(完整版)因式分解练习题(提取公因式)

合集下载

三十道因式分解练习题

三十道因式分解练习题

三十道因式分解练习题一、提取公因式类1. 因式分解:$6x^2 + 9x$2. 因式分解:$8a^3 12a^2$3. 因式分解:$15xy 20xz$4. 因式分解:$21m^2n 35mn^2$5. 因式分解:$4ab^2 + 6a^2b$二、公式法类6. 因式分解:$x^2 9$7. 因式分解:$a^2 4$8. 因式分解:$4x^2 25y^2$9. 因式分解:$9m^2 16n^2$10. 因式分解:$25p^2 49q^2$三、分组分解类11. 因式分解:$x^3 + x^2 2x 2$12. 因式分解:$a^3 a^2 3a + 3$13. 因式分解:$3x^2 + 3x 2x 2$14. 因式分解:$4m^2 4m 3m + 3$15. 因式分解:$5n^3 10n^2 + 3n 6$四、十字相乘法类16. 因式分解:$x^2 + 5x + 6$17. 因式分解:$a^2 7a + 10$18. 因式分解:$2x^2 9x 5$20. 因式分解:$4n^2 13n + 3$五、综合运用类21. 因式分解:$x^3 2x^2 5x + 10$22. 因式分解:$a^3 + 3a^2 4a 12$23. 因式分解:$2x^2 + 5x 3$24. 因式分解:$3m^2 7m + 2$25. 因式分解:$4n^2 + 10n 6$六、特殊因式分解类26. 因式分解:$x^4 16$27. 因式分解:$a^4 81$28. 因式分解:$16x^4 81y^4$29. 因式分解:$25m^4 49n^4$30. 因式分解:$64p^4 81q^4$一、平方差公式类1. 因式分解:$x^2 25$2. 因式分解:$4y^2 9$3. 因式分解:$49z^2 100$4. 因式分解:$25a^2 121b^2$5. 因式分解:$16m^2 36n^2$二、完全平方公式类6. 因式分解:$x^2 + 8x + 16$7. 因式分解:$y^2 10y + 25$8. 因式分解:$z^2 + 14z + 49$10. 因式分解:$b^2 + 22b + 121$三、交叉相乘法类11. 因式分解:$x^2 + 7x + 12$12. 因式分解:$y^2 5y 14$13. 因式分解:$z^2 + 11z + 30$14. 因式分解:$a^2 13a 42$15. 因式分解:$b^2 + 17b + 60$四、多项式乘法公式类16. 因式分解:$x^3 + 3x^2 + 3x + 1$17. 因式分解:$y^3 3y^2 + 3y 1$18. 因式分解:$z^3 + 6z^2 + 12z + 8$19. 因式分解:$a^3 6a^2 + 12a 8$20. 因式分解:$b^3 + 9b^2 + 27b + 27$五、分组分解法类21. 因式分解:$x^4 + 4x^3 + 6x^2 + 4x + 1$22. 因式分解:$y^4 4y^3 + 6y^2 4y + 1$23. 因式分解:$z^4 + 8z^3 + 18z^2 + 8z + 1$24. 因式分解:$a^4 8a^3 + 18a^2 8a + 1$25. 因式分解:$b^4 + 12b^3 + 54b^2 + 108b + 81$六、多项式长除法类26. 因式分解:$x^5 x^4 2x^3 + 2x^2 + x 1$27. 因式分解:$y^5 + y^4 + 2y^3 2y^2 y + 1$28. 因式分解:$z^5 3z^4 + 3z^3 z^2 + z 1$29. 因式分解:$a^5 + 3a^4 3a^3 + a^2 a + 1$30. 因式分解:$b^5 5b^4 + 10b^3 10b^2 + 5b 1$答案一、提取公因式类1. $6x^2 + 9x = 3x(2x + 3)$2. $8a^3 12a^2 = 4a^2(2a 3)$3. $15xy 20xz = 5x(3y 4z)$4. $21m^2n 35mn^2 = 7mn(3m 5n)$5. $4ab^2 + 6a^2b = 2ab(2b + 3a)$二、公式法类6. $x^2 9 = (x + 3)(x 3)$7. $a^2 4 = (a + 2)(a 2)$8. $4x^2 25y^2 = (2x + 5y)(2x 5y)$9. $9m^2 16n^2 = (3m + 4n)(3m 4n)$10. $25p^2 49q^2 = (5p + 7q)(5p 7q)$三、分组分解类11. $x^3 + x^2 2x 2 = (x^2 + 2)(x 1)$12. $a^3 a^2 3a + 3 = (a^2 3)(a 1)$13. $3x^2 + 3x 2x 2 = (3x 2)(x + 1)$14. $4m^2 4m 3m + 3 = (4m 3)(m 1)$15. $5n^3 10n^2 + 3n 6 = (5n^2 3)(n 2)$四、十字相乘法类16. $x^2 + 5x + 6 = (x + 2)(x + 3)$17. $a^2 7a + 10 = (a 2)(a 5)$18. $2x^2 9x 5 = (2x + 1)(x 5)$19. $3m^2 + 11m + 4 = (3m + 1)(m + 4)$20. $4n^2 13n + 3 = (4n 1)(n 3)$五、综合运用类21. $x^3 2x^2 5x + 10 = (x^2 5)(x 2)$22. $a^3 + 3a^2 4a 12 = (a^2 + 4)(a 3)$23. $2x^2 + 5x 3 = (2x 1)(x + 3)$24. $3m^2 7m + 2 = (3m 1)(m 2)$25. $4n^2 + 10n 6 = (2n 1)(2n + 6)$六、特殊因式分解类26. $x^4 16 = (x^2 + 4)(x + 2)(x 2)$27. $a^4 81 = (a^2 + 9)(a + 3)(a 3)$28. $16x^4 81y^4 = (4x^2 + 9y^2)(2x + 3y)(2x 3y)$29. $25m^4 49n^4 = (5m^2 + 7n^2)(5m + 7n)(5m 7n)$30. $64p^4 81q^4 = (8p^2 + 9q^2)(4p + 3q)(4p 3q)$一、平方差公式类1. $x^2 25 = (x + 5)(x 5)$2. $4y^2 9 = (2y + 3)(2y 3)$3. $49z^2 100 = (7z + 10)(7z 10)$4. $25a。

八年级上册因式分解分类练习题(经典全面)

八年级上册因式分解分类练习题(经典全面)

因式分解练习题(提取公因式)专项训练一:确定以下各多项式的公因式。

1、ay ax +2、36mx my -3、2410a ab +4、2155a a +5、22x y xy -6、22129xyz x y -7、()()m x y n x y -+-8、()()2x m n y m n +++9、3()()abc m n ab m n --- 10、2312()9()x a b m b a --- 专项训练二:利用乘法分配律的逆运算填空。

1、22____()R r R r ππ+=+2、222(______)R r πππ+=3、2222121211___()22gt gt t t +=+ 4、2215255(_______)a ab a +=专项训练三、在以下各式左边的括号前填上“+〞或“-〞,使等式成立。

1、__()x y x y +=+ 2、__()b a a b -=- 3、__()z y y z -+=- 4、()22___()y x x y -=-5、33()__()y x x y -=-6、44()__()x y y x --=-7、22()___()()n n a b b a n -=-为自然数8、2121()___()()n n a b b a n ++-=-为自然数9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=- 专项训练四、把以下各式分解因式。

1、nx ny -2、2a ab +3、3246x x -4、282m n mn +5、23222515x y x y -6、22129xyz x y -7、2336a y ay y -+8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +-13、3222315520x y x y x y +- 14、432163256x x x --+专项训练五:把以下各式分解因式。

因式分解分类练习题(经典全面)

因式分解分类练习题(经典全面)

因式分解分类练习题(经典全⾯)2因式分解练习题(提取公因式)平昌县得胜中学任璟(编)专项训练⼀:确定下列各多项式的公因式。

2 3 2 25、 25x y -15x y6、12xyz-9x 2y 227、3a y - 3ay 6 y1、ay ax2、3mx -6my 23、4a 10ab2 4、 15a 5a 2 2x y _xy6、12xyz-9x 2y 228、 a b-5ab 9b-24x 2y -12xy 2 28y 329、 - x xy - xz10、7、 mx-y i ⼇n x-y 39、abc(m-n) -ab(m-n) 10、12x(a-b)2-9m(b-a)3 专项训练⼆:利⽤乘法分配律的逆运算填空 1、 2兀R ⼗2^r= __ (R+r) 2、 2兀R ⼗2兀r = 2兀( )3、1 gt 1^丄 gt 22= (tj+t 22)4、15a 2+25ab 2 =5a( ) 2 2 专项训练三、在下列各式左边的括号前填上 + ”或“-”使等式成⽴< 1、x + y=__(x + y) 2、b_a =__(a_b) 2 2 3、-z + y=__(y-z) 4、(y-x) = _____ (x-y) 3 3 4 4 5(y -x) =—(x -y)6、-(x-y) =_(y -x)7、 (a —b)2n =___(b —a)2n(n 为⾃然数)8、 (a —b)2nHr =___(b —a)2n^n 为⾃然数 9、 (1-x )(2-y)=___(1-x)(y-2) 2 311、(a -b) (b-a)=___(a -b)专项训练四、把下列各式分解因式21、nx-ny2、a ab) 10、(1-x)(2-y)=___(x-1)(y-2) 12、(a —b)2(b —a)4=___(a —b)63、4x 3 -6x 24、8m 2n 2mn11、-3ma 6ma -12ma 2 2 2 313、15x y 5x y-20x y专项训练五:把下列各式分解因式 1、x(a b) - y(a b) 3、6q(p q)-4p(p q)5、a(a-b) (a-b)27、(2 a b)(2a-3b)-3a(2a b)12、56x 3yz 14x 2y 2z-21xy 2z 24 3 214、-16x - 32 x 56x2、5x(x_ y) 2y(x_ y)4、 (m n)(P q)- (m n)( p — q)6、x(x- y)2 - y(x- y)8、x(x y)(x _y)「x(x y)22 、9、 p(x _y) _q(y _x)10、m(a -3) 2(3-a)12、a(x - a) b(a - x) - c(x - a)13、3(x-1)3y-(1-x)3z14、-ab(a -b)2 a(b - a)216、(a -2b)(2a-3b) -5a(2b-a)(3b-2a)4、1984 20032003- 2003 19841984专项训练七:利⽤因式分解证明下列各题3220、(x -a) (x -b) (a -x) (b -x)2、证明:⼀个三位数的百位上数字与个位上数字交换位置,则所得的三位数与原数之差能被99整除21、(y _x)2 x(x _y)3 _(y _x)43(2a -3b)2n 1 _(3b _2a)2n (a -b)(n 为⾃然数)2 3 219、x(x_y) _2(y _x) _(y_x)专项训练六、利⽤因式分解计算。

七下十道因式分解练习题

七下十道因式分解练习题

七下十道因式分解练习题一、提取公因式1. 分解因式:6x^2 + 9x2. 分解因式:8a^3b 4a^2b^23. 分解因式:15m^2n 20mn^2二、运用公式法4. 分解因式:x^2 95. 分解因式:a^2 + 2ab + b^26. 分解因式:4x^2 12xy + 9y^2三、十字相乘法7. 分解因式:x^2 + 5x + 68. 分解因式:2a^2 5a 39. 分解因式:3x^2 2x 1四、分组分解法10. 分解因式:x^3 + 2x^2 5x 1011. 分解因式:a^3 a^2 6a + 612. 分解因式:3x^3 3x^2 4x + 4五、综合运用13. 分解因式:x^4 1614. 分解因式:a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^415. 分解因式:2x^3 5x^2 + 2x 516. 分解因式:4x^4 9x^217. 分解因式:3a^5 27a^318. 分解因式:8m^3n 2mn^319. 分解因式:x^6 y^620. 分解因式:a^3 + b^3 + c^3 3abc六、特殊因式分解21. 分解因式:x^2 5x + 622. 分解因式:2y^2 8y + 823. 分解因式:a^2 4a + 4七、多项式乘法逆运算24. 分解因式:x^2y xy^225. 分解因式:ab^2 a^2b26. 分解因式:3mn^2 2n^3m八、复杂多项式因式分解27. 分解因式:x^3 + 3x^2y + 3xy^2 + y^328. 分解因式:a^4 b^429. 分解因式:x^5 x^3九、含有平方差的结构30. 分解因式:4x^2 25y^231. 分解因式:9a^2 16b^232. 分解因式:25m^2 144n^2十、多项式长除法后的因式分解33. 分解因式:x^4 2x^3 3x^2 + 6x34. 分解因式:a^5 3a^4 + 2a^335. 分解因式:3x^5 6x^4 + 3x^3请同学们认真练习,掌握因式分解的各种方法。

提取公因式练习题

提取公因式练习题

提取公因式练习题提取公因式是数学中的一个重要概念,它在代数运算中具有广泛的应用。

通过提取公因式,我们可以简化复杂的代数表达式,使其更易于计算和理解。

在本文中,我们将通过一系列练习题来探讨提取公因式的方法和技巧。

练习题一:将表达式3x + 6y的公因式提取出来。

解答一:首先观察给定的表达式,我们可以发现3是x和y的公因子,因此可以将3提取出来。

提取公因式后,原表达式可以简化为3(x + 2y)。

练习题二:将表达式4a^2 - 8ab的公因式提取出来。

解答二:观察给定的表达式,我们可以发现4是a和b的公因子,因此可以将4提取出来。

同时,a也是两项的公因子,所以我们可以将a提取出来。

提取公因式后,原表达式可以简化为4a(a - 2b)。

练习题三:将表达式6x^3 + 9x^2 - 15x的公因式提取出来。

解答三:观察给定的表达式,我们可以发现6是x的系数的公因子,因此可以将6提取出来。

同时,x也是三项的公因子,所以我们可以将x提取出来。

提取公因式后,原表达式可以简化为6x(x^2 + 3x - 5)。

练习题四:将表达式2x^2y + 4xy^2 - 6xy的公因式提取出来。

解答四:观察给定的表达式,我们可以发现2是x和y的系数的公因子,因此可以将2提取出来。

同时,xy也是三项的公因子,所以我们可以将xy提取出来。

提取公因式后,原表达式可以简化为2xy(x + 2y - 3)。

练习题五:将表达式3a^3b - 6a^2b^2 + 9ab^3的公因式提取出来。

解答五:观察给定的表达式,我们可以发现3是a和b的系数的公因子,因此可以将3提取出来。

同时,ab也是三项的公因子,所以我们可以将ab提取出来。

提取公因式后,原表达式可以简化为3ab(a^2 - 2ab + 3b^2)。

通过以上练习题,我们可以看到提取公因式的方法和技巧。

首先观察表达式中的系数和变量,找出它们的公因子。

然后将公因子提取出来,并将原表达式简化为公因子与剩余部分的乘积。

因式分解分类练习题(经典全面)

因式分解分类练习题(经典全面)

因式分解分类练习题(经典全⾯)因式分解练习题(提取公因式) 平昌县得胜中学任璟(编)专项训练⼀:确定下列各多项式的公因式。

1、ay ax +2、36mx my -3、2410a ab +4、2155a a + 5、22x y xy - 6、22129xyz x y - 7、()()m x y n x y -+- 8、()()2x m n y m n +++9、3()()abc m n ab m n --- 10、2312()9()x a b m b a --- 专项训练⼆:利⽤乘法分配律的逆运算填空。

1、22____()R r R r ππ+=+2、222(______)R r πππ+=3、2222121211___()22gt gt t t +=+ 4、2215255(_______)a ab a +=专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成⽴。

1、__()x y x y +=+ 2、__()b a a b -=- 3、__()z y y z -+=-4、()22___()y x x y -=-5、33()__()y x x y -=-6、44()__()x y y x --=-7、22()___()()nna b b a n -=-为⾃然数 8、2121()___()()n n a b b a n ++-=-为⾃然数9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=-专项训练四、把下列各式分解因式。

1、nx ny -2、2a ab +3、3246x x -4、282m n mn +5、23222515x y x y -6、22129xyz x y -7、2336a y ay y -+8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +-13、3222315520x y x y x y +- 14、432163256x x x --+专项训练五:把下列各式分解因式。

分解因式(提公因式法、公式法)(人教版)(含答案)

分解因式(提公因式法、公式法)(人教版)(含答案)

分解因式(提公因式法、公式法)(人教版)一、单选题(共16道,每道6分)1.下列选项中,从左到右的变形是分解因式的是( )A. B.C. D.答案:C解题思路:选项A等式左边不是多项式,选项B等式右边不是积的形式,选项D等式右边不是整式的积的形式,只有选项C正确,故选C.试题难度:三颗星知识点:分解因式的定义2.把多项式分解因式,结果正确的是( )A. B.C. D.答案:C解题思路:,故选C.试题难度:三颗星知识点:分解因式——提公因式法3.把分解因式,结果正确的是( )A. B.C. D.答案:C解题思路:,故选C.注意:提公因式要彻底.试题难度:三颗星知识点:分解因式——提公因式法4.将分解因式时,应提取的公因式是( )A.a2B.aC.axD.ay答案:B解题思路:此多项式中各项的公因式为a,∴,故选B.试题难度:三颗星知识点:分解因式——提公因式法5.把分解因式,结果正确的是( )A. B.(x-y)(x-y-1)C.(x-y)(x-y+1)D.(x-y)(y-x-1)答案:C解题思路:,故选C.试题难度:三颗星知识点:分解因式——提公因式法6.把分解因式,结果正确的是( )A. B.C. D.答案:A解题思路:,故选A.试题难度:三颗星知识点:分解因式——提公因式法7.下列选项中,能用完全平方公式分解因式的是( )A. B.C. D.答案:D解题思路:完全平方公式的特征是“首平方、尾平方,二倍乘积放中央”,只有选项D符合题意,.故选D.试题难度:三颗星知识点:分解因式——公式法8.下列选项中,能用公式法分解因式的是( )A. B.C. D.答案:C解题思路:只有选项C能用公式法分解因式,,其他选项均不符合完全平方公式和平方差公式的特征. 故选C.试题难度:三颗星知识点:分解因式——公式法9.把分解因式,结果正确的是( )A. B.C. D.答案:C解题思路:,故选C.试题难度:三颗星知识点:分解因式——公式法10.把分解因式,结果正确的是( )A. B.C. D.答案:D解题思路:,故选D.试题难度:三颗星知识点:分解因式——公式法11.把分解因式,结果正确的是( )A.(2x+4y)(2x-4y)B.2(x+2y)(x-2y)C.4(x+2y)(x-2y)D.答案:C解题思路:,故选C.试题难度:三颗星知识点:分解因式——公式法12.把分解因式,结果正确的是( )A. B.C. D.答案:C解题思路:,故选C.试题难度:三颗星知识点:分解因式——公式法13.把分解因式,结果正确的是( )A.(x+8)(x+1)B.(x+2)(x-4)C.(x-2)(x+4)D.(x-10)(x+8)答案:B解题思路:,故选B.试题难度:三颗星知识点:分解因式——公式法14.把分解因式,结果正确的是( )A. B.C. D.答案:D解题思路:,故选D.试题难度:三颗星知识点:分解因式——公式法15.把分解因式,结果正确的是( )A. B.C. D.答案:C解题思路:,故选C.试题难度:三颗星知识点:分解因式——公式法16.把因式分解,结果正确的是( )A. B.C. D.答案:D解题思路:,故选D.试题难度:三颗星知识点:分解因式——公式法。

完整版)提公因式法因式分解练习题

完整版)提公因式法因式分解练习题

完整版)提公因式法因式分解练习题因式分解——提公因式法以下是因式分解和不是因式分解的变形:1) 6a^3-3a^2b = 3a^2(2a-b) 是因式分解。

2) -x^2+x^3 = -x^2(1-x) 是因式分解。

3) (a-b)(a^2+ab+b^2) = a^3-b^3 是因式分解。

4) (x-2)(x-3) = x^2-5x+6 是因式分解。

5) m^2 = m×m 不是因式分解。

6) m^2+m = m^3 不是因式分解。

二、用提公因式法因式分解1) 8ab^2-16a^3b^3 = 8ab^2(1-2a^2b^2)。

2) -m^2n+mn^2 = -mn(m-n)。

3) -15xy-5x^2 = -5x(x+3y)。

4) a^2b^2-1/4ab^3 = 1/4ab^2(a-4b)。

5) a^3b^3+a^2b^2-ab = ab(a^2b^2+a-b)。

6) -8a^3y+12a^2y^2-16ay^3 = -4ay(2a-y)(2a+3y)。

7) -3a^3m-6a^2m+12am = -3am(a^2+2a-4)。

8) -x^3y^2+2x^2y+xy = xy(-x^2+2x+1)。

用提公因式法因式分解(二)1) (a+b)-(a+b)^2 = -(a+b)(2a+b)。

2) x(x-y)+y(y-x) = 0.3) 6(m+n)^2-2(m+n) = 2(m+n)(3m+3n-1)。

4) 3(y-x)^2+2(x-y) = (y-x)(3y-3x+2)。

5) -3x(y-x)-(x-y) = -2(x-y)(x+3)。

6) m(m-n)^2-n(n-m)^2 = (m-n)^2(m+n)。

7) 6p(p+q)-4q(q+p) = 2p(3p-2q)。

8) 12a^2b(x-y)-4ab(y-x) = 4ab(3a-1)(y-x)。

9) (a+b)(x+y)-(a+b)(x-y) = 2(a+b)y。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解练习题(提取公因式)
知识点一 因式分解的定义理解
把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式。

【例题 】 1.下列变形是分解因式的是( )
A .6x 2y 2=3xy ·2xy
B .a 2-4ab+4b 2=(a -2b)2
C .(x+2)(x+1)=x 2+3x+2
D .x 2-9-6x=(x+3)(x -3)-6x
2.下列各式从左到右的变形中,是因式分解的为( )
A 、2222)1(xy y x x xy -=-
B 、)3)(3(92-+=-x x x
C 、222)1)(1(1y x x y x ++-=+-
D 、c b a x c bx ax ++=++)(
3、下列分解因式结果正确的是( )
A. a 2b +7ab -b =b (a 2+7a )
B. 3x 2y -3xy +6y =3y (x 2-x +2)
C. 8xyz -6x 2y 2=2xyz (4-3xy )
D. -2a 2+4ab -6ac =-2a (a -2b -3c )
知识点二:确定多项式的公因式的方法
1、我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式。

2、找公因式的方法
【例题】 1、ay ax + 2、36mx my - 3、2
410a ab +
4、2155a a +
5、22x y xy -
6、22129xyz x y -
7、()()m x y n x y -+-
8、()()2x m n y m n +++
9、3()()abc m n ab m n --- 10、2312()9()x a b m b a ---
知识点三、在下列各式左边的括号前填上“+”或“-”,使等式成立。

1、__()x y x y +=+
2、__()b a a b -=-
3、__()z y y z -+=-
4、()2
2___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=- 7、22()___()()n n a b b a n -=-为自然数 8、2121()___()()n n a b b a n ++-=-为自然数
【专项训练】
一、把下列各式分解因式。

1、nx ny -
2、2a ab +
3、3246x x -
4、2
82m n mn +
5、23222515x y x y -
6、22129xyz x y -
7、2336a y ay y -+
8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+
11、323612ma ma ma -+- 12、32222
561421x yz x y z xy z +-
13、32223
15520x y x y x y +- 14、432163256x x x --+
二:把下列各式分解因式。

1、()()x a b y a b +-+
2、5()2()x x y y x y -+-
3、6()4()q p q p p q +-+
4、()()()()m n P q m n p q ++-+-
5、2()()a a b a b -+-
6、2
()()x x y y x y ---
7、(2)(23)3(2)a b a b a a b +--+ 8、2()()()x x y x y x x y +--+
9、()()p x y q y x --- 10、(3)2(3)m a a -+- 11、()()()a b a b b a +--+
12、()()()a x a b a x c x a -+--- 13、333(1)(1)x y x z --- 14、22()()ab a b a b a --+-
15、()()mx a b nx b a --- 16、(2)(23)5(2)(32)a b a b a b a b a -----
17、(3)(3)()(3)a b a b a b b a +-+-- 18、2()()a x y b y x -+-
19、232()2()()x x y y x y x ----- 20、32()()()()x a x b a x b x --+--
21、234()()()y x x x y y x -+--- 22、2123(23)
(32)()()n n a b b a a b n +----为自然数
三、利用因式分解计算。

1、7.6199.8 4.3199.8 1.9199.8⨯+⨯-⨯ 2、2.186 1.237 1.237 1.186⨯-⨯
3、212019(3)(3)63-+-+⨯
4、198420032003200319841984⨯-⨯
四:利用因式分解证明下列各题。

1、求证:当n 为整数时,2n n +必能被2整除。

2、证明:一个三位数的百位上数字与个位上数字交换位置,则所得的三位数与原数之差能被99整除。

3、证明:2002200120003
431037-⨯+⨯能被整除。

五:利用因式分解解答列各题。

1、22已知a+b=13,ab=40, 求2a b+2ab 的值。

2、32232132
a b ab +=
=已知,,求a b+2a b +ab 的值。

相关文档
最新文档