锐角三角函数的简单应用

合集下载

锐角三角函数有哪些实际应用场景

锐角三角函数有哪些实际应用场景

锐角三角函数有哪些实际应用场景锐角三角函数在咱们的日常生活中那可是有着超级多的实际应用场景呢,简直无处不在!先来说说建筑领域吧。

你知道吗,建筑工人在盖房子的时候,可离不开锐角三角函数的知识。

比如说,要建造一个有特定倾斜角度的屋顶,这就需要计算出屋顶的角度以及所需材料的长度和数量。

想象一下,工人们站在高高的脚手架上,拿着测量工具,认真地计算着角度和长度。

他们的眼神专注,手中的工具就像是神奇的魔法棒,通过锐角三角函数,把一堆堆的建筑材料变成了坚固又美观的房子。

再讲讲导航和地图。

当我们使用手机导航去一个陌生的地方时,导航软件会根据我们的位置和目的地,计算出最佳的路线。

这背后可就有锐角三角函数的功劳啦!它帮助确定我们与目的地之间的直线距离和实际行走的路程。

就像有一次我自己出门旅行,在一个完全陌生的城市里,靠着导航找到了一家特别棒的小吃店。

那个时候我就在想,要是没有这些数学知识的支撑,我可能还在街头瞎转悠,找不到美食的方向呢。

还有测量山峰的高度。

测量人员没办法直接爬到山顶去测量,那怎么办呢?这时候就轮到锐角三角函数登场啦!他们在山脚下选好测量点,测量出观测点与山顶的角度,再结合测量点与山底的距离,就能算出山峰的高度。

这就像是解开了一个神秘的谜题,让人充满了成就感。

在航海中,锐角三角函数也发挥着重要作用。

船员们需要根据星星的位置和角度来确定船只的方向和位置。

想象一下,在浩瀚的大海上,满天繁星闪烁,船员们依靠着锐角三角函数的知识,勇敢地驶向目的地,是不是特别酷?在日常生活中,我们装修房子的时候,如果想要在墙上挂一幅画,而且要保证画是水平的,那就得用到锐角三角函数来测量和计算。

又比如,我们要搭建一个秋千,要确定秋千的绳子长度和角度,让秋千荡起来既安全又有趣,这也需要锐角三角函数的帮忙。

甚至在体育比赛中也有它的身影。

比如滑雪运动员在从山坡上滑下来的时候,他们需要根据山坡的角度和自己的速度来调整姿势和控制方向,以确保安全和取得好成绩。

《锐角三角函数的简单应用》说课稿

《锐角三角函数的简单应用》说课稿

《锐角三角函数的简单应用》说课稿一、教学内容与学情分析1.本课内容在教材、新课标中的地位和作用《锐角三角函数的简单应用》是初中数学九年级上册第一章第六节的内容。

本节课是《锐角三角函数的简单应用》的第三课时,是继前面学习了三角函数应用中的有关旋转问题和测量问题后的又一种类型的应用:即有关工程中的坡度问题。

三种类型的问题只是问题的背景不同,事实上解决问题所用的工具都相同,即直角三角形的边角关系。

因此本节课沿用前两节课的教学模式。

直角三角形是最简单、最差不多的几何图形,在生活中随处可见,是研究其他图形的基础,在解决实际问题中也有着广泛的应用.《锐角三角函数的简单应用》是解直角三角形的连续,渗透着数形结合思想、方程思想、转化思想。

因此本课不管是在本章依旧在整个初中数学教材中都具有重要的地位。

关于锐角三角函数的简单应用,《数学新课程标准》中要求:运用三角函数解决与直角三角形有关的简单实际问题,考纲中的能级要求为C(把握)。

2、学生已有的知识基础和学习新知的障碍通过前几节课的学习,学生差不多经历过了建立三角函数模型解决问题的过程,把握了一定的解题技巧和方法,具备了一定的分析问题、解决问题的能力。

这为本节课的学习奠定了良好的基础。

由于坡度问题涉及梯形的有关性质和解题技巧,而学生对此遗忘严峻,再次面对梯形的问题情境,会产生思维上的障碍。

另外坡度问题的运算较复杂,而学生的运算能力较弱,运算器使用不熟练,专门角的三角函数值还没记牢,这些对整个问题的解决都会起到延缓的作用。

二、目标的设定基于以上分析,将本节课教学目标设定为:1.应用三角函数解决有关坡度的问题,进一步明白得三角函数的意义。

2.经历探究实际问题的求解过程,进一步体会三角函数在解决问题过程中的应用。

3.经历实际问题数学化的过程,在独立摸索探究解决问题方法的过程中,不断克服困难,增强应用数学的意识和解决问题的能力。

三、重、难点的确立及依据1、重点:有关坡度问题的运算。

九年级(下)数学教案:锐角三角函数的简单应用(全3课时)

九年级(下)数学教案:锐角三角函数的简单应用(全3课时)

主备人用案人授课时间年月日总第课时课题7.6锐角三角函数的简单应用(1)课型新授教学目标1.进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、2.俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力。

重点进一步掌握解直角三角形的方法难点进一步掌握解直角三角形的方法教法及教具自主学习,合作交流,分组讨论多媒体教学过程教学内容个案调整教师主导活动学生主体活动一.指导先学:如右图所示,斜坡AB和斜坡A1B1哪一个倾斜程度比较大?显然,斜坡A1B l的倾斜程度比较大,说明∠A′>∠A。

从图形可以看出ACBCCACB'''',即tanA l>tanA。

在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度。

新授:坡度的概念,坡度与坡角的关系。

如下图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,例如上图中的1:2的形式。

坡面与水平面的夹角叫做坡角。

从三角函数的概念可以知道,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡学生回顾相关所学知识学生按照老师要求完成自学内容,有难度的可以组内交流,达成统一意见教学过程教学内容个案调整教师主导活动学生主体活动四.检测巩固:如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角。

和坝底宽AD。

(i=CE:ED,单位米,结果保留根号)2.如图,单摆的摆长AB为90cm,当它摆动到∠BAB'的位置时,∠BAB'=30°。

问这时摆球B'较最低点B升高了多少?五.小结反思:通过本节课的学习,你有何收获?你还存在什么疑惑?学生独立完成,有难度的可以组内交流,教师巡视,指导学生分组讨论交流,总结归纳,教师补充板书设计7.6锐角三角函数的简单应用(1)坡度的概念,坡度与坡角的关系。

坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡布置作业补充习题教学札记教学过程教学内容个案调整教师主导活动学生主体活动1、摩天轮启动多长时间后,小明离地面的高度将首次到达10m?2、小明将有多长时间连续保持在离地面20m以上的空中?三.释疑拓展:如图,东西两炮台A、B相距2000米,同时发现入侵敌舰C,炮台A测得敌舰C在它的南偏东40°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离(精确到l米)。

7.6锐角三角函数的简单应用第1课(沭阳县怀文中学)

7.6锐角三角函数的简单应用第1课(沭阳县怀文中学)

初 三 数 学( 7.6锐角三角函数的简单应用第1课)教学目标:通过具体的一些实例,能将实际问题中的数量关系,归结为直角三角形中元素之间的关系。

教学过程:一、自主探究1.在△ABC 中,∠C=90°,∠A=45°,则BC :AC :AB = .2.在△ABC 中,∠C=90°(1)已知∠A=30°,BC=8cm ,求AB 与AC 的长;(2)已知∠A=60°,AC=3cm ,求AB 与BC 的长.二、自主合作解:拓展1.摩天轮启动多长时间后,小明离地面的高度将首次到达10m ?2.小明将有多长时间连续保持在离地面20m 以上的空中? 三、自主展示1.如图,单摆的摆长为90cm,当它摆动到AC 的位置时,∠CAB =15°,问这时摆球C 较最低点B 升高了多少?2.已知跷跷板长4m,当跷跷板的一端碰到的地面时,另一端离地面2m,求此时跷跷板与地面的夹角?3.如图,东西两炮台A 、B 相距2000米,同时发现入侵敌舰C ,炮台A 测得敌舰C 在它的南偏东30°的方向,炮台B 测得敌舰C 在它的正南方,试求敌舰与两炮台的距离(结果保留根号).四、自主拓展3.4.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠;(2)根据手中剩余线的长度求出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米. 根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.11.73)5.如图,某河道要建造一座公路桥,要求桥面离地面高度AC 为3米,引桥的坡角ABC ∠为30°,则引桥的水平距离BC 的长是_________米(结果保留根号) 6.A DB EC 60° 第4题图A B C 第5题图第六题图。

初三数学知识点:锐角三角函数的简单应用知识点

初三数学知识点:锐角三角函数的简单应用知识点

初三数学知识点:锐角三角函数的简单应用知识点
初三数学知识点:锐角三角函数的简单应用知识

读书使学生认识丰富多彩的世界,获取信息和知识,拓展视野。

接下来小编为大家精心准备了锐角三角函数的简单应用知识点,希望大家喜欢!
学习重点难点:
重点:进一步用解直角三角形的知识解决与仰角、俯角、方位角有关的实际问题.
难点:灵活运用三角函数解决实际问题.
【温故知新】
1.如图所示,小华同学在距离某建筑物6米的点A处测得广告牌B点、C点的仰角分别为60°和45°,则广告牌的高度BC为_____________米(结果保留根号).
2.如图,一艘核潜艇在海面下500米A点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行4000米后再次在B点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C点处距离海面的深度?
变式如图,飞机沿水平方向(A,B两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M 到飞行路线AB的距离MN.飞机能够测量的数据有俯角和飞行距离(因安全因素,飞机不能飞到山顶的正上方N处才测飞行距离),请设计一个求距离MN的方案,要求:。

初中锐角三角函数及应用

初中锐角三角函数及应用

初中锐角三角函数及应用锐角三角函数是指角度小于90度的三角函数,包括正弦、余弦和正切。

这些函数在数学和物理学中有着广泛的应用。

首先,我们来介绍一下锐角三角函数的定义和性质。

在一个直角坐标系中,对于一个锐角ABC(角A小于90度), 我们可以定义正弦函数sinA 为点B的纵坐标除以斜边AC的长度,余弦函数cosA 为点B的横坐标除以斜边AC的长度,正切函数tanA 为点B的纵坐标除以横坐标。

其中,sinA、cosA和tanA都是角A的函数。

这些函数有许多重要的性质。

首先,它们的定义域都是锐角的正数集合,即(0,90)。

其次,它们的值域都是(-1,1),即在定义域内,这些函数的值都在-1到1之间变化。

此外,正弦函数和余弦函数还具有周期性,周期为360度或2π弧度。

也就是说,对于一个锐角A,sin(A+360k) = sinA,cos(A+360k) = cosA,其中k 为整数。

在应用方面,锐角三角函数有着广泛的作用。

首先,它们被广泛应用于三角计算。

例如,我们可以利用正弦定理或余弦定理,通过已知边和角来求解三角形的其他未知边和角。

这在测量、建筑、工程等领域都有着重要的应用。

其次,锐角三角函数在物理学中也有着重要的应用。

例如,对于一个斜抛运动的物体,我们可以利用正弦函数和余弦函数来分析其垂直和水平方向上的运动。

它们可以帮助我们计算物体的落点、飞行时间、最大高度等。

另外,锐角三角函数还与周期函数和图像有着密切的关系。

它们的图像可以通过函数的周期性来得到。

例如,正弦函数的图像是一个周期为2π的曲线,具有对称性和单调性,而余弦函数的图像是一个周期为2π的曲线,也具有对称性和反单调性。

此外,锐角三角函数还与三角恒等式有着重要的联系。

三角恒等式是指对于锐角A和B,成立的恒等关系。

利用三角恒等式,我们可以化简复杂的三角函数表达式,简化计算过程。

总的来说,锐角三角函数是数学中一类重要的函数,具有广泛的应用。

它们不仅在三角计算和几何题目中有着重要作用,还与物理学、周期函数和三角恒等式等有着紧密的联系。

锐角三角函数的简单运用

锐角三角函数的简单运用
锐角三角函数的计算方法
锐角三角函数的计算方法包括直接计算、利用三角恒等式化简、利用同角关系式化简等。 掌握这些计算方法是解决三角函数问题的基本技能。
对未来学习锐角三角函数的建议
01
深入理解概念
在学习锐角三角函数的过程中,要深入理解其概念,掌握其性质和定理,
这样才能更好地运用它们解决实际问题。
02 03
利用三角函数求长度
在直角三角形中,已知角度和一边长度,可以利用正弦、余弦、正切等三角函数 求出另一边的长度。
利用三角函Байду номын сангаас求距离
在平面几何问题中,可以利用三角函数求两点之间的距离,或者点到直线的距离 。
判断三角形形状问题
利用三角函数判断三角形形状
通过比较三角形的三个内角的三角函数值,可以判断三角形是锐角三角形、直角三角形还是钝角三角 形。
正弦函数的性质
01
02
03
定义域
正弦函数在第一象限和第 二象限有定义,即角度范 围在0到180度之间。
值域
正弦函数的值域为[-1,1], 表示角度的正弦值永远不 会超过1或小于-1。
单调性
正弦函数在第一象限和第 二象限内是单调递增的, 随着角度的增加,正弦值 也会增加。
余弦函数的性质
定义域
余弦函数在第一象限和第 四象限有定义,即角度范 围在0到180度之间。
锐角三角函数的 简单运用
目录
• 引言 • 锐角三角函数的性质 • 锐角三角函数的计算方法 • 锐角三角函数在几何问题中的应
用 • 锐角三角函数在实际问题中的应
用 • 总结与展望
01
引言
锐角三角函数的定义
锐角三角函数是三角函数中的一种, 主要研究锐角的角度与其边长之间的 关系。常见的锐角三角函数有正弦、 余弦和正切。

锐角三角函数及应用经典例题

锐角三角函数及应用经典例题

锐角三角函数及应用经典例题锐角三角函数是指在单位圆上,从原点出发,与 x 轴正半轴之间的夹角小于90° 的角的三角函数。

其中包括正弦函数sinα、余弦函数cosα、正切函数tanα,以及它们的倒数函数cscα、secα、cotα。

锐角三角函数在数学中有广泛的应用,尤其在几何、物理以及工程学中涉及到角度测量、距离计算等方面经常用到。

下面我们来看一些经典的例题,以加深对锐角三角函数的理解:例题1:已知在锐角 ABC 中,边长 BC = 5, AC = 13、求角 A 的正弦值 sinA、余弦值 cosA 和正切值 tanA。

解答:由于边长BC=5,AC=13,我们可以根据勾股定理求得边长AB=√(AC^2-BC^2)=12角 A 的正弦值 sinA = BC / AC = 5 / 13,余弦值 cosA = AB / AC = 12 / 13,正切值 tanA = BC / AB = 5 / 12例题2:已知在锐角 ABC 中,角B = 35°,边长 BC = 8、求角 A 的正弦值 sinA、余弦值 cosA 和正切值 tanA。

解答:由于已知角B = 35°,边长 BC = 8,我们可以根据正弦函数的定义求得角 A 的正弦值为 sinA = BC / AC。

由于 sinA = BC / AC,我们可以得到 AC = BC / sinA = 8 /sin(180° - A - B)。

根据余弦定理,可以计算出边长AC = √(AB^2 + BC^2 - 2 * AB * BC * cosB)。

代入已知的B = 55° 和 BC = 8,我们可以求得AC = √(AB^2 +8^2 - 2 * AB * 8 * cos35°)。

我们可以进一步根据余弦函数的定义计算 AB 的值,即 cosA = AB / AC,所以 AB = AC * cosA。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档