勾股定理单元测试
勾股定理单元测试题(内含答案)

勾股定理测试题一、相信你的选择1、如图,在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为().A.16πB.12πC.10πD.8π2、已知直角三角形两边的长为3和4,则此三角形的周长为().A.12B.7+7C.12或7+7D.以上都不对3、如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m.同时梯子的顶端B下降至B′,那么BB′().A.小于1m B.大于1m C.等于1m D.小于或等于1m4、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是().A.h≤17cm B.h≥8cmC.15cm≤h≤16cm D.7cm≤h≤16cm二、试试你的身手5、在Rt △ABC 中,∠C =90°,且2a =3b ,c =213,则a =_____,b =_____.6、如图,矩形零件上两孔中心A 、B 的距离是_____(精确到个位).7、如图,△ABC 中,AC =6,AB =BC =5,则BC 边上的高AD =______.8、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要 元.三、挑战你的技能如图,某公园内有一棵大树,为测量树高,小明C处用侧角仪测得树顶端A 的仰角为30°,已知侧角仪高DC =, BC =30米,请帮助小明计算出树高AB .(3取,结果保留 三个有效数字)参考答案与提示一、相信你的选择 150o 20米30米1、D (提示:在Rt △ABC 中,AB 2=AC 2-BC 2=172-152=82,∴AB =8.∴S 半圆=21πR 2=21π×(28)2=8π.故选D );2、C (提示:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5或7,所以直角三角形的周长为3+4+5=12或3+4+7=7+7,故选C );3、A (提示:移动前后梯子的长度不变,即Rt △AOB 和Rt △A ′OB ′的斜边相等.由勾股定理,得32+B ′O 2=22+72,B ′O =44,6<B ′O <7,则O <BB ′<1.故应选A );4、D (提示:筷子在杯中的最大长度为22815+=17cm ,最短长度为8cm ,则筷子露在杯子外面的长度为24-17≤h ≤24-8,即7cm≤h ≤16cm ,故选D ).二、试试你的身手5.a =b ,b =4(提示:设a =3k ,b =2k ,由勾股定理,有 (3k )2+(2k )2=(213)2,解得a =b ,b =4.);6.43(提示:做矩形两边的垂线,构造Rt △ABC ,利用勾股定理,AB 2=AC 2+BC 2=192+392=1882,AB ≈43);7.(提示:设DC =x ,则BD =5-x .在Rt △ABD 中,AD 2=52-(5-x )2,在Rt △ADC 中,AD 2=62-x 2,∴52-(5-x )2=62-x 2,x =.故AD =226.36-=);8、150a .三、挑战你的技能10、解析:构造直角三角形,利用勾股定理建立方程可求得.过点D作DE⊥AB于点E,则ED=BC=30米,EB=DC=米.设AE=x 米,在Rt△ADE中,∠ADE=30°,则AD=2x.由勾股定理得:AE2+ED2=AD2,即x2+302=(2x)2,解得x=103≈.∴AB=AE+EB≈+≈(米).答:树高AB约为米.。
八年级下册数学第17章《勾股定理》单元测试题(含答案)

⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,152.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.44.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.75.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.156.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=.14.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=°(点A,B,P是⽹格线交点).17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为km.18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了⽶.(假设绳⼦是直的)三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD 的长度.参考答案⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,15【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需满⾜两⼩边的平⽅和等于最长边的平⽅.【解答】解:A、32+42≠62,不是勾股数,此选项正确;B、72+242=252,是勾股数,此选项错误;C、62+82=102,是勾股数,此选项错误;D、92+122=152,是勾股数,此选项错误.故选:A.2.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形【分析】根据勾股定理的逆定理解答即可.【解答】解:∵在△ABC中,BC=6,AC=8,AB=10,∵BC2+AC2=AB2,∴△ABC是直⾓三⾓形,故选:B.3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.4【分析】由勾股定理即可得出线段AB的长.【解答】解:由勾股定理得:AB==5;故选:B.4.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.7【分析】根据正⽅形的⾯积和勾股定理即可求解.【解答】解:设全等的直⾓三⾓形的两条直⾓边为a、b且a>b,由题意可知:S1=(a+b)2,S2=a2+b2,S3=(a﹣b)2,因为S1+S2+S3=21,即(a+b)2+a2+b2+(a﹣b)2=213(a2+b2)=21,所以3S2=21,S2的值是7.故选:D.5.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【分析】在直⾓三⾓形AHB中,利⽤勾股定理进⾏解答即可.【解答】解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正⽅形,∴HG=EF=4,∴BH=16,∴在直⾓三⾓形AHB中,由勾股定理得到:AB===20.故选:C.6.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨【分析】画出直⾓三⾓形,根据勾股定理即可得到结论.【解答】解:设OA=OB=AD=BC=r,过D作DE⊥AB于E,则DE=10,OE=CD=1,AE=r﹣1.在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得2r=101.故门的宽度(两扇门的和)AB为101⼨.故选:B.7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m【分析】根据题意画出⽰意图,设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m,在Rt△ABC中利⽤勾股定理可求出x.【解答】解:设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m根据勾股定理得,绳长的平⽅=x2+12,右图,根据勾股定理得,绳长的平⽅=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11.故选:B.8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm【分析】解答此题只要把原来的图形补全,构造出直⾓三⾓形解答.【解答】解:延长BE、CF相交于D,则EFD构成直⾓三⾓形,运⽤勾股定理得:EF2=(210﹣90)2+(297﹣137)2=1202+1602=40000,所以EF=200.则剪去的直⾓三⾓形的斜边长为200mm.故选:D.9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒【分析】过点A作AC⊥ON,利⽤锐⾓三⾓函数的定义求出AC的长与200m相⽐较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪⾳影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200⽶,∵∠QON=30°,OA=240⽶,∴AC=120⽶,当⽕车到B点时对A处产⽣噪⾳影响,此时AB=200⽶,∵AB=200⽶,AC=120⽶,∴由勾股定理得:BC=160⽶,CD=160⽶,即BD=320⽶,∵⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶,∴影响时间应是:320÷10=32秒.故选:A.10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶【分析】⾸先得出△AOE≌△OBF(AAS),得出OE=BF,AE=OF,求出OE+OF=AE+BF =CD=17⽶,得出EF=EM﹣FM =AC﹣BD=7⽶,求出BF=OE=5⽶,OF=12⽶,得出CM=CD﹣DM=CD﹣BF=12⽶,OM=OF+FM=15⽶,由勾股定理求出ON=OA=13⽶,进⽽求出MN的长即可.【解答】解:作AE⊥OM于E,BF⊥OM于F,如图所⽰:则∠OEA=∠BFO=90°,∵∠AOE+∠BOF=∠BOF+∠OBF=90°∴∠AOE=∠OBF在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF,∴OE+OF=AE+BF=CD=17(⽶)∵EF=EM﹣FM=AC﹣BD=10﹣3=7(⽶),∵OE+OF=2EO+EF=17⽶,∴2OE=17﹣7=10(⽶),∴BF=OE=5⽶,OF=12⽶,∴CM=CD﹣DM=CD﹣BF=17﹣5=12(⽶),OM=OF+FM=12+3=15(⽶),由勾股定理得:ON=OA===13(⽶),∴MN=OM﹣OF=15﹣13=2(⽶).故选:A.⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=9.【分析】设BC=3x,AC=4x,⼜其斜边AB=15,再根据勾股定理即可得出答案.【解答】解:设BC=3x,AC=4x,⼜其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为5或.【分析】根据勾股定理分两种情况解答,⼀是把两边长都看作直⾓边,⼆是把4cm长边看作斜边,根据勾股定理计算即可.【解答】解:(1)若把两边都看作是直⾓边,那么据已知和勾股定理,设第三边长为xcm,则:x2=32+42=25,∴x=5;(2)若把4cm长的边看作斜边,设第三边长为xcm,则:x2+32=42,x2=42﹣32=7,∴x=.故答案为:5或.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=9.【分析】由三⾓形ABC为直⾓三⾓形,利⽤勾股定理列出关系式,结合正⽅形⾯积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直⾓三⾓形,∴AB2=AC2+BC2,∵以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,∴S3=S1+S2,则S2=S3﹣S1=15﹣6=9,故答案为:914.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为100.【分析】根据正⽅形的⾯积可得两个正⽅形的边长分别为13和7,再根据勾股定理可求得直⾓三⾓形的两条直⾓边长,进⽽求解.【解答】解:∵正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,∴AE=BF,∠AEB=90°,∵正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,∴AB=13,EF=7,在Rt△ABE中,BE=BF﹣EF=AE﹣7根据勾股定理,得AE2+BE2=AB2,即AE2+(AE﹣7)2=132解得,AE=12,所以BE=12﹣7=5,所以所⽤细塑料棒的长度为:4(AB+AE)=4(13+12)=100.故答案为100.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.【分析】根据勾股定理的逆定理,△ABC是直⾓三⾓形,利⽤它的⾯积:斜边×⾼÷2=短边×短边÷2,就可以求出最长边的⾼.【解答】解:∵52+122=132,∴根据勾股定理的逆定理,△ABC是直⾓三⾓形,最长边是13,设斜边上的⾼为h,则S△ABC=×5×12=×13h,解得:h=,故答案为.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=45°(点A,B,P是⽹格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三⾓形外⾓的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为13km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x 的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了9⽶.(假设绳⼦是直的)【分析】在Rt△ABC中,利⽤勾股定理计算出AB长,再根据题意可得CD长,然后再次利⽤勾股定理计算出AD长,再利⽤BD =AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17⽶,AC=8⽶,∴AB===15(⽶),∵此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(⽶),∴AD===6(⽶),∴BD=AB﹣AD=15﹣6=9(⽶),答:船向岸边移动了9⽶.故答案为:9.三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC 于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.【分析】(1)根据等腰直⾓三⾓形的性质解答;(2)作PF⊥AC于F,根据⾓平分线的性质定理求出PF,根据勾股定理计算即可.【解答】解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.【分析】(1)根据全等三⾓形的性质和线段的和差即得结论;(2)根据⼤三⾓形的⾯积等于三个⼩三⾓形的⾯积和即可求解;(3)综合(1)和(2)的结论进⾏推导即可得结论.=S△ABI+S△BIC+S△AIC【解答】解:(2)因为S△ABC=cx+ax+bx所以x=.答:x与a、b、c的关系为x=.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?【分析】(1)根据村庄A到公路MN的距离为600⽶<1000⽶,于是得到结论;(2)根据勾股定理得到BP=BQ=800⽶,求得PQ=1600⽶,于是得到结论.【解答】解:(1)村庄能否听到宣传,理由:∵村庄A到公路MN的距离为600⽶<1000⽶,∴村庄能听到宣传;(2)如图:假设当宣讲车⾏驶到P点开始影响村庄,⾏驶QD点结束对村庄的影响,则AP=AQ=1000⽶,AB=600⽶,∴BP=BQ=⽶,∴PQ=1600⽶,∴影响村庄的时间为:1600÷200=8分钟,∴村庄总共能听到8分钟的宣传.22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD。
勾股定理单元测试卷及参考答案

勾股定理章节测试(A 卷)(满分120分,考试时间120分钟)一、选择题(每题3分,共30分)第3题图 第6题图4. 满足下列条件的三角形中,不是直角三角形的是( )A .三内角之比为1:2:3B .三边长的平方比为1:2:3C .三边长之比为3:4:5D .三内角之比为3:4:55. 如图,在单位正方形组成的网格图中有AB ,CD ,EF ,GH 四条线段,其中能构成一个直角三角形三边的线段是( ) A .CD ,EF ,GH B .AB ,EF ,GH C .AB ,CD ,GH D .AB ,CD ,EF6. 若直角三角形的两直角边长为a ,b ,斜边c 上的高为h ,则下列各式一定成立的是( )A .B .2ab h =222a b h +=ABCDE F GHDC BA lA′BAC .D .7. 如图,A ,B 是直线l 同侧的两点,作点A 关于直线l 的对称点A′,连接A′B .若点A ,B到直线l 的距离分别为2和3,则线段AB 与A′B 之间的数量关系为( ) A .B .C .D .8. 如图,在△ABC 中,∠ACB =90°,点E 为AB 的中点,点D 在BC 上,且AD =BD ,AD ,CE 相交于点F .若∠B =20°,则∠DFE 等于( ) A .70°B .60°C .50°D .40°9. 在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2,4,3,则原直角三角形纸片的斜边长是( ) A .10B.C .10或D .10或10. 如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCDE ,设正方形的中心为O ,连接AO ,如果AB =4,AO=AC 的长为( ) A.6 B.7 C.8 D.9111a b h+=222111a b h+=2213A B AB '-=2224A B AB '-=2225A B AB '+=2226A B AB '+=FE D CBA432432ECABDO二、填空题(每题3分,共18分)11. 已知△ABC 的周长是26,M 是AB 的中点,MC =MA =5,则△ABC 的面积是__________.12. 如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B'处,点A 的对应点为A',且B'C =3,则CN =______,AM =______.则线段AD 的长为_________.第14题图 第15题图15. 如图,四边形A B C D 是正方形,直线l 1,l 2,l 3分别过A ,B ,C 三点,且l 1△l 2△l 3,若l 1与l 2之间的距离为4,l 2与l 3之间的距离为5,则正方形ABCD 的面积为________.16. 如图,在△ACB 中,AB =AC ,△BAC =90°,D 为AC 的中点,AE △BD 于N ,CM △AE 交AE 的延长线于点M ,连接DE .则下列结论:△△MAC =△DBA ;△BN -CM =MN ;△△ADB =△CDE ;△BD =AE +ED .其中正确的有______________(填写序号),并证明.EDC BA DCBAl 3l 2l 1NME D CBA三.解答题17. (5分)如图,在四边形ABCD 中,AB =3cm ,AD =4cm ,BC =13cm ,CD =12cm ,且∠A =90°,求四边形ABCD 的面积.18. (5分)如图,AB 为一棵大树,在树上距地面10m 的D 处有两只猴子,它们同时发现地面上的C 处有一筐水果,一只猴子从D 处爬到树顶A 处,利用拉在A 处的滑绳AC 滑到C 处,另一只猴子从D 处滑到地面B 处,再由B 跑到C ,已知两只猴子所经路程都是15m ,求树高AB .19. (6分)如图,△ABC 和△CDE 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点.若AD =5,BD =12,求DE 的长.A BCDE DC AB20. (6分)如图,在直角三角形纸片ABC 中,AB =15cm ,AC =9cm ,BC =12cm ,现将直角边AC 沿过点A 的直线折叠,使它落在AB 边上.若折痕交BC 于点D ,点C 落在点E 处,你能求出BD 的长吗?请写出求解过程.21. (8分)如图,在三角形ABC 中,AC =BC ,点O 为AB 的中点,AC△BC ,△MON =45°,求证:CN+MN =AM .22. (8分)如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA △AB 于A ,CB △AB 于B ,已知DA =15km ,CB =10km .现要在铁路AB 上建设一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在距A 多少千米处?23. 如图,△ABC 中,AB=AC,△ACB=90°,D 、E 在线段AB 上,且△DCE=45°,求证DE 2=AD 2+BE 2E DCBADCBA24. (12分)已知:如图,在△ABC 中,△A =90°,AB =AC ,BD 平分△ABC ,CE △BD 交BD 的延长线于点E .求证:CE 12BD .扩展结论:1.△AED=45°;2.BE=(1+2)EC25. (12分)如图,Rt △CEF 中,∠C =90°,∠CEF ,∠CFE 外角平分线交于点A ,过点A分别作直线CE ,CF 的垂线,B ,D 为垂足.(1)∠EAF = °(直接写出结果不写解答过程); (2)若BE =EC =3,求DF 的长.(3)如图(2),在△PQR 中,∠QPR =45°,高PH =5,QH =2,则HR 的长度是EDCB A参考答案11.39 12.4 2 13.9 14.5cm 15.41 16.△△△△17.36cm2 18. 15m 19.13 20.7.5cm21.提示:连接OC,在AM上取点H,使AH=CN,证明△OMN≌△OMH可证.22.10km23.方法一:旋转将△ACD绕点C逆时针旋转90°至△ABG,连接EG,易知△ACD=△BCG,△ACD+△BCE=45°,得△BCG+△BCE=45°即△GCE=45°,同时CG=DE,CE=CE,故△CDE△△CGE,EG=DE,而△CBG=△A=45°得△GBE=90°,故EG2=BE2+BG2,即有DE2=AD2+BE2方法二:对称法取点A关于CD的对称点F,连接EF、CF,易知△ACD△△FCD,CF=CA,DF=AD,△CFD=△A=45°而AC=BC,得BC=CF,同时△ACD=△FCD,△ACD+△BCE=45°,△CDF+△FCE=45°得△ECB=△ECF,又CE=CE,故△BCE△△FCE,EF=BE,△CFE=△B=45°,得△DFE=90°,DE2=DF2+EF2,故DE2=AD2+BE21524.(1)45°(2)DF=2 (3)7。
勾股定理单元测试卷

勾股定理单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列命题的逆命题成立的是()A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两条直线平行,同位角相等D.对顶角相等2.观察下列几组数据:①3,4,5;②4,5,6;③6,8,10;④7,24,25.其中能作为直角三角形三边长的有()A.1组B.2组C.3组D.4组3.如图,点C所表示的数是()A B.C.1D.4.如图,ABC∆中,90ACB∠=︒,4AC=,3BC=,将ADE∆沿DE翻折,使点A与点B重合,则AE的长为()A.78B.3 C.254D.2585.如图,大正方形是由边长为1的小正方形拼成的,A,B,C,D四个点是小正方形的顶点,以其中三个点为顶点,可以构成直角三角形的个数是()A .2B .1C .4D .36.已知ABC ∆的三边分别为a 、b 、c 2(12)|13|0b c -+-=,则ABC ∆的面积为( )A .30B .60C .65D .无法计算7.如图所示的24⨯的正方形网格中,ABC ∆的顶点都在小正方形的格点上,这样的三角形称为格点三角形,则点A 到BC 的距离等于( )A B .CD8.如图,由两个直角三角形和三个大正方形组成的图形,其中阴影部分面积是( )A .16B .25C .144D .1699.如图,一棵大树被台风挂断,若树在离地面3m 处折断,树顶端落在离树底部4m 处,则树折断之前高( )A .5mB .7mC .8mD .10m10.如图,长方体的高为9dm ,底面是边长为6dm 的正方形.一只蚂蚁从顶点A 开始爬向顶点B ,那么它爬行的最短路程为( )A .10dmB .12dmC .15dmD .20dm二、填空题(共5小题,每小题3分,共15分)11.在高5m ,长13m 的一段台阶上铺上地毯,台阶的剖面图如图所示,地毯的长度至少需要 m .12.如图,在ABC ∆中,10AB cm =,6AC cm =,8BC cm =,若将AC 沿AE 折叠,使得点C 与AB 上的点D 重合,则AEB ∆的面积为 2cm .13.如图,1OP =,过点P 作1PP OP ⊥,且11PP =,得1OP ;再过点1P 作121PP OP ⊥且121PP =,得2OP =;又过点2P 作232P P OP ⊥且231P P =,得32OP =⋯,依此法继续作下去,得2022OP = .14.如图,Rt ABC ∆中,90ACB ∠=︒,4AB =,分别以AC 和BC 为边,向外作等腰直角三角形ACD ∆和BCE ∆,则图中的阴影部分的面积是 .15.已知ABCAC=,BC边上的高8AD=.则边BC的长为.AB=,10∆中,17三、解答题(共8小题,共75分)16.如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C处折断,顶部(B)着地,离旗杆底部(A)4米,工人在修复的过程中,发现在折断点C的下方1.25米D处,有一明显裂痕,若下次大风将旗杆从D处吹断,则距离杆脚周围多大范围内有被砸伤的危险?17.如图,某人划船横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点25B m,结果他在水中实际划了65m,求该河流的宽度.18.如图,在ABCBD=.==,1AB AC∆中,CD AB⊥,垂足为D,13(1)求CD的长;(2)求BC的长.19.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点.(1)求AB 和BC ;(2)求ABC ∠的度数.20.如果直角三角形的三边的长都是正整数,这样的三个正整数叫做勾股数组.我国清代数学家罗士琳对勾股数组进行了深入研究,提出了各种有关公式400多个.他提出:当m ,n 为正整数,且m n >时,22m n -,2mn ,22m n +为一组勾股数组,直到现在,人们都普遍采用他的这一公式.(1)除勾股数3,4,5外,请再写出两组勾股数组 , ;(2)若令22x m n =-,2y mn =,22z m n =+,请你证明x ,y ,z 为一组勾股数.21.如图,在一条东西走向河流的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB AC =,由于某种原因,由C 到A 的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点(H A 、H 、B 在同一条直线上),并新修一条路CH ,测得 1.5CB =千米, 1.2CH =千米,0.9HB =千米.(1)问CH 是否为从村庄C 到河边的最近路?请通过计算加以说明;(2)求新路CH 比原路CA 少多少千米?22.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.23.如图,在ABC ∆中,AB AC =,AD BC ⊥于点D ,45CBE ∠=︒,BE 分别交AC ,AD 于点E 、F .(1)如图1,若13AB =,10BC =,求AF 的长度;(2)如图2,若AF BC =,求证:222BF EF AE +=.。
人教版八年级数学下册第十七章《勾股定理》单元测试卷附答案

第十七章《勾股定理》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.如图,一根垂直于地面的旗杆在离地面5 m的B处撕裂折断,旗杆顶部落在离旗杆底部12 m的A处,则旗杆折断部分AB的高度是()A.5 mB.12 mC.13 mD.18 m第1题图第3题图第5题图2.下列各组数据中,不能作为直角三角形的三边长的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,153.如图,在Rt△ABC中,∠ACB=90°.若AB=10,则正方形ADEC和正方形BCFG的面积和为()A.100B.120C.140D.1604.若直角三角形的两条直角边长分别是3和4,则斜边长为()A.2.4B.5C.√7D.75.如图,以数轴的单位长线段为边作一个正方形,数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A.1B.1.4C.√2D.√36.在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A.a2+b2=c2B.a2+c2=b2C.b2+c2=a2D.以上都有可能7.若一个直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是()A.60B.30C.20D.328.如图,将风筝放至高30 m,牵引线与水平面夹角约为45°的高空中,则牵引线AB的长约是()A.30 mB.45 mC.20√3 mD.30√2 m第8题图第9题图第10题图9.(跨学科融合)如图,在物理实验课上,小明将长为8 cm的橡皮筋放置在水平面上,固定两端A和B,然后把中点C垂直向上拉升3 cm至点D,则橡皮筋被拉长了()A.3 cmB.2 cmC.6 cmD.4 cm10.如图所示的一块地,已知∠ADC=90°,AD=12 m,CD=9 m,AB=25 m,BC=20 m,则这块地的面积为()A.96 m2B.204 m2C.196 m2D.304 m2二、填空题(共5小题,每小题3分,共15分)11.如图,两个正方形的面积分别是100和36,则字母B所代表的正方形的面积是.第11题图第13题图12.若△ABC的三边长满足a2=b2+c2,则△ABC是直角三角形且∠=90°.13.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了步路(假设2步为1米),却踩伤了花草.14.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.第14题图第15题图15.(数学文化)如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB的长等于.三、解答题(一)(共3小题,每小题8分,共24分)16.如图,根据所给条件,求BC的长.17.如果三角形的三边长分别为√2,√6,2,那么这个三角形是直角三角形吗?。
勾股定理-单元测试题(含答案)

勾股定理单元测试题一、选择题1、下列各组数中,能构成直角三角形的是( )A :4,5,6B :1,1:6,8,11 D :5,12,23 2、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A :26 B :18 C :20 D :213、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( ) A :3 B :4 C :5 D :74、在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为( ) A :5 B :10 C :25 D :55、等边三角形的边长为2,则该三角形的面积为( )A、、、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为( )A 、6B 、7C 、8D 、9 7、已知,如图长方形ABCD 中,AB=3cm , AD=9cm ,将此长方形折叠,使点B 与点D 重合, 折痕为EF ,则△ABE 的面积为( ) A 、3cm 2B 、4cm 2C 、6cm 2D 、12cm 28、若△ABC 中,13,15AB cm AC cm ==,高AD=12,则BC 的长为( ) A 、14 B 、4 C 、14或4 D 、以上都不对 二、填空题1、若一个三角形的三边满足222c a b -=,则这个三角形是 。
2、木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 。
(填“合格”或“不合格” )3、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。
D CBA4、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正 方形的边长为5,则正方形A ,B ,C ,D 的 面积的和为 。
5、如右图将矩形ABCD 沿直线AE 折叠,顶点D 恰好落 在BC 边上F 处,已知CE=3,AB=8,则BF=___________。
勾股定理单元测试卷(附答案)

勾股定理单元测试卷(附答案)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ).(A)30 (B)28 (C)56 (D)不能确定2. 直角三角形的斜边比一直角边长2 cm,另一直角边长为6 cm,则它的斜边长(A)4 cm (B)8 cm (C)10 cm (D)12 cm3. 已知一个Rt△的两边长分别为3和4,则第三边长的平方是()(A)25 (B)14 (C)7 (D)7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )(A)13 (B)8 (C)25 (D)645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是()6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A)钝角三角形(B)锐角三角形(C)直角三角形(D)等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD的面积是 ( )(A) 25 (B) 12.5 (C) 9 (D) 8.58. 三角形的三边长为,则这个三角形是( )(A)等边三角形(B)钝角三角形(C)直角三角形(D)锐角三角形.9.△ABC是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮元计算,那么共需要资金().(A)50元(B)600元(C)1200元(D)1500元10.如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为().(A)12 (B)7 (C)5 (D)13(第10题)(第11题)(第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要__________米.12. 在直角三角形中,斜边=2,则=______.13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC中,∠C=90°,BC=3,AC=4.以斜边AB为直径作半圆,则这个半圆的面积是____________.(第15题)(第16题)(第17题)15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.16. 如图,△ABC中,∠C=90°,AB垂直平分线交BC于D若BC=8,AD=5,则AC等于______________.17. 如图,四边形是正方形,垂直于,且=3,=4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A,B,C,D的面积之和为___________cm2.三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。
第17章《勾股定理》单元测试卷含答案解析

第17章《勾股定理》单元测试卷含答案解析参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A. 4 B.8 C.10 D.12分析:利用勾股定理即可解答.解答:解:设斜边长为x,则一直角边长为x﹣2,依照勾股定理列出方程:62+(x﹣2)2=x2,解得x=10,故选C.点评:本题考查了利用勾股定明白得直角三角形的能力.2.(3分)小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是()A.小丰认为指的是屏幕的长度B.小丰的妈妈认为指的是屏幕的宽度C.小丰的爸爸认为指的是屏幕的周长D.售货员认为指的是屏幕对角线的长度考点:勾股定理的应用.分析:依照电视机的适应表示方法解答.解答:解:依照29英寸指的是荧屏对角线的长度可知售货员的说法是正确的.故选D.点评:本题考查了勾股定理的应用,解题时了解一个常识:通常所说的电视机的英寸指的是荧屏对角线的长度.3.(3分)如图中字母A所代表的正方形的面积为()A. 4 B.8 C.16 D.64考点:勾股定理.分析:依照勾股定理的几何意义解答.解答:解:依照勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,因此A=289﹣225=64.故选D.点评:能够运用勾股定理发觉并证明结论:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.运用结论能够迅速解题,节约时刻.4.(3分)将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形考点:相似三角形的性质.分析:依照三组对应边的比相等的三角形相似,依据相似三角形的性质就能够求解.解答:解:将直角三角形的三条边长同时扩大同一倍数,得到的三角形与原三角形相似,因而得到的三角形是直角三角形.故选C.点评:本题要紧考查相似三角形的判定以及性质.5.(3分)一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D. 25cm考点:勾股定理.分析:设另一条直角边是a,斜边是c.依照另一条直角边与斜边长的和是49cm,以及勾股定理就能够列出方程组,即可求解.解答:解:设另一条直角边是a,斜边是c.依照题意,得,联立解方程组,得.故选D.点评:注意依照已知条件结合勾股定理列方程求解.解方程组的方法能够把①方程代入②方程得到c﹣a=1,再联立解方程组.6.(3分)适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4A.2个B.3个C.4个D. 5个考点:勾股定理的逆定理;三角形内角和定理.分析:运算出三角形的角利用定义判定或在明白边的情形下利用勾股定理的逆定理判定则可.解答:解:①,依照勾股定理的逆定理不是直角三角形,故不是;②a=6,∠A=45不是成为直角三角形的必要条件,故不是;③∠A=32°,∠B=58°则第三个角度数是90°,故是;④72+242=252,依照勾股定理的逆定理是直角三角形,故是;⑤22+22≠42,依照勾股定理的逆定理不是直角三角形,故不是.故选A.点评:本题考查了直角三角形的定义和勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判定.7.(3分)在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形考点:勾股定理的逆定理;完全平方公式.分析:依照勾股定理的逆定理:假如三角形有两边的平方和等于第三边的平方,那么那个是直角三角形判定则可.假如有这种关系,那个确实是直角三角形.解答:解:∵(n2﹣1)2+(2n)2=(n2+1)2,∴三角形为直角三角形,故选D.点评:本题利用了勾股定理的逆定理判定直角三角形,即已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.8.(3分)直角三角形斜边的平方等于两条直角边乘积的2倍,那个三角形有一个锐角是()A.15° B.30° C.45°D.60°考点:勾股定理.分析:依照斜边的平方等于两条直角边乘积的2倍,以及勾股定理能够列出两个关系式,直截了当解答即可.解答:解:设直角三角形的两直角边是a、b,斜边是c.依照斜边的平方等于两条直角边乘积的2倍得到:2ab=c2,依照勾股定理得到:a2+b2=c2,因而a2+b2=2ab,即:a2+b2﹣2ab=0,(a﹣b)2=0∴a=b,则那个三角形是等腰直角三角形,因而那个三角形的锐角是45°.故选C.点评:已知直角三角形的边长问题,不要不记得三边的长,满足勾股定理.9.(3分)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D. 12cm2考点:勾股定理;翻折变换(折叠问题).分析:依照折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就能够求解.解答:解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,依照勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选C.点评:本题考查了利用勾股定明白得直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.10.(3分)已知,如图,一轮船以16海里/时的速度从港口A动身向东北方向航行,另一轮船以12海里/时的速度同时从港口A动身向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D. 40海里考点:勾股定理的应用;方向角.分析:依照方位角可知两船所走的方向正好构成了直角.然后依照路程=速度×时刻,得两条船分别走了32,24.再依照勾股定理,即可求得两条船之间的距离.解答:解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×2=32,12×2=24海里,依照勾股定理得:=40(海里).故选D.点评:熟练运用勾股定理进行运算,基础知识,比较简单.二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2008•湖州)利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分闻名的定理,那个定理称为勾股定理,该定理的结论其数学表达式是a2+b2=c2.考点:勾股定理的证明.专题:证明题.分析:通过图中三角形面积、正方形面积之间的关系,证明勾股定理.解答:解:用图(2)较简单,如图正方形的面积=(a+b)2,用三角形的面积与边长为c的正方形的面积表示为4×ab+c2,即(a+b)2=4×ab+c2化简得a2+b2=c2.那个定理称为勾股定理.故答案为:勾股定理、a2+b2=c2.点评:本题是用数形结合来证明勾股定理,锤炼了同学们的数形结合的思想方法.12.(3分)如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为10.考点:勾股定理;等腰三角形的性质.分析:依照等腰三角形的三线合一得BD=8,再依照勾股定理即可求出AB的长.解答:解:∵等腰△ABC的底边BC为16,底边上的高AD为6,∴BD=8,AB===10.点评:注意等腰三角形的三线合一,熟练运用勾股定理.13.(3分)如图,某人欲横渡一条河,由于水流的阻碍,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为480m.考点:勾股定理的应用.专题:应用题.分析:从实际问题中找出直角三角形,利用勾股定明白得答.解答:解:依照图中数据,运用勾股定理求得AB===480米.点评:考查了勾股定理的应用,是实际问题但比较简单.14.(3分)小华和小红都从同一点O动身,小华向北走了9米到A点,小红向东走了12米到了B点,则AB为15米.考点:勾股定理的应用.专题:应用题.分析:依照题意画出图形依照勾股定明白得答.解答:解:如图,在Rt△AOB中,∠O=90°,AO=9m,OB=12m,依照勾股定理得AB====15m.点评:本题专门简单,只要依照题意画出图形即可解答,表达了数形结合的思想.15.(3分)一个三角形三边满足(a+b)2﹣c2=2ab,则那个三角形是直角三角形.考点:勾股定理的逆定理.分析:化简等式,可得a2+b2=c2,由勾股定理逆定理,进而可得其为直角三角形.解答:解:(a+b)2﹣c2=2ab,即a2+b2+2ab﹣c2=2ab,因此a2+b2=c2,则那个三角形为直角三角形.故答案为:直角.点评:考查了勾股定理逆定理的运用,是基础知识比较简单.16.(3分)木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,那个桌面合格(填”合格”或”不合格”).考点:勾股定理的应用.分析:只要算出桌面的长为60cm,宽为32cm,对角线为68cm是否符合勾股定理即可,依照勾股定理直截了当解答.解答:解:==68cm,故那个桌面合格.点评:本题考查的是勾股定理在实际中的应用,需要同学们结合实际把握勾股定理.17.(3分)直角三角形一直角边为12cm,斜边长为13cm,则它的面积为30cm2.考点:勾股定理.分析:依照勾股定理求得其另一直角边的长,再依照面积公式即可求得其面积.解答:解:∵直角三角形一直角边为12cm,斜边长为13cm,∴另一直角边==5cm,∴面积=×5×12=30cm2.点评:解决本题的关键是依照勾股定理求得另一直角边的长.18.(3分)如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是那个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是25.考点:平面展开-最短路径问题.分析:先将图形平面展开,再用勾股定理依照两点之间线段最短进行解答.解答:解:如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.故答案为25.点评:本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要依照题意判定出长方形的长和宽即可解答.三、解答题(共46分)19.(6分)如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).考点:勾股定理的应用.专题:应用题.分析:依照题意画出图形,构造出直角三角形,利用勾股定理求解.解答:解:如图所示,过D点作DE⊥AB,垂足为E∵AB=13,CD=8又∵BE=CD,DE=BC∴AE=AB﹣BE=AB﹣CD=13﹣8=5∴在Rt△ADE中,DE=BC=12∴AD2=AE2+DE2=122+52=144+25=169∴AD=13(负值舍去)答:小鸟飞行的最短路程为13m.点评:本题考查正确运用勾股定理.善于观看题目的信息是解题以及学好数学的关键.20.(6分)如图,在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,求AC2的值.考点:勾股定理.分析:∵AD⊥BC于D,∴可得到两个直角三角形△ABD和△ADC,可利用勾股定理求得AD长,进而求得AC2的值.解答:解:∵AD⊥BC于D,∴∠ADB=∠ADC=90°∵AB=3,BD=2∴AD2=AB2﹣BD2=5∵DC=1,∴AC2=AD2+DC2=5+1=6.点评:本题需注意最后求的是AC2,因此在运算过程中都保持线段的平方即可.21.(8分)小明的叔叔家承包了一个矩形鱼池,已知其面积为48m2,其对角线长为10m,为建栅栏,要运算那个矩形鱼池的周长,你能关心小明算一算吗?考点:勾股定理的应用;二元一次方程组的应用;矩形的性质.专题:运算题.分析:依照矩形的面积公式得到长与宽的积,再依照勾股定理得到长与宽的平方和.联立解方程组求得长与宽的和可.解答:解:设矩形的长是a,宽是b,依照题意,得:,(2)+(1)×2,得(a+b)2=196,即a+b=14,因此矩形的周长是14×2=28m.点评:注意依照题意结合勾股定理联立解方程组,只需求得长与宽的和即可.22.(10分)如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km 的速度向北偏东60°的BF方向移动,距离台风中心200km的范畴内是受台风阻碍的区域.(1)A城是否受到这次台风的阻碍?什么缘故?(2)若A城受到这次台风阻碍,那么A城遭受这次台风阻碍有多长时刻?考点:勾股定理的应用.专题:应用题.分析:(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若AC >200则A城不受阻碍,否则受阻碍;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范畴内差不多上受台风阻碍,再依照速度与距离的关系则可求时刻.解答:解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,因此A城要受台风阻碍;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,因此△ADG是等腰三角形,因为AC⊥BF,因此AC是DG的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120千米,则DG=2DC=240千米,遭受台风阻碍的时刻是:t=240÷40=6(小时).点评:此题要紧考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时刻的关系等,较为复杂.四、创新探究题23.一只蚂蚁假如沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm、宽为1cm、高为4cm.考点:平面展开-最短路径问题.分析:要求长方体中两点之间的最短路径,最直截了当的作法,确实是将正方体展开,然后利用两点之间线段最短解答.解答:解:如图:依照题意,如上图所示,最短路径有以下三种情形:(1)沿AA′,A′C′,C′B′,B′B剪开,得图(1)AB′2=AB2+BB′2=(2+1)2+42=25;(2)沿AC,CC′,C′B′,B′D′,D′A′,A′A剪开,得图(2)AB′2=AC2+B′C2=22+(4+1)2=4+25=29;(3)沿AD,DD′,B′D′,C′B′,C′A′,AA′剪开,得图(3)AB′2=AD2+B′D2=12+(4+2)2=1+36=37;综上所述,最短路径应为(1)所示,因此AB′2=25,即AB′=5cm.点评:此题考查最短路径问题,将长方体从不同角度展开,是解决此类问题的关键,注意不要漏解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《勾股定理》单元检测题
班级 姓名
一、选择题(每小题只有一个正确答案)
1.在△ABC 中,,,则( )
A. ∠A=90°
B. ∠B=90°
C. ∠C=90°
D. ∠A=∠B
2.已知四个三角形分别满足下列条件:①三角形的三边之比为1:1;②三角形的三边分别是9、40、41;③三角形三内角之比为1:2:3;④三角形一边上的中线等于这边的一半.其中直角三角形有( )个.
A. 4
B. 3
C. 2
D. 1
3.在下列四组数中,不是勾股数的一组数是( )
A. 15817a b c ===,,
B. 91215a b c ===,,
C. 72425a b c ===,,
D. 357a b c ===,,
4.如图,一艘船以6海里/小时的速度从港口A 出发向东北方向航行,另一艘船以2.5海里/小时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,两船相距( )
A. 13海里
B. 10海里
C. 6.5海里
D. 5海里
5.下列选项中,不能用来证明勾股定理的是( )
A. B. C. D.
6.如图,在ABC ∆中,60AB AC BAC =∠=︒,,BC 边上的高8AD =,E 是AD 上的一个动点,F 是边AB 的中点,则EB EF +的最小值是()
A. 5
B. 6
C. 7
D. 8
7.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑多少米?( )
A. 0.4
B. 0.6
C. 0.7
D. 0.8
8.如图,一只蚂蚁从棱长为1的正方体纸箱的A 点沿纸箱表面爬到B 点,那么它所爬行的最短路线的长是( )
A. 2
B. 3
C. 5
D. 2
9.已知a 、b 、c 是三角形的三边长,如果满足()26100a c -+-=,则三角
形的形状是()
A. 底与腰不相等的等腰三角形
B. 直角三角形
C. 钝角三角形
D. 等边三角形
10.直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( )
A. ab=h 2
B. a 2+b 2=2h 2
C. 111a b h +=
D. 222111a b h
+=
二、填空题
11.把一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,则这个三角形是_______三角形.
12.一种盛饮料的圆柱形杯子(如图),测得它的内部底面半径为2.5 cm ,高为12 cm ,吸管放进杯子里,杯口外面至少要露出4.6 cm ,则吸管的长度至少为____cm .
13.如图所示的一块地,已知∠ADC =90°,AD =12m ,CD =9m ,AB =25m , BC =20m ,则这块地的面积为____________ .
14.如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),
则这束光从点A 到点B 所经过路径的长为_______.
15.如图,OP =1,过P 作1PP OP ⊥且11PP =,根据勾股定理,得1OP =;再过1P 作121PP OP ⊥且12PP =1,得2OP =;
又过2P 作232P P OP ⊥且231P P =,得OP 3=2;…依此继续,得2018OP =____,n OP =_________(n 为自然数,且n >0).
三、解答题
16.如图,已知正方形ABCD的边长为4,E为AB中点,F为AD上的一点,且AF=1
4 AD,
试判断△EFC的形状.
17.有一块空白地,如图,∠ADC=90°,CD=6 m,AD=8 m,AB=26 m,BC=24 m.试求这块空白地的面积.
18.龙梅和玉荣是草原上的好朋友,可是有一次经过一场争吵之后,两人不欢而散,龙
梅的速度是1
2
米/秒,4分钟后她停了下来,觉得有点后悔了,玉荣走的方向好像是和
龙梅成直角,她的速度是2
3
米/秒,如果她和龙梅同时停下来,而这时候她俩正好相距
200米,那么她走的方向是否成直角?如果她们现在想讲和,那么原来的速度相向而行,多长时间后能相遇?.
19.(2017黑龙江齐齐哈尔第23题)如图,在ΔABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.
(1)求证:DE=DF,DE⊥DF;
(2)连接EF,若AC=10,求EF的长.
20.已知:如图,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3.
求:四边形ABCD的面积.
参考答案1.A2.A3.D4.A5.D6.D7.D8.C9.B10.D 11.直角
12.17.6
13.96m2
14
15.
16.解:∵E为AB中点,∴BE=2.
∴CE2=BE2+BC2=22+42=20.
同理可求得,EF2=AE2+AF2=22+12=5,CF2=DF2+CD2=32+42=25. ∵CE2+EF2=CF2,
∴△EFC是以∠CEF为直角的直角三角形.
17.96 m2.
解:连接AC.
∵∠ADC=90°,
∴△ADC是直角三角形.
∴AD2+CD2=AC2,即82+62=AC2,
解得AC=10.
又∵AC2+CB2=102+242=262=AB2,
∴△ACB是直角三角形,∠ACB=90°
∴S四边形ABCD=S Rt△ACB-S Rt△ACD
=1
2
×10×24-
1
2
×6×8
=96(m2).
故这块空白地的面积为96 m2.
18.她们走的方向成直角,如果她们想讲和,按原来的速度相向而行,1713
7
秒后能相遇.
解析:龙梅走的路程:1
2
×4×60=120(米),
玉荣走的路程:2
3
×4×60=160(米),
∵1202+1602=2002,
∴她们走的方向成直角,
以原来的速度相向而行相遇的时间:200÷(1
2
+
2
3
)=200÷
7
6
=
1200
7
=171
3
7
(秒);
答:她们走的方向成直角,如果她们想讲和,按原来的速度相向而行,1713
7
秒后能相遇.
19.解析:(1)∵AD⊥BC,
∴∠ADB=∠ADC=90°,
在△BDG和△ADC中,
BD=AD
∠BDG=∠ADC
DG=DC
,
∴△BDG≌△ADC,
∴BG=AC,∠BGD=∠C,
∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点,
∴DE=1
2BG=EG,DF=1
2
AC=AF,
∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,
∴∠EDG+∠FDA=90°,
∴DE⊥DF;
(2)∵AC=10,
∴DE=DF=5,
由勾股定理得,EF= DE2+DF2=5.
20.18.
解:作DE∥AB,连结BD,则可以证明△ABD≌△EDB(ASA), ∴DE=AB=4,BE=AD=3.
∵BC=6,∴EC=EB=3.
∵DE2+CE2=32+42=25=CD2,
∴△DEC为直角三角形.
又∵EC=EB=3,
∴△DBC为等腰三角形,DB=DC=5.
在△BDA中AD2+AB2=32+42=25=BD2,
∴△BDA是直角三角形.
它们的面积分别为S△BDA=1
2
×3×4=6;S△DBC=
1
2
×6×4=12.
∴S四边形ABCD=S△BDA+S△DBC=6+12=18.。