因式分解和提公因式

合集下载

因式分解概念与提公因式法

因式分解概念与提公因式法

因式分解概念及提公因式法学科: 任课老师:学生: 上课时间: 课次: 一:知识点1、【因式分解】:把一个多项式化成几个整式的积的形式,叫做因式分解。

说明可以从下述几方面了解这个概念:1、因式分解是对多项式而言,是把多项式进行因式分解,这是因为单项式本身已经是整式的积的形式。

2、因式分解是把一个多项式化成几个整式的积的形式,即被分解的式子及分解的结果都是整式。

如)1)(1(111)1)(1(1-+-=--+=+a a a a a a a ,由于结果中出现了分式11-a ,所以不是因式分解。

3、因式分解最后的结果应当是“积”,否则就不是因式分解。

如()43432--=--x x x x ,就不是因式分解。

2、【公因式】:多项式各项都有的一个公共的因式叫做这个多项式各项的公因式。

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号的第一项的系数成为正数。

提出“-”号时,多项式的各项都要变号。

3、【提公因式法】如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法,即 ma+mb+mc=m(a+b+c) .(1)如果多项式的首项系数是负的,提公因式时要将负号提出,使括号第一项的系数是正的,并且注意括号其它各项要变号。

(2)如果公因式是多项式时,只要把这个多项式整体看成一个字母,按照提字母公因式的办法提出。

(3)有时要对多项式的项进行适当的恒等变形之后(如将a+b-c变成-(c-a-b)才能提公因式,这时要特别注意各项的符号)。

(4)提公因式后,剩下的另一因式须加以整理,不能在括号中还含有括号,并且有公因式的还应继续提。

(5)分解因式时,单项式因式应写在多项式因式的前面。

北师大版八年级数学下册《因式分解——提公因式法》教学PPT课件(3篇)

北师大版八年级数学下册《因式分解——提公因式法》教学PPT课件(3篇)

= −(4 ∙ 6 2 − 4 ∙ 3 + 4 ∙ 7)
= −4(6 2 − 3 + 7).
易错注意:1.公因式要提尽;
2.公因式是某项时剩余的系数1别忘;
错误
提公因式后括号里少了一项.
正确解:原式=3x·
x-6y·
x+1·x
=x(3x-6y+1)
请你判断小明的解法有误吗?
因式分解: - x2+xy-xz.
解:原式= - x(x+y-z).
错误
提出负号时括号里的项
没变号
正确解:原式= - (x2-xy+xz)
=- x(x-y+z)
探索新知
巩固练习 将下列各式分解因式
项式的各项变号;
2.公因式的系数是多项式各项__________________;
系数的最大公约数
相同的字母
3.字母取多项式各项中都含有的____________;
4.相同字母的指数取各项中最小的一个,即 最低次幂
_________.
合作探究
因式分解:a(x-3)+2b(x-3)
(1)多项式的公因式是什么?
B.6(p+q)2-2(p+q)=2(p+q)(3p+q-1)
C.3(y-x)2+2(x-y)=(y-x)(3y-3x+2)
D.3x(x+y)-(x+y)2=(x+y)(2x+y)
4.用提公因式法因式分解:
(1)6p(p+q)-4q(p+q);
解:6p(p+q)-4q(p+q)
=2(p+q)(3p-2q).
A.x4
B.x3+1
C.x4+1
D.x3-1

因式分解和提公因式法

因式分解和提公因式法

因式分解和提公因式法因式分解是代数中的一种重要的运算方法,在解题过程中往往可以起到简化问题、求解方程、找出公因数等作用。

而提公因式法是因式分解的一种特殊形式,通过提取公因式来简化多项式的表达式。

本文将详细介绍因式分解和提公因式法的概念、原理以及应用。

一、因式分解的概念和原理1.1 因式分解的概念因式分解是将一个多项式拆解成若干个因式的乘积,其中每个因式都是多项式的一个因子。

通过因式分解,我们可以将复杂的多项式化简为简单的因子形式,便于进一步求解方程、计算和进行其他代数运算。

1.2 因式分解的原理因式分解的原理是根据多项式的特点和运算规律,将其拆解为不可再分解的因子相乘的形式。

常用的分解方法有提取公因式法、配方法、根据特殊公式和因式定理等。

二、提公因式法的概念和步骤2.1 提公因式法的概念提公因式法是一种较为常见且简便的因式分解方法,通过提取多项式中的公因式,将多项式拆解为公因式和剩余部分的乘积。

这样可以达到简化表达式的效果,从而便于求解方程或进行其他计算。

2.2 提公因式法的步骤步骤一:观察多项式中是否存在公因式;步骤二:提取出公因式,并在多项式外面加上括号,表示公因式;步骤三:将多项式中去掉公因式后的部分作为括号内的剩余部分;步骤四:将公因式和剩余部分用乘号连接起来,得到最终的因式分解式。

三、因式分解和提公因式法的应用3.1 解方程因式分解和提公因式法在解方程中经常被使用。

通过因式分解,可以将原方程化简为简单的因子形式,从而更容易求解。

例如,对于二次方程ax^2 + bx + c = 0,如果可以进行因式分解成(a'x + b')(c'x + d') = 0,那么可以根据方程因式乘积为零的性质,得到x的取值。

3.2 简化计算在进行复杂的数学计算时,因式分解和提公因式法可以起到简化计算的作用。

通过将多项式化简为因子形式,可以减少计算的复杂性。

特别是在涉及多次相同运算的情况下,将公因式提取出来可以减少重复计算。

(完整版)提公因式法分解因式典型例题

(完整版)提公因式法分解因式典型例题

因式分解(1)一知识点讲解知识点一:因式分解概念:把一个多项式化为几个整式的积的形式,叫做因式分解,也叫做把这个多项式分解因式。

1.因式分解特征:因式分解的结果是几个整式的乘积。

2.因式分解与整式乘法关系:因式分解与整式的乘法是相反方向的变形知识点二:寻找公因式1、小学阶段我们学过求一组数字的最大公因(约)数方法:(短除法)例如:求20,36,80的最大公(约)数?最大公倍数?2、寻找公因式的方法:(一)因式分解的第一种方法(提公因式法)(重点):1.提取公因式法:如果多项式的各项含有公因式,那么就可以把这个公因式提到括号外面,把多项式转化成公因式与另一个多项式的积的形,这种因式分解的方法叫做提公因式法。

2.符号语言:)(c b a m mc mb ma ++=++ 3.提公因式的步骤:(1)确定公因式 (2)提出公因式并确定另一个因式(依据多项式除以单项式) 公因式原多项式另一个因式=4.注意事项:因式分解一定要彻底二、例题讲解模块1:考察因式分解的概念1. (2017春峄城区期末)下列各式从左到右的变形,是因式分解的是( ) A 、x x x x x 6)3)(3(692+-+=+- B 、103)2)(5(2-+=-+x x x x C 、22)4(168-=+-x x x D 、b a ab 326⋅=2. (2017秋抚宁县期末)下列各式从左到右的变形,是因式分解的是( ) A 、2)1(3222++=++x x x B 、22))((y x y x y x -=-+ C 、222)(y x y xy x -=+- D 、)(222y x y x -=- 3. (2017秋姑苏区期末)下列从左到右的运算是因式分解的是( ) A 、1)1(21222+-=+-a a a a B 、22))((y x y x y x -=+- C 、22)13(169-=+-x x x D 、xy y x y x 2)(222+-=+4.(2017秋华德县校级期末)下列各式从左到右的变形,是因式分解的是( ) A 、15123-=-+x y x B 、2249)23)(23(b a b a b a -=-+C 、)11(22xx x x +=+ D 、)2)(2(28222y x y x y x -+=-5. (2017春新城区校级期中)下列各式从左到右的变形是因式分解的是( ) A 、ab a b a a -=-2)( B 、1)2(122+-=+-a a a a C 、)1(2-=-x x x x D 、)(222xy y x y x xy -=-6. (2016秋濮阳期末)下列式子中,从左到右的变形是因式分解的是( ) A 、23)2)(1(2+-=--x x x x B 、)2)(1(232--=+-x x x x C 、4)4(442+-=++x x x x D 、))((22y x y x y x -+=+模块2:考察公因式1. (2017春抚宁县期末)多项式3222320515n m n m n m -+的公因式是( ) A 、mn 5 B 、225n m C 、n m 25 D 、25mn 2.(2017春东平县期中)把多项式332223224168bc a c b a c b a -+-分解因式,应提的公因式是( )A 、bc a 28-B 、3222c b aC 、abc 4-D 、33324c b a 3.(2017秋凉州区末)多项式92-a 与a a 32-的公因式是( ) A 、3+a C 、3-a B 、1+a D 、1-a 4.(2017春邵阳县期中)多项式n m n my x y x 31128--的公因式是( )A 、nmy x B 、1-n myx C 、nmy x 4 D 、14-n myx5.(2016春深圳校级期中)多项式mx mx mx 1025523-+-各项的公因式是( )A 、25mxB 、35mx - C 、mx D 、mx 5- 6.下列各组代数式中没有公因式的是( ) A 、)(5b a m -与a b - B 、2)(b a +与b a -- C 、y mx +与y x + D 、ab a +-2与22ab b a -7.观察下列各组式子:①b a +2和b a +;②)(5b a m -和b a +-;③)(3b a +和b a --;④22y x -和22y x +。

因式分解-提公因式法

因式分解-提公因式法
例如,我们可以使用提公因式法对多项式 4x^2 - 8x 进行因式分解。 首先,我们找到多项式中的公因式 4x。 然后,我们提取公因式得到:4x(x - 2)。 最后,我们对剩余部分 x - 2 进行因式分解。 因此,多项式 4x^2 - 8x 的因式分解结果为:4x(x - 2)。
提公因式法的应用场景
• 可提取公因式简化 多项式
• 需要进一步分解剩 余部分
配方法
• 适用于二次方程式 • 通过转化为平方完
成因式分解 • 适用范围有限
根式法
• 适用于含有平方根 的多项式
• 通过提取平方根进 行因式分解
• 限制较多
提公因式法的优点
简单易用
提公因式法是一种较为简单的因式分解方法,易于掌握和应用。
通用性强
因式分解-提公因式法
因式分解是一种重要的数学概念,提公因式法是常用的因式分解方法之一。
提公因式法的定义
提公因式法是一种通过找出多项式中的公因式,将其进行提取,从而达到进 行因式分解的目的的方法。
提公因式法的步骤
1. 找出多项式中的公因式 2. 提取公因式 3. 将剩余部分进行因式分解
示例:使用提公因式法进行因式分解
提公因减少计算量
通过提取公因式,可以简化多项式,减少计算的复杂度。
结论
提公因式法是一种重要的因式分解方法,能够帮助我们简化复杂的代数表达 式,解决方程,以及进行数学建模。
1 简化表达式
提公因式法可以帮助我们简化复杂的代数表达式,使计算更加简便。
2 解方程
提公因式法可以用于解决一些复杂方程,帮助我们找到方程的根。
3 数学建模
提公因式法是数学建模中常用的一种方法,可以帮助我们更好地理解和描述实际问题。

因式分解之提公因式和公式法

因式分解之提公因式和公式法

因式分解之提公因式和公式法
一、因式分解
所谓因式分解就是将一个复杂的数学式,整理成由最简单的质因数所
组成的式子,以便我们更清楚地理解和计算这个式子。

例如:把一个复
杂的数学式9a^2b - 18ab^2 + 3a^2b分解为:(3a^2b - 6ab^2) +
(3a^2b - 12ab^2),我们可以发现这个式子表示三个互相独立的数学关系:a^2b 与 -6ab^2 相乘,3a^2b 与 -12ab^2 相乘。

因式分解的步骤主要有以下三步:
1、找出最小的因数,然后把数学表达式中得到的因数分解成单一的
因子(质数)。

2、然后尝试把每个因子再次分解,直到质数的最小单位为止。

3、最后将所有因数重新组合,组成一个正确的数学表达式。

二、提公因式法
提公因式法用于计算两个或多个不同的数学表达式之间的关系,它的
概念很简单,主要是把两个或多个不同的表达式中的相同的因数提取出来,然后把它们放在一起,使其形成一个新的公因式。

比如说,有两个数学表达式(a+b)^2和a^2+2ab+b^2,那么我们可
以把它们中的公因式(a+b)提取出来:(a+b)^2 = (a+b)(a+b) =
a^2+2ab+b^2、如此一来,我们就把两个不同的表达式形成了一个。

从这个计算过程中我们可以发现,提公因式法实际上是一种简化表达
式的思想。

因式分解常用的六种方法详解

因式分解常用的六种方法详解

一、提公因式法这种方法是最简单的,如果看到多项式中有公因子,不管三七二十一,先提取一个公因子再说,因为这样整个问题就被简化了,有点类似我们刚提到的利用因子定理进行因式分解。

例题:因式分解下列多项式:(1)x3y−xy3=xy(x2−y2)=xy(x+y)(x−y) ;(2) 3x3−18x2+27x=3x(x2−6x+9)=3x(x−3)2 ;(3) 3a3+6a2b−3a2c−6abc=3a(a2+2ab−ac−2bc)=3a[a(a−c)+2b(a−c)]=3a(a+2b)(a−c).二、公式法因式分解是把一个多项式化为几个最简整式的乘积的形式,是整式乘积的逆运算,所以如果我们熟悉整式乘积的公式,那么解决因式分解也会很快。

常用的公式如下:(x+a)(x+b)=x2+(a+b)x+ab(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab2±b3a2−b2=(a−b)(a+b)a3−b3=(a−b)(a2+ab+b2)a3+b3=(a+b)(a2−ab+b2)(a+b+c)2=a2+b2+c2+2ab+2bc+2caa3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)还有两个常考的n次方展开的公式:an−bn=(a−b)(an−1+an−2b+an−3b2+⋯+abn−2+bn−1)(n∈Z+)an+bn=(a+b)(an−1−an−2b+an−3b2−⋯−abn−2+bn−1)(n is odd)例题:因式分解:(a2+b2−1)2−4a2b2=(a2+b2−1+2ab)(a2+b2−1−2ab)=[(a+b)2−1][(a−b)2−1]=(a+b+1)(a+b−1)(a−b+1)(a−b−1)三、十字相乘法(双十字相乘法)简单的十字相乘其实就是公式(x+a)(x+b)=x2+(a+b)x+ab的运用,这个大家都很熟悉,还有一句口诀:首尾分解,交叉相乘,求和凑中。

高中数学因式分解方法大全

高中数学因式分解方法大全

高中数学因式分解方法大全在高中数学中,因式分解是一个非常基础和重要的概念。

它在解决方程、求根、化简等问题中起着重要的作用。

下面我们将介绍高中数学因式分解的十二种方法。

方法一:公因式分解公因式分解是最基础的一种因式分解方法。

当一个多项式中的每一项都可以被一个因数整除时,我们可以提取这个共同的因子进行分解。

例如:2x+4y=2(x+2y)方法二:提公因式分解提公因式分解是公因式分解的一种扩展形式。

当一个多项式中的每一项都可以被一个因数整除,但不是一个相同的因数时,我们可以提取其中的一个公因式进行分解。

例如:2x+4xy = 2x(1+2y)方法三:平方差公式平方差公式是一个常见的因式分解公式。

当一个二次多项式可以表示为两个平方数之差时,我们可以使用平方差公式进行分解。

例如:x^2-y^2=(x+y)(x-y)方法四:完全平方公式完全平方公式是平方差公式的一般化形式。

当一个二次多项式可以表示为一个完全平方时,我们可以使用完全平方公式进行分解。

例如:x^2 + 2xy + y^2 = (x+y)^2方法五:三项完全平方公式三项完全平方公式是完全平方公式的扩展形式。

当一个三次多项式可以写成两个平方和一个常数的形式时,我们可以使用三项完全平方公式进行分解。

例如:x^3+3x^2+3x+1=(x+1)^3方法六:差平方公式差平方公式是平方差公式的一种特殊形式。

当一个二次多项式可以表示为两个数的平方之差时,我们可以使用差平方公式进行分解。

例如:x^2-4=(x-2)(x+2)方法七:分解因式法分解因式法是一种将多项式根据特定的性质进行分解的方法。

例如,对于二次多项式,我们可以使用求根公式进行分解。

例如:x^2+5x+6=(x+3)(x+2)方法八:配方法配方法是一种将一个多项式分解成一对因式的方法。

它可以用于二次多项式,也可以用于更高次的多项式。

例如:x^2+3x+2=(x+1)(x+2)方法九:提幂法提幂法是一种将多项式中的乘法提取出来的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4)-24x 3
–12x 2
+28x (注意:提公因式后括号内各项的符号)
二、自学新知
阅读课本P1——P4的内容,思考下列问题:
因数:如8=2×4,则 与 都是8的一个因数。

素数(质数):因数只有1和它 的正整数叫作素数。

如:2,3,5,7,11
3、36与60的最大公因数是
4、因式:一般地,对于两个多项式f 与g ,如果有多项式h 使得f=gh,那么 和 叫作f 的一个因式。

如:ma+mb+mc = m(a+b+c),则ma+mb+mc 的因式是 和 ; a 3 -a= a(a+1)(a-1),则a 3
-a 的因式是 、 和
5、因式分解:一般地,把一个含字母的多项式表示成若干个 的形式,称为把这个多项式因式分解。

如:a 3 -a= a(a+1)(a-1),就叫把a 3
-a 因式分解。

三、合作讨论: 探究一、整式乘法与因式分解的关系
1、计算:公式:()()a b a b +-= 2
()a b + =
2()a b -= (1)单⨯单:34a ab ⨯=
(2) 单⨯多:(35)a a b -= (3) 多⨯多:(3)(2)x y x y -+= 2、因式分解:由上述计算可知:
(1)22a b -= 22
2a ab b ±+=
(2) 235a ab -= ( 3) 22253x xy y --= 归纳:(1)、整式乘法与因式分解的关系是 (2)、因式分解的特点是:
探究二、判定一个等式从左到右的变形是否为因式分解 下列变形是因式分解吗?为什么? (1)a+b=b+a (2)4x 2
y –8xy+1=4xy(x –y)+1
(3)a(a –b)=a 2–ab (4)a 2–2ab+b 2 =(a –b)2
探究三、因式分解的简单应用:解方程 解方程:x 2-4=0 (提示:如果A ×B=0,那么A=0或B=0) 四、课堂展示: 1、等式22
25(5)(5)a b a b a b -=+-从左到右的变形叫做____,从右到左的变形叫做___ ,它们是互逆过程。

2、下列由左边到右边的变形,属于因式分解的是( ) A 、2(1)(1)1x x x +-=- B 、2
21(2)1x x x x -+=-+ C 、
22
()()a b a b a b -=+- D 、()()mx my nx ny m x y n x y +++=+++
3、已知多项式2
15x mx -+可分解成(3)(5)x x --,则m 的值为____。

五、课堂小结
因式分解的目的是什么?因式分解与多项式乘法有什么关系? 六、当堂达标
1、下列从左到右的变形中,哪些是分解因式?哪些不是分解因式?为什么?
(1)
22111x x x x x x ⎛⎫⎛⎫-
=+- ⎪⎪⎝
⎭⎝⎭ (2)()222424ab ac a b c +=+ (3)
2
4814(2)1x x x x --=-- (4)222()ax ay a x y -=- (5)222
4(2)a ab b a b -+=- (6)
2(3)(3)9x x x +-=- 2、因式分解的结果为(2)(5)x x +-的多项式为_________。

3、因式分解:2
4x -=___________。

4、当3,1a a b =-=时,代数式2a ab -的值为_____。

5、若多项式mx A +可分解因式为()m x y -, 则A 为_______.
6、解方程 :x 2-3x=0。

相关文档
最新文档