因式分解-提公因式法教案知识讲解
《提公因式法》教案(人教版八年级上册数学)

3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了提公因式法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对提公因式法的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
a.找出多项式中的公因式。
-难点:在多项式中,特别是多项式项较多时,学生容易漏掉或找错公因式。
-解决方法:通过列举典型例题,指导学生分解多项式,强调寻找公因式的方法和技巧。
b.理解提公因式法与多项式乘法的互逆关系。
-难点:学生可能难以理解提取公因式后,如何将剩余部分与公因式相乘还原回原多项式。
-解决方法:通过具体的示例,展示提公因式法与多项式乘法的互逆过程,使学生明白两者之间的关系。
c.运用提公因式法解决实际问题。
-难点:学生在解决实际问题时,可能不知道如何运用提公因式法。
-解决方法:设计具有实际背景的问题,引导学生运用提公因式法解决,并提供解题思路和步骤的指导。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《提公因式法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要简化多项式或解方程的情况?”(例如:购物时计算总价,需要简化表达式)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索提公因式法的奥秘。
《因式分解提公因式法》教案

《因式分解-提公因式法》教案第一章:教学目标1.1 知识与技能1.2 过程与方法1.3 情感态度与价值观第二章:教学内容2.1 课题引入2.2 知识讲解2.3 例题解析2.4 课堂练习第三章:教学过程3.1 课堂讲解3.2 学生自主学习3.3 课堂讨论与交流3.4 巩固练习第四章:教学策略与方法4.1 教学策略4.2 教学方法4.3 教学评价第五章:课后作业与评价5.1 课后作业布置5.2 学生作业评价5.3 学生学习反馈第六章:教学资源6.1 教学素材6.2 多媒体课件6.3 网络资源6.4 教学参考书籍第七章:教学设计与实施7.1 教学活动安排7.2 教学步骤7.3 教学时间分配7.4 教学场所与设备第八章:学生学习指导8.1 学习方法指导8.2 学习难点解析8.3 学习策略建议8.4 学习反馈与评估第九章:教学反思与改进9.1 教学效果评估9.2 教学反思9.3 教学改进措施9.4 教学持续发展第十章:教学评价与考核10.1 课堂表现评价10.2 作业与练习评价10.3 阶段测试与评价10.4 期末考试与评价重点和难点解析一、教学目标1.1 知识与技能:掌握提公因式法的基本概念和步骤。
1.2 过程与方法:通过实例分析,学会运用提公因式法进行因式分解。
1.3 情感态度与价值观:培养学生的逻辑思维能力和解决问题的能力。
二、教学内容2.1 课题引入:通过具体问题引入提公因式法。
2.2 知识讲解:讲解提公因式法的原理和步骤。
2.3 例题解析:分析并解决实际例题。
2.4 课堂练习:学生自主练习,巩固所学知识。
三、教学过程3.1 课堂讲解:详细讲解提公因式法的步骤和应用。
3.2 学生自主学习:学生独立完成练习题,巩固知识点。
3.3 课堂讨论与交流:学生之间分享解题心得,讨论解题方法。
3.4 巩固练习:布置课后作业,巩固所学知识。
四、教学策略与方法4.1 教学策略:采用问题驱动法和案例教学法,激发学生的学习兴趣。
14.3.1 提公因式法-公开课-优质课(人教版教学设计精品)

14.3 因式分解(第1课时)一、内容和内容解析1.内容因式分解的概念,提公因式法.2.内容解析因式分解是对整式的一种变形,是把一个多项式转化成几个整式相乘的形式,它与整式乘法是互逆变形的关系.因式分解是后续学习分式、二次根式、一元二次方程、二次函数等知识的基础,是解决整式恒等变形和简便运算问题的重要工具.提公因式法是因式分解的基本方法.通过逆向运用分配律,将多项式中各项的公因式“提”到括号外边,从而把多项式分解为此公因式与多项式剩余部分所组成的因式的积.其中,公因式可以是单项式,也可以是数或多项式.提公因式法分解因式的关键是找准公因式.基于以上分析,确定本节课的教学重点:运用提公因式法分解因式.二、目标和目标解析1.目标(1)了解因式分解的概念.(2)了解公因式的概念,能用提公因式法进行因式分解.2.目标解析达成目标(1)的标志:学生知道因式分解的概念,知道因式分解与整式乘法是互逆变形的关系,能识别某一式子的变形是否为因式分解.达成目标(2)的标志:学生知道公因式就是多项式各项系数的最大公约数和各项都含有的字母及多项式的最低次幂的积;知道公因式可以是单项式、也可以是数或多项式;知道提公因式法分解因式要经历“找出公因式”“提取公因式”两个步骤,提取公因式就是把公因式提到括号外面,括号内的因式即为多项式除以公因式所得的商式,并能按此步骤对多项式进行因式分解.三、教学问题诊断分析因式分解不同于数的计算,是对整式进行变形,学生第一次接触时在理解上会有一定的困难.在对整式乘法的认识还不够深入的情况下,就遇到与之有互逆关系的新情境,学生有时会出现因式分解后又反转回去做乘法的错误,解决此问题的关键是让学生正确认识因式分解的概念,理解它与整式乘法的互逆变形关系.学生在运用提公因式法分解因式的过程中经常遇到的困难是公因式选取不准确,表现在忽视了某些相同的字母或式子,导致提取公因式后的因式中仍然含有公因式.解决此问题的关键是找出多项式各项系数的最大公约数和各项都含有的字母及多项式的最低次幂的积作为公因式.本节课的教学难点:正确理解因式分解的概念、准确找出公因式.四、教学过程设计1.了解因式分解的概念问题1 上一节我们已经学习了整式的乘法,知道可以将几个整式的乘积化为一个多项式的形式.反过来,在式的变形中,有时需要将一个多项式写成几个整式的乘积的形式.请把下列多项式写成整式的乘积的形式:(1)x2+x=___________;(2)x2-1=___________.追问1:根据整式的乘法,你能猜想出问题(1)(2)的结果吗?追问2:在多项式的变形中,有时需要将一个多项式化成几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式.你认为因式分解与整式乘法有什么关系?师生活动:学生观察并独立思考,尝试着写出答案,在教师给出因式分解的概念之后,学生回答因式分解与整式乘法是互逆变形关系.设计意图:通过具体问题的解决,让学生在观察、思考和操作的过程中,了解因式分解的概念,认识其本质属性——将和差化为乘积的式子变形,同时发现因式分解与整式乘法的互逆变形关系,为后续探索因式分解的具体方法做铺垫.练习下列变形中,属于因式分解的是___________(填序号).(1)a(b+c)=ab+ac;(2)x3+2x2-3=x2(x+2)-3;(3)a2-b2=(a+b)(a-b).设计意图:通过实例辨析,让学生进一步理解因式分解的概念.2.探索因式分解的方法——提公因式法问题2你能试着将多项式pa+pb+pc因式分解吗?(1)这个多项式有什么特点?(2)你能将这个多项式因式分解吗?(3)因式分解的依据是什么?(4)分解后的各因式与原多项式有何关系?师生活动:教师提出问题,学生先独立思考,然后学生代表展示求解过程.在回答(1)后,学生能发现这个多项式的各项都有一个公共的因式,教师指出此因式叫做这个多项式各项的公因式.在得出pa+pb+pc=p(a+b+c)后,学生发现:一般地,如果多项式的各项有公因式,可以把各个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式.教师指出:这种分解因式的方法叫做提公因式法.设计意图:让学生进一步了解因式分解与整式乘法的关系;了解因式分解的理论依据;了解公因式的概念,初步理解提公因式法分解因式.3.初步应用提公因式法例1把8a3b2+12ab3c分解因式.师生活动:师生共同分析,并解答问题.此时教师引导学生明白找8a3b2与12ab3c的公因式的基本程序:先找系数8与12的最大公约数,再找出两项字母部分a3b2与ab3c都含的字母a和b,然后找出都含的字母a和b的最低次数,进而选定8a3b2与12ab3c的公因式4ab2.追问1:如果提出公因式4a,得出8a3b2+12ab3c=4a(2a2b2+3b3c),那么,另一个因式2a2b2+3b3c是否还有公因式呢?追问2:如果提出公因式4b或4ab,那么,另一个因式是否还有公因式?追问3:在利用提公因式法分解因式时应注意什么?师生活动:教师提出问题,学生独立思考,互动交流,最后达成共识:用提公因式法分解因式时,最后一定要满足各因式中再无公因式.设计意图:通过例题的教学,引导学生:(1)了解提公因式法分解因式的基本程序和步骤;(2)积累找公因式的经验——找到公因式的最简单的方法是找出多项式各项系数的最大公约数和各项都含有的字母及多项式的最低次幂的乘积;(3)知道提公因式法就是把多项式分解成两个因式乘积的形式,其中一个因式是各项的公因式,另一个因式是由多项式除以公因式得到的;(4)用提公因式分解因式后,应保证含有多项式的因式中再无公因式.例2 把2a(b+c)-3(b+c)分解因式.师生活动:学生独立完成,一名学生板书,师生共同交流.设计意图:此例题的公因式是多项式(b+c),通过此例题的教学,提高学生对“公因式”的认识——可以是单项式,也可以是多项式,增强对提公因式法分解因式的本质的认识.4.巩固应用提公因式法练习1把下列各式分解因式:(1)ax+ay;(2)3mx-6my;(3)8m2+2mn;(4)12xyz-9x2 y2;(5)2a(y-z)-3b(z-y);(6)p(a2+b2)-q(a2+b2).师生活动:三名学生板书,其他学生在练习本上完成,然后学生互动交流.设计意图:通过具有一定典型性、代表性和层次性的练习题,让学生进一步巩固因式分解的基本方法——提公因式法,积累解题经验.前4题的公因式为单项式,后两道题的公因式为多项式.在前4题中,公因式有的只是一个字母构成的单项式,有的是有两个字母及系数构成的单项式.在后两道题中,一个为直接提公因式,一个需要变形后再提公因式.练习2 先分解因式,再求值:4a2(x+7)-3(x+7),其中a=-5,x=3.师生活动:一名学生板书,其他学生在练习本上完成,然后小组交流解题经验,解题过程由学生进行评价.设计意图:使学生进一步巩固因式分解的基本方法——提公因式法,提高对公因式的认识,公因式可以是单项式、也可以是数或多项式,感受因式分解给计算带来的便捷,体会此方法的数学价值.5.归纳小结教师与学生一起回顾本节课所学的主要内容,并请学生回答以下问题:(1)本节课学习了哪些主要内容?(2)因式分解的目的是什么?因式分解与整式乘法有什么区别和联系?(3)提公因式法的一般步骤是什么?应用提公因式法分解因式时要注意什么?设计意图:通过小结,使学生梳理本节课所学内容,使学生进一步理解因式分解、公因式的概念,总结应用提公因式法分解因式的步骤,建立知识之间的联系,促进学生数学思维品质的优化.6.布置作业教科书习题14.3第1题,第4题(1).五、目标检测设计1.下列变形中是因式分解的是( ).A.x(x+1)=x2+x B.x2+2x+1=(x+1)2C.x2+xy-3=x(x+y)-3D.x2+6x+4=x(x+3)2-5设计意图:考查学生对因式分解概念的理解.2.分解因式:(1)14 a3b-21a2b2c;(2)2m(m+n)+6 n(m+n).设计意图:考查学生运用提公因式法进行因式分解的掌握.3.已知x-y=3,x+y=7,求x(x-y)-y(y-x)的值.设计意图:考查学生运用提公因式法进行因式分解,并进行代数运算的掌握情况.。
沪科初中数学七下 《因式分解《提公因式法》教案 (公开课获奖)2022沪科版2

《提公因式法》教学目标:1、了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形.2、会确定多项式中各项的公因式,会用提取公因式法分解多项式的因式.教学重难点教学重点:因式分解的概念及提取公因式法.教学难点:多项式中公因式确实定和当公因式是多项式时的因式分解.教学设计:〔一〕新课引入:回忆:运用所学知识填空〔1〕x 〔x +1〕= 〔2〕〔x +1〕〔x -1〕=〔3〕2ab 〔a 2+b +1〕=反之:〔1〕x 2+x = 〔2〕x 2-1=〔3〕2a ³b +2ab ²+2ab =观察以下式子的特点:〔1〕15=3×5〔2〕18=2×32 〔3〕x 2+x=x 〔x+1〕〔4〕x ²-1=〔x+1〕〔x-1〕〔5〕2a ³b +2ab ²+2ab =2ab 〔a ²+b +1〕由分解质因数类比到分解因式.〔二〕新知学习:1、分解因式的概念,与整式乘法的关系.稳固概念:判断以下各式从左到右哪些是因式分解?〔1〕m 〔a +b 〕=ma +mb〔2〕2a +4=2〔a +2〕〔3〕4a ²-6ab ²+2a =2a 〔2a -3b ²+1〕〔4〕a ²-2a +1=a 〔a -2〕+1〔5〕)10)(10(100)(2-+=-xy x y x y 2、确定公因式.问题:ma +mb +mc 这个多项式有什么特征? 引入公因式概念.例1:找出6x ³y 5-3x ²y 4的公因式,归纳找公因式的方法.课堂练习一:找出以下各多项式中的公因式填在后面括号内.〔1〕3mx-6nx2〔〕〔2〕x4y3+x3y4 〔〕〔3〕12x2yz-9x2y2 〔〕〔4〕5a2-15a3+25a〔〕3、用提公因式法分解因式.m〔a+b+c〕=ma+mb+mc可得ma+mb+mc=m〔a+b+c〕,观察构成乘积的两个因式分别是怎样形成的?m是这个多项式的公因式,而另一个因式是原多项式除以公因式所得的商式.像这种分解因式的方法叫做提公因式法.想一想:提公因式法的理论依据是什么?4、知识运用:例2:把8a²b²+12ab²c分解因式例3:把-24x³-12x²+28x分解因式.判断以下各式分解因式是否正确?如果不对,请加以改正.〔1〕2a2+4a+2=2〔a2+2a〕〔2〕3x2y3-6xy2z=3xy〔xy2-2yz〕把以下各式分解因式.〔1〕x2+x6〔2〕12xyz-9x2y2〔3〕-6x2-18xy+3x〔4〕2a n+2-4a n+1-6a n-1例4:把3a〔b+c〕-3〔b+c〕分解因式将以下各式分解因式.〔1〕p〔a2+b2〕-q〔a2+b2〕〔2〕 2a² 〔y-z〕2-4a〔z-y〕2例5:先分解因式,再求值.4a2〔x+7〕-3〔x+7〕,其中a=-5,x=3.5、拓展与提高:〔1〕20212+2021能被2021整除吗?〔2〕利用因式分解进行计算:23.1×24-46.2×7〔3〕将2a〔a+b-c〕-3b〔a+b-c〕+5c〔c-a-b〕分解因式.〔三〕课堂小结:〔1〕什么叫因式分解?〔2〕确定公因式的方法.〔3〕提公因式法分解因式的步骤.〔4〕提公因式法分解因式的步骤.有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法那么,会进行有理数的除法运算,会求有理数的倒数。
七年级数学下册《因式分解的意义提公因式法》教案、教学设计

2.介绍提公因式法的基本步骤:
a.寻找多项式中的公因式。
b.将公因式提取出来。
c.将剩余部分整理成一个新的多项式。
3.通过实例演示提公因式法的具体操作,让学生观察、思考和模仿。
4.引导学生总结提公因式法的规律和技巧,如如何快速找到公因式、如何处理多项式的各项系数等。
通过课堂小结,帮助学生梳理所学知识,总结因式分解的方法和技巧,为后续学习打下基础。
6.作业布置,分层指导
根据学生的个体差异,布置不同难度的作业,使每个学生都能在课后得到有效的巩固和提升。
7.教学评价,关注成长
通过课堂表现、作业完成情况、小组讨论等多种方式,全面评价学生的学习成果,关注他们的成长过程。
2.学生通过实际操作或画图,发现需要4块正方形地板。
3.教师引导学生将问题转化为代数表达式:4a × 2a = 4 × a × a,并指出这个过程中实际上已经运用到了因式分解的思想。
4.教师总结:因式分解就是将一个多项式分解为几个整式的乘积形式,它在解决实际问题和简化代数表达式中具有重要作用。
(二)讲授新知,500字
(三)学生小组讨论,500字
1.教师给出几个具有挑战性的因式分解题目,要求学生在小组内进行讨论。
2.学生在讨论过程中,可以互相提问、分享解题思路,共同寻找解题方法。
3.教师巡回指导,关注学生的讨论情况,给予提示和建议。
4.各小组展示解题过程和答案,其他小组进行评价和反馈。
(四)课堂练习,500字
1.教师布置一系列因式分解的练习题,包括基本题和提高题,要求学生在课堂上完成。
(二)教学设想
1.创设情境,导入新课
通过生活实例或数学问题,引导学生感受因式分解的必要性和意义,激发他们的学习兴趣。
北师大版八年级数学下册《因式分解——提公因式法》教学PPT课件(3篇)

= −(4 ∙ 6 2 − 4 ∙ 3 + 4 ∙ 7)
= −4(6 2 − 3 + 7).
易错注意:1.公因式要提尽;
2.公因式是某项时剩余的系数1别忘;
错误
提公因式后括号里少了一项.
正确解:原式=3x·
x-6y·
x+1·x
=x(3x-6y+1)
请你判断小明的解法有误吗?
因式分解: - x2+xy-xz.
解:原式= - x(x+y-z).
错误
提出负号时括号里的项
没变号
正确解:原式= - (x2-xy+xz)
=- x(x-y+z)
探索新知
巩固练习 将下列各式分解因式
项式的各项变号;
2.公因式的系数是多项式各项__________________;
系数的最大公约数
相同的字母
3.字母取多项式各项中都含有的____________;
4.相同字母的指数取各项中最小的一个,即 最低次幂
_________.
合作探究
因式分解:a(x-3)+2b(x-3)
(1)多项式的公因式是什么?
B.6(p+q)2-2(p+q)=2(p+q)(3p+q-1)
C.3(y-x)2+2(x-y)=(y-x)(3y-3x+2)
D.3x(x+y)-(x+y)2=(x+y)(2x+y)
4.用提公因式法因式分解:
(1)6p(p+q)-4q(p+q);
解:6p(p+q)-4q(p+q)
=2(p+q)(3p-2q).
A.x4
B.x3+1
C.x4+1
D.x3-1
初中数学 教案2:因式分解——提公因式法

乘法公式——提公因式法一、教学目标1.使学生了解因式分解的意义,理解因式分解的概念及其与整式乘法的区别和联系.2.使学生理解提公因式法并能熟练地运用提公因式法分解因式.3.树立学生“化零为整”的“化归”的数学思想,培养学生完整地、辩证地看问题的思想.4.树立学生全面分析问题、认识问题的思想,提高学生的观察能力、分析问题及逆向思想的能力.二、教学重点及难点1.教学重点:因式分解的概念及提公因式法.2.教学难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系.三、教学方法理论与实例相结合.四、教学手段设问式、启发式.五、教学过程(一)复习提问1.乘法对加法的分配律.2.添括号法则.(二)新课1.新课引入:用类比的方法引入课题.在学习分数时,我们常常要进行约分与通分,因此常常要把一个数分解因数(即分解约数).例如,把15分解成3×5,把42分解成2×3×7.在代数里学习分式的时候,也常常要进行约分、通分,因此要常常把一个多项式化成几个整式的乘积.在中学里一元高次(二次以上)方程的求解正是根据在实数域上,实系数多项式总可以分解为一次或二次不可约多项式的乘积,那么相应的一元高次方程可以化为一次或二次方程求解.又如一元高次不等式的解法,也是基于一次、二次不等式的解法.将高次不等式化为一、二次不等式组解.因此从知识内容看,把一个多项式恒等变形成几个因式乘积是十分重要的.这一章就是学习如何把一个多项式化成几个整式的积的方法.2.因式分解的概念:请学生每人写出一个单项式与多项式相乘、多项式与多项式相乘的例子,并计算出其结果.(老师按学生所说在黑板写出几个.)如:m(a+b+c)=ma+mb+mc2xy(x-2xy+1)=2x2y-4x2y2+2xy(a+b)(a-b)=a2-b2(a+b)(m+n)=am+an+bm+bn(x-5)(2-x)=-x2+7x-10 等等.再请学生观察它们有什么共同的特点?特点:左边,整式×整式;右边,是多项式.可见,整式乘以整式结果是多项式,而多项式也可以变形为相应的整式与整式的乘积,我们就把这种多项式的变形叫做因式分解.定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.如:因式分解:ma+mb+mc=m(a+b+c).整式乘法:m(a+b+c)=ma+mb+mc.让学生说出因式分解与整式乘法的联系与区别.联系:同样是由几个相同的整式组成的等式.区别:这几个相同的整式所在的位置不同,上式是因式分解;下式是整式乘法.两者是方向相反的恒等变形.因式分解的特征是和差化积的形式,乘法的特征是积化和差的形式.例1 下列各式从左到右哪些是因式分解?(1)x2-xx(x-1) (√)(2)a(a-b)a2-ab (×)(3)(a+3)(a-3)a2-9 (×)(4)a2-2a+1=a(a-2)+1 (×)(5)x2-4x+4(x-2)2 (√)下面我们学习几种常见的因式分解方法.3.提公因式法:我们看多项式:ma+mb+mc请学生指出它的特点:各项都含有一个公共的因式m,这时我们把因式m叫做这个多项式各项的公因式.注意:公因式是各项都含有的公共的因式.又如:a是多项式a2-a各项的公因式.ab是多项式5a2b-ab2各项的公因式.2mn是多项式4m2np-2mn2q各项的公因式.根据乘法的分配律,可得m(a+b+c)=ma+mb+mc,逆变形,便得到多项式ma+mb+mc的因式分解形式ma+mb+mc=m(a+b+c).这说明,多项式ma+mb+mc各项都含有的公因式可以提到括号外面,将多项式ma+mb+mc 写成m(a+b+c)的形式,这种分解因式的方法叫做提公因式法.定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.显然,由定义可知,提公因式法的关键是如何正确地寻找公因式.让学生观察上面的公因式的特点,找出确定公因式的万法:(1)公因式的系数应取各项系数的最大公约数:(2)字母取各项的相同字母,而且各字母的指数取次数例2 指出下列各多项式中各项的公因式:(1)ax+ay+a(a)(2)3mx-6mx2(3mx)(3)4a2+10ah(2a)(4)x2y+xy2(xy)(5)12xyz-9x2y2(3xy)例3 把8a3b2-12ab3c分解因式.分析:分两步:第一步,找出公因式;第二步,提公因式.先引导学生按确定公因式的方法找出多项式的公因式4ab2.解:8a3b2-12ab3c=4ab2·2a2-4ab2·3bc=4ab2(2a2-3bc).说明:(1)应特别强调确定公因式的两个条件以免漏取.(2)开始讲提公因式法时,最好把公因式单独写出.①以显提醒;③强调提公因式;③强调因式分解.例4 把3x2-6xy+x 分解因式.分析:先引导学生找出公因式x,强调多项式中x=x·1.解:3x2-6xy+x=x·3x-x·6y+x·1=x(3x-6y+1).说明:当多项式的某一项恰好是公因式时,这项应看成它与1的乘积,提公因式后剩下的应是1,1作为项的系数通常可以省略,但如果单独成一项时,它在因式分解时不能漏掉,这类题常常有些学生犯下面的错误,3x2-6xy+x=x(3x-6y),这一点可让学生利用恒等变形分析错误原因.还应提醒学生注意:提公因式后的因式的项数应与原多项式的项数一样,这样可以检查是否漏项.课堂练习:把下列各式分解因式:(l)2πR+2πr;(3)3x3+6x2;(4)21a2+7a;(5)15a2+25ab2;(6)x2y+xy2-xy.例5 把-4m3+16m2-26m分解因式.分析:此多项式第一项的系数是负数,与前面两例不同,应先把它转化为前面的情形便可以因式分解了,所以应先提负号转化,然后再提公因式,提“-”号时,注意添括号法则.解:-4m3+16m2-26m=-(4m3-16m2+26m)=-2m(2m2-8m+13).说明:通过此例可以看出应用提公因式法分解因式时,应先观察第一项系数的正负,负号时,运用添括号法则提出负号,此时一定要把每一项都变号;然后再提公因式.课堂练习:把下列各式分解因式:(1)-15ax-20a;(2)-25x8+125x16;(3)-a3b2+a2b3;(4)-x3y3-x2y2-xy;(5)-3ma3+6ma2-12ma;(三)小结1.因式分解的意义及其概念.2.因式分解与整式乘法的联系与区别.3.公因式及提公因式法.4.提公因式法因式分解中应注意的问题.六、作业教材 1、2、3、4.七、板书设计提公因式法同步训练1.下列各式得公因式是a得是()A.ax+ay+5 B.3ma-6ma2 C.4a2+10ab D.a2-2a+ma2.-6xyz+3xy2-9x2y的公因式是()A.-3x B.3xz C.3yz D.-3xy3.把多项式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式的结果是()A.8(7a-8b)(a-b)B.2(7a-8b)2 C.8(7a-8b)(b-a)D.-2(7a-8b)4.把(x-y)2-(y-x)分解因式为()A.(x-y)(x-y-1) B.(y-x)(x-y-1)C.(y-x)(y-x-1) D.(y-x)(y-x+1)5.下列各个分解因式中正确的是()A.10ab2c+6ac2+2ac=2ac(5b2+3c)B.(a-b)3-(b-a)2=(a-b)2(a-b+1)C.x(b+c-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-1)D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)6.观察下列各式①2a+b和a+b,②5m(a-b)和-a+b,③3(a+b)和-a-b,④x2-y2和x2和y2.其中有公因式的是()A.①② B.②③ C.③④ D.①④7.当n为_____时,(a-b)n=(b-a)n;当n为______时,(a-b)n=-(b-a)n.(其中n为正整数)8.多项式-ab(a-b)2+a(b-a)2-ac(a-b)2分解因式时,所提取的公因式应是_____.9.(a-b)2(x-y)-(b-a)(y-x)2=(a-b)(x-y)×________.10.多项式18x n+1-24x n的公因式是_______.11.把下列各式分解因式:(1)15×(a-b)2-3y(b-a)(2)(a-3)2-(2a-6)(3)-20a-15ax(4)(m+n)(p-q)-(m+n)(q+p)12.利用分解因式方法计算:(1)39×37-13×34(2)29×+72×+13×先化简,再求值:已知串联电路的电压U=IR1+IR2+IR3,当R1=,R2=,R3=,I=时,求U的值.14.已知a+b=-4,ab=2,求多项式4a2b+4ab2-4a-4b的值.参考答案1.D 2.D 3.C 4.C 5.D 6.B 7.偶数奇数 8.-a(a-b)29.(a-b+x-y) 10.6x n 3x-411.(1)3(a-b)(5ax-5bx+y);(2)(a-3)(a-5);(3)-5a(4+3x);(4)-2q(m +n)12.(1)原式=39×37-39×33=39(37-27)=390(2)原式=(29+72+13-14)=×100=1999=I(R1+R2+R3)=++=*50=11514.由4a2b+4ab2-4a-4b=4(a+b)(ab-1)=-16。
提公因式法ppt课件

例 1 下列变形中从左到右属于因式分解的有(
①
8xy3=2xy·4y2;
②
x2+1=x
+
)
;
③(x+5)(x-5)=x2-25;④ x2+2x-3=x(x+2)-3;
⑤ x2y+xy2=xy(x+y).
A. 4 个
B. 3 个
C. 2 个
D. 1 个
感悟新知
解题秘方:紧扣因式分解的定义进行识别.
=-5a(3+2b-bc);
感悟新知
知3-练
(3)x(x-y)-y(y-x);
解:原式=x(x-y)+y(x-y)=(x-y)(x+y);
(4)a2(a+2b)-ab(-4b-2a).
原式=a2(a+2b)+2ab(a+2b)=a(a+2b)(a+2b)=a(a+
2b)2.
课堂小结
提公因式法
概念
感悟新知
知3-练
解法提醒:当各项含有相同(或互为相反数)的因式时,
应把它作为一个整体看成公因式中的因式,相同的直接提,
互为相反数的变成相同的再提.
感悟新知
知3-练
5-1. 下列多项式中,能用提公因式法分解因式的是( B )
A. x2-y
B. x2-2x
C. x2+y2
D. x2-xy+y2
感悟新知
即2x2+5x-k=2x2+(2q-3)x-3q,
-=,
=,
所以
解得
-=-,
=. 展开后对应项的系数相等
故另一个因式为x+4,k的值为12.
感悟新知
知1-练
3-1. [中考·滨州] 把多项式x2+ax+b分解因式, 得(x+
1)(x-3),则a,b的值分别是( B )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.(x-2)(b2+b)B.b(x-2)(b+1)
C.(x-2)(b2-b)D.b(x-2)(b-1)
5、如果b-a=-6,ab=7,那么a2b-ab2的值是( )
A.42B.-42 C.13D.-13
二、填空题:
6、多项式14abx-8ab2x+2ax各项的公因式是_____
3、情感目标:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
重点、难点
重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。
公因式的概念;公因式的求法
考点及考试要求
教学内容
知识归纳
1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.(教师提问)
课 题
因式分解-提公因式法提升
教学目标
1、认知目标:(1)理解因式分解的概念和意义
(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
2、能力目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。
(6).m2-4=(m+4)(m-4)因式分解
(7).2πR+2πr=2π(R+r)因式分解
分解因式与整式乘法是互逆过程.
分解因式要注意以下几点:
(1).分解的对象必须是多项式.
(2).分解的结果一定是几个整式的乘积的形式.
(3).要分解到不能分解为止.
2、找公因式的三步:
1、公因式的系数——找各因式系数的最大公约数
(3) ; (4)x2y-3xy2+y3;
(5) (x+y)(x-y)-(x+y)2(6) 8a(x-y)2-4b(y-x)
(7) ; (8)5(m-n)2+2(n-m)3.
(9)、 ( 10)、
( 11) 、
12、因式分解下列各题:
(1)8m2n+2mn (2)12xyz-9x2y2(3)2a(y-z)-3b(z-y)
判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)
(1).x2-4y2=(x+2y)(x-2y)因式分解
(2).2x(x-3y)=2x2-6xy整式乘法
(3).(5a-1)2=25a2-10a+1整式乘法
(4).x2+4x+4=(x+2)2因式分解
(5).(a-3)(a+3)=a2-9整式乘法
2、公因式的字母——各因式中相同的字母
3、相同字母指数——取各字母指数的最低次幂
【典型例题】
例1、下列代数式变形中,哪些是因式分解?哪些不是?为什么?
(1)x2-3x+1=x(x-3)+1;
(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn;
20、20062+2006能被2007整除吗?请说明理由。
21、证明: 能被35整除
13、先化简,再求值:
a(8-a)+b(a-8)-c(8-a),其中a=1,b= ,c= .
14、已知2x-y= ,xy=2,求2x4y3-x3y4的值.
15、32003-4×32002+10×32001能被7整除吗?为什么?
16、把(a+b-c)(a-b+c)+(b-a+c)·(b-a-c)分解因式
7、7ab4+14a2b2-49a3b2=7ab2(________).
8、若4x3-6x2=2x2(2x+k),则k=________.
9、2(a-b)3-4(b-a)2=2(a-b)2(________).
10、36×29-12×33=________.
三、解答题:
11、分解因式:
(1)15a3b2+5a2b(2)-5a2b3+20ab2-5ab
C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a-2b-3c)
3、下列分解因式结果正确的是( )
A.6(x-2)+x(2-x)=(x-2)(6+x) B.x3+2x2+x=x(x2+2x)
C.a(a-b)2+ab(a-b)=a(a-b) D.3xn+1+6xn=3xn(x+2)
【巩固提高】
一、选择题:
1、下列多项式中,公因式是5a2b的是( )
A.15a2b-20a2b2B.30a2b3-15ab4-10a3b2
2b4-10a3b3+15a4b2
2、下列分解因式结果正确的是( )
A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy+6y=3y(x2-x+2)
17、因式分解下列各式
①a(x-y)-b(y-x)+c(x-y) ②2(x-y)2+3(y-x)
③ ④
18、计算与求值
(1)29×20.03+72×20.03+13×20.03-14×20.03.
(2)
(3)计算: (4)计算:5×34+24×32+63×32
(5)已知S=πrl+πRl,当r=45,R=55,l=25,π=3.14时,求S的值.
(4)4x2-4x+1=(2x-1)2;
(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x;
(7)k2+ +2=(k+ )2;
(8)18a3bc=3a2b·6ac。
例2、多项式 的公因式是
例3、分解因式:
例4、分解因式:
例5、分解因式:
例6、分解因式:
例7、证明: 能被120整除