学的数学成绩低于班级平均水平, 但他的成绩曲线呈上升趋势,表明他的数学成绩在稳步提高.
优点
缺点
①简明、全面地概括了变量间的关系;②可以通过解析式求出任意
解析法
不够形象、直观
一个自变量所对应的函数值
列表法 不通过计算就可以直接看出与自变量的值相对应的函数值
一般只能表示部分自变量的函数值
直观、形象地表示出函数的变化情况,有利于通过图形研究函数的 只能近似地求出自变量所对应的函数值,有时误
人教版高中数学必修一精品课件
高中数学精品系列课件
图象的画法及应用
例2作 出 下 列 函 数 的 图 象 并 求 出 其 值 域 . 2
(1)y= - x, x∈ {0,1, - 2,3}; (2)y=, x∈ [2, + ∞ ); (3)y= x2+ 2x, x∈ [- 2,2). x
[解] (1)列表
课件_人教版高中数学必修一函数PPT课件_优秀版

判断下列对应能否表示y是x的函数
(1) y=|x| (3) y=x 2 (5) y2+x2=1
(2)|y|=x (4)y2 =x (6)y2-x2=1
(1)能 (2)不能 (4)不能 (5)不能
(3)能 (6)不能
问题:
如何判断给定的两个变量之间是否具有函
数关系?
(5) y2+x2=1 (6)y2-x2=1 如何判断给定的两个变量之间是否具有函数关系? (3) {x|x ≤ -1} ∩{x| -5 ≤ x<2} (2)、满足不等式a<x<b的实数x的集合叫做开区间,表示为 (a,b)
(3)f(x) x1 1 2x
练 习 : 求 下 列 函 数 的 定 义 域 (1)f(x)= x+1 x-3
(2)f(x)= 5-x x 3
(3)f(x)= (x-1)0 x2 x
两个函数相同:
( 1 ) 对 应 关 系 f , 定 义 域 , 值 域 都 相 同
定义域,定义域到值域的对应关系 相同
②根据所给对应法则,自变量x在其定义域中的每 请阅读课本P48关于区间的内容
(4) {x|x < -9}∪{x| -9 < x<20}
如(4)何不判能断一给定个的两个值变量,之间是是否具否有函都数关有系? 惟一确定的一个函数值y和它对 应。 (5)不能
(2) {x|x ≥9} 判断下列图象能表示函数图象的是( ) 定义域、对应法则、值域 (1){x|5 ≤ x<6} 实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷大”。 ②根据所给对应法则,自变量x在其定义域中的每一个值,是否都有惟一确定的一个函数值y和它对应。
函数的表示方法课件-2022-2023学年高一上学期数学苏教版(2019)必修第一册

数值,而且有时误差较大
高中数学
必修第一册
配套江苏版教材
示例 下表是某校高一(1)班三名同学在高一学年六次数学测试的成绩及班级平均分表.
测试序号
姓名
1
2
3
4
5
6
小伟
98
87
91
92
88
95
小城
90
76
88
75
86
80
小磊
68
65
73
72
75
82
班级平均分
88.2
78.3
85.4
高中数学
必修第一册
配套江苏版教材
例6 某镇响应“绿水青山就是金山银山”的号召,因地制宜地将该镇打造成“生态水果特色镇”.经调
研发现:某珍稀水果树的单株产量W(单位:千克)与施用肥料x(单位:千克)满足如下关系:
配套江苏版教材
3.分段函数的图象
分段函数有几段,它的图象就由几条曲线组成,在同一直角坐标系中,根据每段的定义区间和表达式依次
画出图象,要注意每段图象的端点是空心点还是实心点.
示例 已知函数f(x)=1+
−
(-2<x≤2).
2
(1)用分段函数的形式表示f(x);(2)画出f(x)的图象;(3)写出函数f(x)的值域.
高中数学
必修第一册
配套江苏版教材
+ 1 2 , ≤ −1,
例5 已知函数f(x)= 2 + 2, −1 < < 1, 若f(a)>1,则实数a的取值范围是(
C )
1
, ≥ 1,
1
高中数学必修1课件第一章 1.2.2 第1课时

课
栏 目
A.f(x)=x2-1
开 关
B.f(x)=-(x-1)2+1
C.f(x)=(x-1)2+1
D.f(x)=(x-1)2-1
练一练·当堂检测、目标达成落实处
本 课
答案
D
栏 目
解析
由二次函数的图象开口向上且关于直线 x=1 对称,可
开 关
排除 A、B;又图象过点(0,0),可排除 C.D 项符合题意.
1.2.2 函数的表示法
第 1 课时 函数的表示法
本
课 栏
【读一读学习要求,目标更明确】
目 开
1.了解函数的三种表示法的各自优点,掌握用三种不同形式
关
表示函数;
2.提高在不同情境中用不同形式表示函数的能力.
【看一看学法指导,学习更灵活】
本 课
学习函数的表示形式,不仅是为了研究函数的性质和应
栏
目 用的需要,而且是为加深对函数概念的理解,让学生感受到
解析 ∵g(x+2)=f(x),f(x)=2x+3,∴g(x+2)=2x+3.
令 t=x+2,则 x=t-2,∴g(t)=2(t-2)+3=2t-1. 即 g(x)=2x-1.
练一练·当堂检测、目标达成落实处
1.如果二次函数的图象开口向上且关于直线 x=1 对称,且
本 过点(0,0),则此二次函数的解析式可以是( )
即 2ax+a+b=2x, ∴a=1,b=-1,从而 f(x)=x2-x.
研一研·问题探究、课堂更高效
问题 2 已知函数 f(g(x))的解析式求 f(x)的解析式通常用什么
本
课 栏
方法?这种方法的具体做法是怎样的?
目 开
答 通常用换元法.即令 g(x)=t,反解出 x,然后代入 f(g(x))
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.是否每一个函数都可以用解析式表示? 提示 不是的.有些函数只能用列表法表示,有些函数只能 用图象法表示.
名师点睛 1.函数的表示法中,解析法简明全面概括了变量间的 关系,通过解析式求出任一自变量对应的函数值,为代数法研 究自变量变化规律提供了便利条件,而列表法与图象法能形象 直观地表示出函数的变化情况. 2.对于分段函数的理解,要注意以下几点: (1)不能误认为分段函数是“几个函数”,实际上一个分段 函数只是一个函数. (2)对于分段函数中的“段”,不能认为一定是等长的,实 际上完全可以不等长.
【训练2】 作出f(x)=|x-1|-|x-2|的图象,并求其值
域. 解
-1 x≤1 f(x)=2x-3 1<x<2 1 x≥2
作出 f(x)的图象,
如下图所示:
观察图象得值域为[-1,1].
题型三 分段函数求值问题
x+2x≤-1, 【例 3】 (14 分)已知函数 f(x)=2x22xx-≥12<. x<2,
(3)画分段函数的图象时,一定要考虑区间端点是不是包 含在内,若端点包含在内,则用实点“·”表示,若端点不包含在 内,则用空心圆圈“°”表示.
题型一 列表法表示函数
【例 1】 已知函数 f(x),g(x)分别由下表给出.
x
123
f(x) 2 1 1
x
123
g(x) 3 2 1
则 f[g(1)]的值为________;当 g[f(x)]=2 时,x=________. [思路探索] 由已知的表格可知 f(1),f(2),f(3)及 g(1),g(2), g(3)的值.
-2x+1,x≤-1, (2)y = |x + 1|+ |x - 2|= 3,-1<x≤2,
2x-1,x>2,
其图象如图(2)
所示.
规律方法 (1)含绝对值符号的函数,先将函数解析式写成 分段函数,然后再画出其图象.(2)作图象时,应标出某些关键 点.例如:图象的顶点、端点、与坐标轴的交点等,要分清这 些关键点是实心点,还是空心圈.
思维突破 本题错误是对分段函数没有理解,而选择了错 误的解析式.
[正解] (1)由已知,当 x≤0 时,有 f(g(x))=f(x2)=(x2)2=x4. (2)当 x<0 时,g(f(x))=g(-x)=-1x. 追本溯源 对于分段函数的解析式,一定要根据自变量的取 值范围来选择解析式.
x 1234 g(x) 3 4 2 1
则 f[g(2)]=________,若 g[f(x)]=x,则 x=________.
解析 由已知表格,得 g(2)=4,所以 f[g(2)]=f(4)=1. 对于 g[f(x)]=x 是否成立,可将 x=1,x=2,x=3,x=4 代入 检验. 因为 g[f(1)]=g(3)=2≠1,g[f(2)]=g(2)=4≠2, g[f(3)]=g(1)=3=3,g[f(4)]=g(1)=3≠4. 故满足 g[f(x)]=x 的 x=3. 答案 1 3
解 因为g(1)=3,所以f[g(1)]=f(3)=1. 因为g(2)=2,所以应有f(x)=2,从而x=1,故填1,1. 答案 1 1 规律方法 列表法表示的函数,自变量与对应的函数值关 系明确,但这种对应关系不一定可以用解析式表示.
【训练1】 已知函数f(x),g(x)由下表给出. x 1234 f(x) 3 2 1 1
x+4 -3≤x≤0 【训练 3】 已知函数 f(x)=x2-2x 0<x≤4 .
-x+2 4<x≤5 (1)求 f(5)、f(f(5))、f(f(f(5))); (2)作出函数的图象; (3)求函数的值域. 解 (1)∵5>4,∴f(5)=-5+2=-3. ∴f(f(5))=f(-3)=-3+4=1. 又∵0<1≤4,∴f(f(f(5)))=f(1)=1-2=-1.
自学导引 1.函数的表示方法有 解析法 、 图象法 和 列表法 . 2.若函数在定义域中,在定义域内不同部分上,有不同的 解析表达式 ,这样的函数叫做分段函数,分段函数是由 几个部分构成的,但它表示的是一个函数. 想一想:1.一个函数的表示方法是唯一的吗? 提示 不一定唯一,根据函数解析式画图象,根据函数图象 求解析式,就是图象法与解析式法之间的一种转换.
题型二 图象法表示函数 【例 2】 作出下列函数的图象. (1)y=x2-2|x|; (2)y=|x+1|+|x-2|.
[思路探索] 所给函数解析式含绝对值不是最简形式,因此需 先化简解析式,再根据基本初等函数图象的画法可画出函数图象.
解 (1)y=x2-2|x|=xx22- +22xx, ,xx≥ <00, , 由于 x2-2x=(x-1)2-1,x2+2x=(x+1)2-1,因此所得函数 的图象如图(1)所示.
2.1.2 函数的表示方法 第1课时 函数的表示方法
【课标要求】 1.理解函数的三种表示方法(图象法、列表法、解析法),会 选择恰当的方法表示简单情境中的函数; 2.了解简单的分段函数;能写出简单情境中的分段函数,并 能求出给定自变量所对应的函数值,会画函数的图象.
【核心扫描】 1.理解函数的三种表示方法.(重点) 2.写出简单情境中的分段函数,并画出分段函数的图 象.(难点)
(1)求 f(-74); (2)求 f(4); (3)求 f(14); (4)若 f(a)=3,求 a 的值.
审题指导 本题考查分段函数的定义及应用分段函数的定义 求函数值.
【题后反思】 (1)对于分段函数求值问题要注意定义域的 区间限制.(2)求分段函数的某一自变量所对应的函数值时,应 先判定自变量所属区间,再决定用哪一个对应法则.
(2)图出函数图象如图所示. (3)由(2)画出的图象可知:函数的值域为[-3,-2)∪[-1,8].
误区警示 对分段函数的概念理解不深刻,造成 解析式错误
【示例】 已知两个函数 f(x)=x-2xx≥x<00,, g(x)=1xx>0,
x2x≤0. (1)当 x≤0 时,求 f(g(x))的解析式; (2)当 x<0 时,求 g(f(x))的解析式. [错解] (1)由已知,当 x≤0 时,有 f(g(x))=f(x2)=-x2. (2)当 x<0 时,g(f(x))=g(-x)=(-x)2=x2.