六年级数学《圆柱的体积》教学设计

合集下载

《圆柱的体积》教学设计6篇

《圆柱的体积》教学设计6篇

《圆柱的体积》教学设计6篇《圆柱的体积》教学设计6篇《圆柱的体积》教学设计1 教材简析:本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积,第十一册圆柱的体积公开课。

教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比拟找两个图形之间的关系,可推导出圆柱的体积计算公式。

教学目的:1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。

2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。

3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的才能4.借助实物演示,培养学生抽象、概括的思维才能。

教具:圆柱的体积公式演示教具,多媒体课件教学过程:一、情景引入1、出示圆柱形水杯。

〔1〕老师在杯子里面装满水,想一想,水杯里的水是什么形状的?〔2〕你能用以前学过的方法计算出这些水的体积吗?〔3〕讨论后汇报:把水倒入长方体容器中,量出数据后再计算。

〔4〕说一说长方体体积的计算公式。

2、创设问题情景。

〔课件显示〕假如要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚刚那样的方法吗?刚刚的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。

〔出示课题:圆柱的体积〕〔设计意图:问题是思维的动力。

通过创设问题情景,可以引导学生运用已有的生活经历和旧知,积极考虑,去探究和解决实际问题,并能制造认知冲突,形成"任务驱动"的探究气氛。

〕二、新课教学:设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,如今能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来讨论这个问题。

板书课题:圆柱的体积。

1.探究推导圆柱的体积计算公式。

《圆柱的体积》教学设计

《圆柱的体积》教学设计

《圆柱的体积》教学设计《圆柱的体积》教学设计1教学目标1、知识与技能:理解教材中形体转化的过程,掌握圆柱体积的计算公式,会用公式计算圆柱的体积,解决有关简单的实际问题。

拓展教材内容,初步了解直柱体的相关知识。

2、过程与方法:利用教材空间,为学生搭建思维平台。

让学生经历观察、想象、思考、交流等教学活动过程,理解圆柱体积计算公式的推导过程,提高学生思维能力,同时体验转化和极限的思想。

3、情感与态度:挖掘教材内涵,把图形的变换过程,转变为学生思维能力的培养、提高的过程,并进一步发展其空间观念,领悟学习数学的方法,激发学生学习兴趣,渗透事物是普遍联系的唯物辩证思想。

教学重点:理解圆柱体积计算公式的推导过程,运用圆柱体积计算公式准确解决实际问题。

教学难点:正确理解圆柱体积计算公式的推导过程。

教学过程一、情境导入:老师手拿一个圆柱形橡皮泥(大小适宜)。

1、师:通过前面的学习,关于圆柱你已经知道什么?还想了解它的哪些知识?生1:(已学知识)。

生2:圆柱是一种立体图形,那么它的体积怎么计算?【学情分析:在学习圆柱的认识和表面积的基础上,学生能够顺利回忆已学的知识,而且质疑提出即将学习的知识,明确学习目标,为本节课的学习找到思维与认知源泉。

】2、师:联系已经掌握的有关立体图形的知识,你能想办法求出这个圆柱体的体积吗?生1:圆柱体的体积计算没有学过,无法计算。

生2:将这个圆柱放入一个盛有水的长方体容器中,量出上升了的水的长、宽、高,就可以求出它的体积。

生3:圆柱体在水中必须完全浸没,而且水还不能溢出。

【学情分析:学生在五年级学习长方体、正方体有关知识的基础上,很容易想到运用“排水法”来解决问题,所以这一环节也充分给予学生展示自我的机会,培养思维中的自信心。

】教师在学生中找出小助手,帮助测量有关数据,全体同学计算水的体积,并作记载。

师:运用转化思想,联系已学知识,解决新生问题,同学们真了不起!【设计意图:学生的学习活动要建立在已有的知识和认知基础上,通过水的变形把圆柱的体积转化为长方体的体积来计算,使学生初步感知数学转化思想在解决问题中的价值,同时提高学生解决问题能力和思维能力。

圆柱的体积说课稿7篇

圆柱的体积说课稿7篇

圆柱的体积说课稿7篇圆柱的体积说课稿7篇作为一名教职工,时常需要用到说课稿,借助说课稿我们可以快速提升自己的教学能力。

快来参考说课稿是怎么写的吧!下面是小编为大家整理的圆柱的体积说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

圆柱的体积说课稿1各位领导、老师:大家好!:今天,我说课的内容是《圆柱的体积》。

我将从说教材、说学情、说教学流程三个方面进行说课。

一、说教材。

1.说内容。

《圆柱的体积》这节课选自冀教版六年级数学第12册三单元,主要内容是圆柱体的体积计算公式的推导和应用。

2.教材简析。

这一单元是小学阶段学习几何体知识的最后部分,是几何知识的综合运用。

《圆柱的体积》一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,学生已经有了把圆拼成近似的长方形的经验,很容易联想到把圆柱切拼成长方体。

学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。

3、分析教材的编写思路、结构特点。

为了更好地理解教材,我认真研读了人教版与冀教版两种不同版本的教材:冀教版教材:教材由过生日的情景图和两个不易直观比较出体积的茶叶桶,呈现了问题情境。

接着由“议一议”启发学生猜想怎样计算圆柱体积,在猜想的基础上,小组合作,动手操作,利用手中的圆柱体学具把一个圆柱体等分成16份、32等份拼成新的拼成长方体。

然后提出“说一说”引导同学观察讨论:拼成的长方体和圆柱体有什么关系?从而推导出圆柱体的体积计算公式。

通过例题1得以简单应用。

人教版教材:教材没有创设生动有趣的问题情境,直接奔入主题猜想怎样计算圆柱体积,直接引导学生利用手中的圆柱体学具,把一个圆柱体等分成16份、32份等新的拼成长方体。

引导同学观察讨论:拼成的长方体和圆柱体有什么关系?从而推导出圆柱体的体积计算公式,出示例4巩固应用,出示例5应用公式计算容积。

通过对比分析,发现:从教材内容安排和活动设计上,主导思想是一致的,都非常重视动手操作活动,让学生经历探究圆柱体积公式的全过程,在这些教学活动中,着重以引导学生运用自主学习、合作探究两种学习方式交替进行,让他们真正以课堂主人的身份参与全程,教师只是探究活动的组织者、引导者、合作者。

小学六年级数学教案《圆柱的体积》(精选13篇)

小学六年级数学教案《圆柱的体积》(精选13篇)

小学六年级数学教案《圆柱的体积》小学六年级数学教案《圆柱的体积》(精选13篇)作为一位无私奉献的人民教师,通常需要用到教案来辅助教学,借助教案可以更好地组织教学活动。

那么大家知道正规的教案是怎么写的吗?以下是小编帮大家整理的小学六年级数学教案《圆柱的体积》(精选13篇),欢迎大家借鉴与参考,希望对大家有所帮助。

小学六年级数学教案《圆柱的体积》篇1教学目标1.理解圆柱体体积公式的推导过程,掌握计算公式.2.会运用公式计算圆柱的体积.教学重点圆柱体体积的计算.教学难点理解圆柱体体积公式的推导过程.教学过程一、复习准备(一)教师提问1.什么叫体积?怎样求长方体的体积?2.圆的面积公式是什么?3.圆的面积公式是怎样推导的?(二)谈话导入同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)二、新授教学(一)教学圆柱体的体积公式.(演示动画圆柱体的体积1)1.教师演示把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体.2.学生利用学具操作.3.启发学生思考、讨论:(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)(2)通过刚才的实验你发现了什么?①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了.②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.③近似长方体的高就是圆柱的高,没有变化.4.学生根据圆的面积公式推导过程,进行猜想.(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?5.启发学生说出通过以上的观察,发现了什么?(1)平均分的份数越多,拼起来的形体越近似于长方体.(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体.6.推导圆柱的体积公式(1)学生分组讨论:圆柱体的体积怎样计算?(2)学生汇报讨论结果,并说明理由.因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积高)(3)用字母表示圆柱的体积公式.(板书:V=Sh)(二)教学例4.1.出示例4例4.一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?2.1米=210厘米50210=10500(立方厘米)答:它的体积是10500立方厘米.2.反馈练习(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?(三)教学例5.1.出示例5例5.一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?水桶的底面积:=3.14=3.14100=314(平方厘米)水桶的容积:31425=7850(立方厘米)=7.8(立方分米)答:这个水桶的容积大约是7.8立方分米.三、课堂小结通过本节课的学习,你有什么收获?1.圆柱体体积公式的推导方法.2.公式的应用.小学六年级数学教案《圆柱的体积》篇2教学内容:北师大版教学六年级《圆柱的体积》教学目标:1、结合具体的情境和实践活动,理解圆柱体体积的含义。

《圆柱的体积》教案(通用10篇)

《圆柱的体积》教案(通用10篇)

《圆柱的体积》教案《圆柱的体积》教案(通用10篇)作为一无名无私奉献的教育工作者,时常会需要准备好教案,教案有助于学生理解并掌握系统的知识。

优秀的教案都具备一些什么特点呢?下面是小编整理的《圆柱的体积》教案,欢迎大家分享。

《圆柱的体积》教案篇1教学目标:1、使学生能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力4、渗透转化思想,培养学生的自主探索意识。

教学重点:掌握圆柱体积的计算公式。

教学难点:灵活应用圆柱的体积公式解决实际问题。

教学过程:一、复习1、复习圆柱体积的推导过程长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

长方体的体积=底面积高,所以圆柱的体积=底面积高,即V=Sh。

2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。

二、解决实际问题1、练习三第7题。

学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。

2、练习三第5题。

(1)指导学生变换公式:因为V=Sh,所以h=VS。

也可以列方程解答。

(2)学生选择喜爱的方法解答这道题目。

3、练习三第8题。

(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。

(2)在充分理解题意后学生独立完成,集体订正。

4、练习三第9、10题(1)学生独立审题,完成9、10两题。

(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。

利用这个底面积再求出另一个圆柱的体积。

三、布置作业完成一课三练的相关练习。

《圆柱的体积》教案篇2教学内容:人教版小学数学六年级下册《圆柱的体积》P25-26。

教学目标:1.经历探究和推导圆柱的体积公式的过程。

《圆柱的体积》教学设计与意图

《圆柱的体积》教学设计与意图

《圆柱的体积》教学设计与意图教材简析:本课的学习是在学生已经掌握了圆柱的特征、圆面积的推导方法,以及长方体、正方体的体积公式的基础上进行的。

教材例题的安排围绕“建立猜想——验证猜想——回顾反思”展开。

教材呈现底面积和高分别相等的长方体、正方体和圆柱,引导学生通过观察和类比,提出有关圆柱体积计算方法的猜想;再启发学生把以前探索圆面积公式的经验和方法迁移到探索圆柱体积公式的过程中来,进而推导出圆柱的体积公式,验证自己的猜想。

最后引导学生回顾圆柱体积公式的探索过程,说说自己的体会,帮助学生进一步明晰圆柱体积公式的推导过程,梳理活动过程中积累的数学活动经验,感悟转化的思想方法,发展数学思维能力。

同时安排适度的练习,让学生应用公式计算圆柱的体积,解决相关的实际问题,在应用中感受数学知识和方法的学习价值。

学情简析:从知识的角度来说,学生已经掌握了体积的含义、圆柱的特征和长方体和正方体的体积计算方法;从研究方法、经验的角度来说,学生经历了圆面积的推导过程,掌握了圆面积的推导方法,在平面图形的面积计算公式(如平行四边形的面积、三角形的面积、梯形的面积、圆的面积)推导中积累了比较丰富的研究经验,对转化思想在数学问题研究中的运用有了一定的理解与感悟,这些是学生学好本部分内容的重要基础。

因此,在学习过程中,要引导学生主动联系已有的知识、经验、方法去展开圆柱体积的学习。

教学目标:1. 结合具体情境,经历观察、操作、猜想、验证、类比和归纳等数学活动,探索并掌握圆柱体积的计算方法,初步学会应用公式计算圆柱的体积,并解决相关的实际问题。

2. 在探索圆柱体积计算公式的过程中,进一步感受转化思想,积累数学活动经验,培养应用已有知识探究和解决新问题的能力;发展观察、比较、分析、概括等思维能力,增强空间观念。

3. 在参与数学活动的过程中,进一步感受数学知识和方法的学习价值,培养善于提问、善于思考的品质,在体会探索和获得新知识的成功过程中,提高学习数学的兴趣和学好数学的自信心。

《圆柱的体积》教学设计(精选9篇)

《圆柱的体积》教学设计(精选9篇)

《圆柱的体积》教学设计(精选9篇)《圆柱的体积》数学教案篇一探究目标:1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。

2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。

3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。

4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。

教学重难点:学生会应用圆柱体积公式解决实际问题。

探究过程:一、迁移引入提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。

提问:如果已知的是底面半径和高,该怎么求呢?二、自主探究1、出示长方体鱼缸。

要计算这个长方体鱼缸能装多少水,就是求什么?怎样求这个长方体的容积呢?2、出示圆柱形鱼缸。

⑴估测。

这个圆柱形鱼缸的容积大约是多少?⑴操作、汇报。

如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。

学生可能的回答有:生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)生2:我们小组测量的是底面直径和高。

底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)生3:我们测量的是底面半径和高。

3.14×152×12=8478(立方厘米)⑴评价。

组织学生间进行评价。

你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。

⑴反思。

引导学生将实际计算结果与自己的估测结果进行对比。

自己矫正偏差。

⑴延伸。

如果每立方分米水重1千克,这个鱼缸大约能装水多少千克?3、自学例题。

2024年人教版数学六年级下册圆柱的体积说课稿3篇

2024年人教版数学六年级下册圆柱的体积说课稿3篇

人教版数学六年级下册圆柱的体积说课稿3篇〖人教版数学六年级下册圆柱的体积说课稿第【1】篇〗一、让学生在现实情境中体验和理解数学《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。

在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。

学生经过思考、讨论、交流,找到了解决的方法。

而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。

在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。

二、鼓励学生独立思考,引导学生自主探索、合作交流数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。

在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。

那么怎样来切割呢?此时采用小组讨论交流的形式。

同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。

在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。

同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。

这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。

不足之处:在学生们动手操作时,我处理的有点急,没有给学生充分的思考和探究的时间。

在今后的教学中我要特别关注学生的学习过程,优化课堂教学,对教材进行适当的加工处理。

数学知识的教学,必须抓住各部分内容之间的内在联系,遵循教材特点和学生的认知规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学《圆柱的体积》教学设计
六年级数学《圆柱的体积》教学设计
六年级数学《圆柱的体积》教学设计
[教学目标]:
1、探索圆柱体积的计算方法,利用数学思想,体验数学研究的方法。

2、让学生掌握圆柱体积的计算方法,运用体积公式解决简单的实际问题。

3、通过把圆柱体转化成近似的长方体,提高学生解决问题的能力,感受获得成功的喜悦。

[教学重点]:掌握和运用圆柱体积的计算公式。

[教学难点]:圆柱体积公式的推导过程。

[教学方法]:直观教学法,先用教具让学生观察比较,再让学生动手操作。

在实践操作过程中理解掌握圆柱体积的计算方法。

[教学过程]:
[活动一]:情景导入,复习旧知。

1、什么是圆柱的体积?
出示装有一半水的容器,然后拿出一个圆柱形的物体准备投入到水中并让学生观察:会发生什么情况?由这个现象你想到了些什么?
提问:能用一句话说说什么是圆柱的体积吗?(圆柱所占空间的大小叫做圆柱的体积。


2、导入新课。

这节课我们就一起来探索圆柱体积的计算方法。

板书课题:“圆柱的体积”
[活动二]:探索新知
1、比较大小,探究圆柱的体积与哪些因素有关。

(让学生先试着说说)
(1)比较等底不等高的两个圆柱的体积。

(学生通过观察发现等底时高越大圆柱的体积也就越大。


(2)比较等高不等底的两个圆柱的体积。

(学生通过观察发现等高时底面积越大圆柱的体积也就越大)
(3)出示两个高和底的大小都不等的圆柱让学生判断哪个体积大。

总结以上两点圆柱体积的大小与它的底面积和高有关
(4)提问:“要比较两个圆柱的体积,你有什么好的办法?”
(启发学生可以将两个圆柱分别放入水中,比较哪个水面升得高。


2、大胆猜想,感知体积公式。

这个方法不是对所有的物体都适合,那么是不是也可以用测量、计算的方法来求得呢?
(1)引导学生回忆长方体、正方体的体积计算方法。

(2)设疑:圆柱的体积又该怎么样计算呢?根据以前学过的知识你可以做出怎样的假设?
(3)学生小组讨论交流。

(4)各小组参加全班交流汇报。

(把圆柱底面分成许多相等的小扇形,把圆柱切开,就可以拼成一个近似的长方体,长方体的体积是底面积乘高,圆柱的体积也可能就是底面积乘高来计算的。


3、演示转化过程,推导公式。

(1)老师操作转化过程。

先分一个四或八等分的再分手上的这个十六等分的。

(2)学生带问题操作转化过程。

a:拼成的长方体的底面积等于圆柱的什么?
b:拼成的长方体的高又是圆柱的什么?
(长方体的底面积等于圆柱体的底面积,高等于圆柱体的高。


(3)师生共同完成推导过程。

长方体的体积=底面积×高
圆柱的体积=底面积×高
v=sh
圆柱的体积计算公式就是:v=sh
(4)如果知道圆柱的底面半径r和高h,圆柱的体积公式又可以怎样来写呢?
v=πr2h
(5)教材第25页“做一做”第1、2题。

(第2题先让学生说说解题步骤,再齐练)
4、教学例6。

(1)出示例6。

读题,说说从题中获得的信息。

(2)引导学生思考:解决这个问题就是要计算什么?
老师:求杯子的容积就是求这个杯子可容纳物体的体积,计算方法跟圆柱体积的计算方法相同。

(3)学生独立解决问题。

(4)组织交流反馈。

交流时,引导学生交流自己的解题步骤,着重说明杯子内部的底面积没有直接给出,因此先要求底面积,再求杯子的容积。

[巩固运用]
1、完成教材第26页“做一做”第一题。

(1)要判断这杯水够不够喝,需要知道什么?你打算分哪几步计算?尝试完成。

(2)要求这个问题,需要先求什么?再求什么?独立完成。

2、完成教材第28页练习五第2题。

(1)尝试完成。

(2)说说解题思路。

3、完成教材第28页练习五第3题。

(1)尝试完成。

(2)说说解题思路。

[课堂小结]
今天这节课,我们一起探究了圆柱体积的计算方法。

在探究的过程中,我们经历了猜测、实验、证明的思维过程。

圆柱体积的计算方法和长方体、正方体相同,都可以用“底面积×高”来求。

[课堂作业]
教材练习五第4、5题。

板书设计:
圆柱的体积
长方体的体积=底面积×高
圆柱的体积=底面积×高
V=sh
圆柱的体积计算公式是v=sh=πr2h。

相关文档
最新文档