圆柱的体积2教学设计
小学六年级数学教案 圆柱的体积第二课时9篇

小学六年级数学教案圆柱的体积第二课时9篇圆柱的体积第二课时 1教学目标:让学生在了解圆柱的基础上,通过联想迁移、观察演示等活动推导出圆柱体积的计算公式,并能正确应用公式进行相关的计算;培养学生的观察、比较、分析、综合的能力,发散思维能力以及初步的空间想象能力;向学生渗透知识间“相互转化”的辩证唯物主义思想。
教具准备:圆柱体积演示教具,多媒体课件等。
教学过程:一、铺垫复习。
同学们,我们已经认识了圆柱,也学习了圆柱侧面积和表面积的计算,你能用简洁的语言表述一下你对圆柱的了解吗?(抽3—5人口述)生:…………师:刚才几位同学已经把我们对圆柱的认识、了解作了介绍。
那么你们还想不想对圆柱了解更多呢?你们还想了解圆柱的那些知识呢?生:……我们还想了解圆柱的体积如何计算?……师:那好,今天我们就来研究圆柱的体积。
板书:圆柱的体积在学习圆柱的体积以前,请你猜一猜:圆柱的体积可以怎样计算?有没有不同的计算方法?生:圆柱的体积=底面积×高……师:你能说一说你为什么这样想吗?生:因为长方体和正方体的体积都用底面积乘高来计算。
师:说得好,那么究竟圆柱的体积是不是用底面积乘高来计算呢?下面我们就来研究这个问题。
不过在研究之前,先请同学们回忆一下圆的面积计算公式是怎样的?圆的面积计算公式是怎样推导出来的?生甲:圆的面积计算公式是s=πr2,这个公式是这样推导出来的:将圆沿着直径剪成若干个扇形,然后将这些扇形重新拼成一个近似长方形的图形(分的份数越多,拼成的图形越接近于长方形),这个近似长方形的长等于圆的周长的一半即πr,宽等于圆的半径r。
因为长方形的面积=长×宽,所以圆的面积s=πr×r=πr2。
生乙、丙:口叙圆面积推导过程。
师:好,现在我们就来研究圆柱的体积计算。
[简评]由复习原学知识作铺垫,自然引入本课时研究的内容,即融汇了新旧知识的联系,又有助于学生更好地理解本课时新知。
二、教学新课。
1、推导圆柱体积计算公式。
《圆柱的体积》教学设计第二课时(8篇)

《圆柱的体积》教学设计第二课时(8篇)《圆柱的体积》教学设计第二课时篇一[教学过程]一、创设情境设疑导入1、复习铺垫。
(1)求各园的面积:a、半径3厘米b、直径为4厘米c、周长为62.8厘米(2)什么叫体积?长方体的体积怎样计算?2、导入新课。
1、出示(光盘资源)几组圆柱体实物图(同底等高、同底不等高、等高不等底),引导学生观察比较它们体积的大小。
激趣后让学生思考讨论:怎样计算圆柱的体积呢?能不能把圆柱也转化成我们已经学过的图形来求出它的体积?2、指名说说自己想法。
教师引入:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。
(板书课题:圆柱的体积)二、自主探究学习新知(一)探究推导圆柱的体积计算公式1 、教师演示(远程资源动画演示“圆柱体的体积”):(1)屏幕上呈现一个圆柱体变为一个长方体(圆柱与长方体等底等高)的动画。
提问:变化过程中,圆柱的什么变了(截面)?什么没有变(高、体积)?(2)将圆柱的底面、长方体的底面闪烁后移出来。
提问:你学过将圆变成长方形吗?(3)再次出示圆柱形物体,动画演示圆柱拼成近似长方体。
让学生取出圆柱体学具拼成近似长方体。
2、学生利用学具独立操作(教师巡视、指导操作有困难的学生) ,思考并讨论。
(1)圆柱体切开后可以拼成一个什么图形?(近似的长方体)(2)通过刚才的实验你发现了什么?① 拼成的近似长方体的体积与原来的圆柱体积有什么关系?② 拼成的近似长方体的底面积与原来圆柱的底面积有何关系?③ 拼成的近似长方体的高与原来的圆柱的高有什么关系?(3)学生汇报交流。
3、让学生根据圆的面积公式推导过程,进行猜想。
如果把圆柱的底面平均分成32份或更多,拼成的长方体形状怎样?平均分成的份数越多,拼成的长方体形状会怎样?4、推导圆柱的体积公式(利用远程资源动画演示推导过程)(1)学生分组讨论、汇报:圆柱体的体积怎样计算?(2)用字母表示圆柱的体积公式。
学生口述后,教师板书。
苏教版二年级下册数学教学设计-圆柱的体积 2

圆柱的体积。
(教材第15~19页)1.运用迁移规律,引导学生借助圆的面积计算公式的推导方法来推导圆柱的体积公式,并理解这个过程。
2.指导学生学会用圆柱的体积公式计算圆柱形状的物体的体积和容积,运用公式解决一些简单的问题。
3.引导学生逐步学会转化的数学思想和数学方法,提高学生解决实际问题的能力。
4.借助实物演示,培养学生抽象、概括的能力。
重点:用圆柱的体积公式计算圆柱形状物体的体积和容积,运用公式解决一些简单的实际问题。
难点:借助圆的面积公式的推导方法来推导圆柱的体积公式,并理解这个过程。
课件、圆柱形学具、圆柱形水杯。
1.出示圆柱形状的水杯。
(1)在杯子里面装满水,让学生想一想水杯里的水是什么形状的。
(2)师:你能用以前学过的方法计算出这些水的体积吗?(3)学生讨论后汇报:把水倒入长方体容器中,量出数据后再计算。
(4)指定学生说一说长方体的体积公式。
2.创设情境。
(课件出示)师:如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才的方法吗?刚才的方法不是一种普遍适用的方法,那么在求圆柱体积的时候,有没有像长方体或正方体那样的体积计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。
(板书课题:圆柱的体积)1. 圆柱体积计算公式的推导。
(1)教师一边演示,一边讲解。
师:同学们看老师手中的这个圆柱,我先把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体。
师:下面请同学们拿出自己的学具动手拆一拆,拼一拼,看一看拼出来是什么形体。
(2)学生操作,教师巡视指导。
(3)启发学生观察、思考和讨论。
师:圆柱切开后可以拼成一个什么形体?生:近似的长方体。
师:通过刚才的实验,你发现了什么?(教师要注意启发、引导)生1:拼成的近似长方体和圆柱相比,体积大小没变,形状变了。
生2:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似的长方形,而底面积大小没有发生变化。
六年级下数学教案第二单元第五课圆柱的体积2苏教版()

可以让先生在课后停止实验
思索:塑料薄膜的面积相当于什么?大棚内的空间相当于什么?
组织交流
三、拓展延伸、总结提升
1、本节课有什么收获?计算体积与容积方法一样吗?要留意什么?
2、课外延伸,实际作业:
一根圆柱形钢材的底面直径是4分米,高1分米,每立方分米的刚重7.8千克,这根钢材一共重多少千克?
活动一:知识梳理
不同的条件求圆柱体积
出示补充题
求以下圆柱的体积〔只列式〕
(1)r=3分米,h=5分米
V=
(2) d=4厘米,h=6厘米
V=
(3)C=18.84厘米
V=
(4)S=16平方米,h=5米
V=
先生观察。
先生回答体积
计算公式。
先生依据标题的条件选择相应的计算方法。
提问:
1、这个圆柱的体积怎样求?,师板书公式:V=Sh
最后全班一致修订
活动三:处置实践生活中的圆柱效果
1.完成练习三第7-9题。
细心读题并了解标题意思
2〔1〕把圆钢竖着拉出水面8厘米,水面下降了4厘米,你能想到一些什么?
〔2〕全部侵入,水面上升9厘米,你又能想到什么?怎样计算出这个圆钢的体积?
〔3〕这题还可以怎样计算?
先生独立思索标题中的条件,讨论,全班交流,选择适宜的计算方法。
六年级下数学教案第二单元第五课圆柱的体积2苏教版()
观察内容的选择,我本着先静后动,由近及远的原那么,有目的、有方案的先布置与幼儿生活接近的,能了解的观察内容。随机观察也是不可少的,是相当幽默的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴味很浓。我提供的观察对象,留意笼统逼真,颜色鲜明,大小适中,引导幼儿多角度多层面地停止观察,保证每个幼儿看失掉,看得清。看得清才干说得正确。在观察进程中指点。我留意协助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积聚词汇,了解词汇,如一次我抓住机遇,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说〝乌云跑得飞快。〞我加以一定说〝这是乌云滚滚。〞当幼儿看到闪电时,我通知他〝这叫电光闪闪。〞接着幼儿听到雷声惊叫起来,我抓住机遇说:〝这就是雷声隆隆。〞一会儿下起了大雨,我问:〝雨下得怎样?〞幼儿说大极了,我就舀一盆水往下一倒,作比拟观察,让幼儿掌握〝倾盆大雨〞这个词。雨后,我又带幼儿观察阴沉的天空,朗诵自编的一首儿歌:〝蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。〞这样抓住特征见景生情,幼儿不只印象深入,对雷雨前后气候变化的词语学得快,记得牢,而且会运用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活阅历联络起来,在开展想象力中开展言语。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。经过联想,幼儿可以生动笼统地描画观察对象。课题
圆柱体积教案【优秀3篇】

圆柱体积教案【优秀3篇】教育要使人愉快,要让一切的教育带有乐趣。
下面是为大伙儿带来的3篇《圆柱体积教案》,如果能帮助到您,将不胜荣幸。
《圆柱的体积》的教学设计篇一教材分析1、《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。
圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念。
根据本节课的性质特点和六年级学生以形象思维为主、空间观念还比较薄弱的特点,2、本节核心内容的功能和价值,为下一步学习“圆锥的体积”打下基础。
学情分析六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。
由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。
其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来推导,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。
教学目标1、知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。
2、过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。
探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、情感、态度、价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。
教学重点和难点由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。
其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来推导,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。
教学过程教学过程:一、情景引入1、出示圆柱形水杯。
数学圆柱的体积教案15篇

数学圆柱的体积教案数学圆柱的体积教案15篇作为一名专为他人授业解惑的人民教师,常常要写一份优秀的教案,教案是备课向课堂教学转化的关节点。
来参考自己需要的教案吧!下面是小编精心整理的数学圆柱的体积教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
数学圆柱的体积教案1教学目标:1、知识技能运用迁移规律,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2、过程方法让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、情感态度价值观通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:圆柱体体积的计算公式的推导过程及其应用。
教学难点:理解圆柱体体积公式的推导过程。
教学准备:圆柱体积公式推导演示学具、多媒体课件。
教学过程:一、复习导入同学们,我们的图形世界十分丰富,回忆一下,什么叫做物体的体积?我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的`通用公式是什么呢?用字母怎样表示?二、图柱转化,自主探究,验证猜想。
(一)猜想。
1、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形,推导圆面积公式的过程。
)[数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。
教师由复习圆面积公式的推导过程入手,实现知识的迁移。
]2、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?揭示课题:圆柱的体积。
(二)操作验证。
1、请学生拿出圆柱体的演示学具,以小组为单位,联想圆形面积的转化方式,合作探究将圆柱转化为长方体的方法。
在操作时,学生分组边操作边讨论以下问题:①拼成的近似长方体的体积与原来的圆柱体积有什么关系?②拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?.拼成的近似长方体的高与原来的圆柱的高有什么关系?2、小组代表汇报(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)3、电脑演示操作(1)电脑演示圆柱体转化成长方体的过程:仔细观察:圆柱体转化成一个长方体后,长方体的长相当于圆柱的什么?长方体的宽和高又相当于圆柱的什么?动画演示:把圆柱的底面平均分成32份、64份,切开后拼成的物体会有什么变化?(分的分数越多,拼成的图形就越接近长方体)(2)根据学生的观察、分析、推想,老师完成板书:长方体的体积=底面积×高圆柱的体积=底面积×高V=Sh(3)你的猜想正确吗?学生齐读圆柱的体积计算公式。
《圆柱的体积》教学设计(通用8篇)

《圆柱的体积》教学设计《圆柱的体积》教学设计(通用8篇)教学设计是以系统方法为指导。
教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。
以下是小编整理的《圆柱的体积》教学设计,希望对大家有帮助!《圆柱的体积》教学设计篇1教学目标1.使学生初步理解和掌握圆柱的体积计算公式。
会用公式计算圆柱的体积,并能应用分式解答一些实际问题。
2.在充分展示体积公式推导过程的基础上,培养学生推理归纳能力和自学能力。
教学重点:圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教学难点:圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教法:启发点拨,归纳总结,直观演示学法:自学归纳法,小组交流法课前准备:课件教学过程:一、定向导学(5分)(一)导学1.什么叫体积?(指名回答)生:物体所占空间的大小叫做体积。
师:你学过哪些体积的计算公式?(指名回答)根据学生的回答,板书:长方体体积=底面积×高2.圆面积公式是怎样推导出来的?生:把一个圆,平均分成数个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径,(根据学生的叙述,边用幻灯片演示。
)得到圆面积公式s=2πr。
3.动脑筋想一想,圆柱的体积,能不能转化成你学过的形体,推导出计算圆柱体积的公式?4.导入我们已经认识了圆柱体,学会了圆柱体侧面积和表面积的计算,今天研究圆柱的体积。
(板书:圆柱的体积)(二)定向出示学习目标:1、理解和掌握圆柱的体积计算公式。
2、会用公式计算圆柱的体积,并能运用公式解答一些实际问题。
二、合作交流(15分)1、阅读书25页。
2、看书回答:(1)圆柱体是怎样变成近似长方体的?(2)切拼成的长方体的体积、底面积和高分别与圆柱体的体积、底面积、高有什么关系?(3)怎样计算切拼成的长方体体积?为什么?用字母怎样表示?3、小组展评交流结果。
(1)展评题(1)。
圆柱体是怎样变成长方体的?把圆柱体底面分成许多相等的扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。
5、圆柱体积2_教案教学设计

5、圆柱体积2教学内容:圆柱体积练习教学目标:1、使学生进一步认识体积的计算方法,能根据不同的条件求圆柱的体积。
2、学会计算圆柱形容器的容积,并能应用于实际求出所容物体的重量,解决实际生活中的一些问题。
教学重点圆柱体体积中的一些实际问题。
教学难点圆柱体体积中的一些实际问题。
根据不同的条件求圆柱的体积。
对策:加强数学问题与生活问题的转化。
根据圆柱的容积的计算方法,能解决求圆柱容积的实际问题。
教学预设:一、复习。
1、求下面圆柱的体积(口头列式,不计算)(1)底面积3平方分米,高4分米;(2)底面半径2厘米,高2厘米;(3)底面直径2分米,高3分米。
追问:圆柱的体积是怎样计算的?(板书:v=sh)2、复习容积。
(1)提问:什么是容积?它与物体的体积有什么区别?我们是按什么方法计算容积的?(2)第27页上第5题:先交流学生量的结果,板书几组数据,请学生分别计算。
计算后交流解题思路:先求杯子的容积,再根据溶剂与重量之间的关系,计算出容纳物体的重量。
二、解决生活中的实际问题1、第28页上第7题:先读题,思考理解:挤出的牙膏可以看成是直径为0.5或0.4厘米,高为2厘米的圆柱,从而想到这题计算求每天用去牙膏的体积的计算。
2、补充:一个圆柱形水池,从里面量底面直径为12米,深2.5米。
(1)在这个水池的底面和四周抹上水泥,抹水泥部分的面积是多少?(2)这个水池最多能蓄水多少吨?(每立方米水重1吨)学生读题后独立解答,再组织交流解题思路,帮助学生区分表面积与溶积的计算方法。
3、补充:一个用塑料薄膜覆盖的蔬菜棚,长10米,横截面是一个直径为6米的半圆。
(1)覆盖在这个大棚上的塑料薄膜约有多少厘米?(2)这个大棚的占地面积是多少?(3)大棚的空间大约有多大?通过这一组题,进一步让学生学习用数学知识解决生活问题,区别这3个问题的本质。
三、拓展练习:1、补充:有两个底面积相等的圆柱,一个圆柱高为6分米,体积是48立方分米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年3月3日制订
年级
六年级
教师
崔丹
课题
圆柱的体积
第2课时
课型
综合课
达成目标
使学生进一步熟练掌握求圆柱的表面积和体积的方法,并能根据实际情况运用公式解决一些实际问题。
重点
灵活运用公教学流程
检测预习
交代目标
合作共享
安全教育
1、检查预习
2、交代目标
选择:(1)一只铁皮水桶能装水多少升是求水桶的(侧面积、表面积、容积、体积)
(2)做一只圆柱体的油桶,至少要用多少铁皮是求油桶的(侧面积、表面积、容积、体积)
(3)做一节圆柱形铁皮通风管,要用多少铁皮是求通风管的(侧面积、表面积、容积、体积)
(4)求一段圆柱形钢条有多少立方米,是求它的(侧面积、表面积、容积、体积)
质疑问难
交流探讨
深化练习
1、一个圆柱的体积是94.2平方厘米,底面直径是4厘米,它的高是多少?
2、一个圆柱形水池底面直径8米,池深2米,如果在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?水池最多能盛水多少立方米?
3、学生讨论交流
新知检测
精设预习
练一练2、3、4、5题
板书设计
圆柱的体积
一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?
12.56×100=1256(立方厘米)
答:它的体积是1256立方厘米。
教学反思
学
生
课堂达标率
95%
原因分析
改进措施
加强学生的空间想象能力。
教
师
本课亮点
学生能积极讨论。
需改进措施
在语言表达能力方面要加强。
附课件: