无创性血流动力学监测
无创血流动力学的监测

实践经验总结
随着科技的不断进步,无创血流动力学监测技术将不断优化和完善,提高监测的准确性和可靠性。
技术创新
未来无创血流动力学监测的应用领域将进一步拓展,不仅局限于心血管疾病,还将应用于其他疾病的治疗和康复过程中。
应用拓展
通过无创血流动力学监测技术,医生可以更加精准地评估患者的病情,制定个性化的治疗方案,提高治疗效果。
03
02
01
技术原理
无创血流动力学监测常用于评估心脏病、心力衰竭、心肌梗死等心血管疾病患者的病情和治疗效果。
心血管疾病
对于重症监护病房的危重病人,无创血流动力学监测有助于及时发现和预防心血管并发症。
危重病人监护
在手术和麻醉过程中,无创血流动力学监测可实时监测血流动力学状态,保障患者安全。
手术麻醉
适用范围
非侵入性
实时监测
操作简便
广泛适用
无创血流动力学监测结果可能受到多种因素的影响,如血压波动、体位改变等,导致准确性不如有创监测。
准确性问题
无创血流动力学监测需要使用专业的设备,对设备和技术的要求较高。
设备依赖
无创血流动力学监测设备的成本较高,增加了医疗成本。
成本较高
无创血流动力学监测无法监测某些参数,如中心静脉压等,需要结合有创监测进行全面评估。
无创血流动力学的监测
目录
无创血流动力学监测技术简介 无创血流动力学监测的临床应用 无创血流动力学监测的优势与局限性 无创血流动力学监测的未来发展 无创血流动力学监测的实践经验分享
01
CHAPTER
无创血流动力学监测技术简介
无创血流动力学监测是指通过非侵入性方法对心血管系统的功能和血流动力学状态进行检测和评估的技术。
第2章 无创血流动力学监测

第2章无创血流动力学监测近十年来,血流动力学监测设备从短时监测向长时实时监测的方向发展,从有创向微创甚至无创的方向发展。
虽然在不同病人中,各种无创血流动力学的检查结果的可靠性差强人意,还有很多需改进的地方,它在获取安全性及简单性的同时丢失了准确性,但它的无创性及操作的简单性为它的临床广泛使用提供了可能。
一、非侵入式脉冲轮廓分析仪(一)T-lineT-line 系统由美国圣地亚哥的Tensys Medical公司生产。
它使用一种称作扁平张力(applanation tonometry)的仪器作为感受器来进行脉冲轮廓分析。
测试时在患者的桡动脉上放置动脉压力传感器,在找到合适位置后,感受器记录被测试者的所有的动脉压力值,并给予被测试者相应的机械压,维持机械压与动脉的跨壁压为零。
随着动脉压值升高,被测试者的受到的机械压力也逐渐升高,达到最大后,动脉压下降,所需机械压力也随之下降。
根据所需机械压大小获得动脉波形图。
与动脉导管监测相比,在监测血压方面,T-line的准确性已被证明,即使在重症监护人群中,它的误差率及一致性也达到了达到美国医疗仪器促进协会(Association for the Advancement of Medical Instrumentation,AAMI)间歇无创血压监测设备的标准。
同时它通过一种特殊的算法结合患者的年龄,性别及其他的生理参数,对动脉波进行计算,得出被测者的心输出量。
有研究报道,在重症患者,该算法与已为大家接受的校准脉冲轮廓分析算法相比,其误差率为23 %。
一项研究对50名心胸手术后患者进行分析,发现T-line测得的CO准确性较高,但该研究对一致性的要求较宽泛。
该研究同时证实了T-line的反应测试者变化趋势的准确性高达95%。
目前关于T-line系统心输出量的测定的准确性的有待于进一步研究,已有的文献暂不能给出肯定的答案,但其对心胸手术患者变化趋势的正确反映,为手术患者围手术期的血流动力学的监测提供可能。
无创心排量和血液动力学监测

有创性血流动力学监测技术
Swan – Ganz:血流动力学测定的金标准
肺动脉漂浮导管测定心排量是公认的 “金标准”。然而监测的有创性和对设备、
技ห้องสมุดไป่ตู้以及操作人员的要求,严重限制了它的
临床应用,同时在放置Swan-Ganz导管过 程中还有血液感染、心律失常、肺栓塞、肺 小动脉破裂和出血、气囊破裂、导管打结等 并发症的隐患,而且费用昂贵。目前国内许 多大医院都有Swan-Ganz,但是实际用量 很少,这主要是受到上述因素的限制。
由于在使用PICCO测定心排量时,脉搏轮廓分析是不可或缺的部分,所以
当波形改变时,可能预示着需要对设备进行重新校准。多久校准一次目前尚不 明确,但是当儿茶酚胺或是血管内容量变化引起动脉波形改变时,重新校准是 非常必要的。(如持续出血、应用升压药、心肺体外分流时)
微创性血流动力学监测技术
PICCO --- 脉搏指示剂连续心排量测定
VIGILEO --- 未经校准的脉搏轮廓分析技术
Vigileo监护仪
FloTrac 传感器
无创性血流动力学监测技术
应用对机体组织没有机械损伤的方法,经皮肤或黏膜等途径间接取得
有关心血管功能的各项参数,其特点是安全、没有或很少发生并发症
理想的无创血流动力监测系统
准确:提供与创伤性监测近似的信息
Swan-Ganz导管经静脉插入上腔静脉或下腔静腔,通过右心房、右 心室、肺动脉主干、左或右肺动脉分支,直到肺小动脉。
其测定心排量的原理是通过漂浮导管在右心房上部一定的时间注入 一定量的冷水,该冷水与心内的血液混合,使温度下降,温度下降 的血流到肺动脉处,通过该处热敏电阻监测血温变化。其后低温血 液被清除,血温逐渐恢复。肺动脉处的热敏电阻所感应的温度变化, 记录温度稀释曲线。通过公式计算出CO。
血流动力学监测

六、周围循环监测
周围循环可反映外周组织的灌注状态。除了 BP、SVR是周围循环监测的重要指标外,临床 上常采用一些间接而简便的指标。 1 毛细血管 充盈时间:正常为:2~3s。 2 体温:正常时中心温度与外周温度差<2°C, 如>3°C,表明周围循环监测不良。 3 尿量:正常时不应少于1ml/min。少尿或无尿 常是组织灌注不良的表现。
3 测定方法
3 注意:A不同部位的动脉压存在差异;B 经常用肝素液冲洗管道,以防凝血和堵塞; C测定仪的零点或换能器的位置应于心脏 在同一水平。 4 并发症的防治:主要有:血栓形成或栓 塞所致肢体缺血或坏死;出血;动脉瘤或 动静脉瘘形成;感染等。
二、中心静脉压测定
中心静脉压(central venous pressure, CVP)是指腔静脉与右房交界处的压力, 是反映右心前负荷的指标。 由四部分组成: 1 右室充盈压; 2 静脉 内壁压或静脉内血容量; 3 静脉外壁压或 静脉收缩压; 4 静脉毛细血管压。CVP与 血容量、静脉张力、右心功能等有关。正 常值为:5~10cmH2O。CVP监测是有创 的。
3 并发症的防治:
主要有:心律失常;气囊破裂;肺动脉 撕裂和出血;感染;肺栓塞;导管打结等。
四、心排出量监测
心排血量(cardiac output, CO)是指 心室每分钟排出的总血量,正常时左、右 心室基本相同。CO是反映心泵功能的重 要指标,主要受心肌收缩性、前负荷、后 负荷、心率等因素影响。此外,通过CO 可以计算出多种血流动力学参数:
五、经食道彩色超声心动图
利用经食道彩色超声心动图,是将超声探头 插入食道,采用食道二维超声心动图、脉冲多 普勒血流计,结合ECG对心脏及大血管进行连 续、无创检查的方法。可对心脏舒缩功能、心 壁运动情况、瓣膜活动、瓣口大小、血流速度 与方向、有无栓子、心肌缺血等进行有效的监 测。是近年来发展很快,应用渐趋广泛的血流 动力学监测手段。其优点为:成像更清晰;测 量更准确;连续而无创;影响因素较少。
无创血流动力学监测

能较确切反映病人的心血管功能,其与心
排量及总外周血管阻力是初步估计循环血
容量的基本指标,对指导术中输液及用药
有重要意义。
无创血压 临床评价
无创伤性,重复性好; 操作简单,易于掌握; 适用范围广泛,包括各年龄的病人和拟行各种大小手术的
患者; 自动化的血压监测,能够按需要定时测压,省时省力; 能够自动检出袖套的大小,确定充气量; 血压超过设定的上限或低于下限时能够自动报警。 受肢体局部病变影响较大,若血压过低数值不准
超声多普勒法
经食管超声多普勒(EDM) 经气管超声多普勒(TTD)
经食管超声多普勒(EDM)
原理:利用超声多普勒探头通过测定红细 胞移动的速度来推算降主动脉的血流量, 用M型超声探头,直接测量降主动脉直径的 大小,由于降主动脉的血流量是CO的 70%(降主动脉血流与CO的相关系数是0.92), 故其计算公式为:CO=降主动脉血流量×降 主动脉的横截面积÷70%。
健康人肺泡CO2含量近似于PaCO2,利用部 分重复呼吸技术可避免直接测量Cv CO2, 即与呼吸机管路相连的重复呼吸环为150ml 的死腔,当呼吸环内的气体与肺泡及肺毛
细血管达到平衡状态时,则可测出环路内 的CO2含量,假设整个重复呼吸过程中 CvCO2无显著变化,则间接FICK公式中 CvCO2可以被约掉,通过环路中CO2含量计 算出CO,平均3-4min测定一次。
血流动力学指标正常值
低血容量的判断
BP CVP CO LVEDV LVEDP PAWP 下腔静脉宽度及吸气变化率
心肌的氧供需平衡
动脉血氧饱和度(SPO2) 血红蛋白含量(Hb) 心排出量(CO) 心率与收缩压的乘积(RPP),正常值<12000,>12000提示心肌缺血 三重指数(TI), TI=RPP*PCWP ,正常值<15000 心内膜下心肌存活率( EVR),EVR= (DBP—PCWP) × TD /SBP × TS
无创血流动力学监测在休克患者中的应用效果

经验交流99无创血流动力学监测在休克患者中的应用效果吴桂云 (黄骅市人民医院,河北黄骅 061100)摘要:目的 探讨无创血流动力学监测在休克患者中的应用效果。
方法:选取2021年10月~2022年6月我院收治的休克患者80例为研究对象,依据监测方法分为对照组和观察组,各40例。
对照组采取持续心电监护监测和常规治疗措施,观察组在此基础上给予无创血流动力学监测指导治疗,测定早期液体复苏1 h、6 h、12 h 患者的心率、呼吸频率、平均动脉压、尿量、血糖、碱剩余、乳酸、pH 值,观察两组并发症发生情况。
结果 液体复苏1 h 时,两组血流动力学参数比较无统计学意义(P >0.05)。
液体复苏6 h、12 h 时,观察组心率、呼吸频率、碱剩余显著低于对照组,平均动脉压、血糖、尿量、乳酸、pH 值显著高于对照组(P <0.05)。
观察组并发症发生率为5.00%,显著低于对照组的22.50%(P <0.05)。
结论 依据无创血流动力学监测可评估休克患者病情和疗效,准确指导液体复苏,改善血流动力学指标,利于患者安全,减少并发症。
关键词:休克;无创血流动力学监测;并发症;液体复苏休克是指因各种强烈致病因素导致循环功能急剧减退、组织器官微循环灌流严重不足、脏器功能障碍和细胞代谢功能异常、重要生命器官机能及代谢严重障碍的全身危重病理过程[1]。
目前临床治疗休克需给予液体复苏,而动态、定量评估患者病情程度及血流动力学指标,实施动态治疗方案调整,是有效补充血容量,避免严重并发症的可靠措施[2]。
持续心电监护监测的指标有限,对调整补液速度及血管活性药物剂量的指导价值有限,因此为确保患者器官灌注明显改善,需透彻掌握大循环和微循环的相关参数。
无创血流动力学监测技术具有无创、简单的优势,利用生物电抗法检测,可实现对循环系统血液运动的规律性进行测量和分析,为临床诊治提供可靠准确的依据[3]。
本研究旨在探讨无创血流动力学监测在休克患者中的应用效果。
无创血流动力学监测

无创血流动力学监测无创血流动力学(LiDCO)监测是近几年来临床广泛使用的血流动力学监测技术。
LiDCO技术测量参数较多,可相对全面地反映血流动力学参数与心脏舒缩功能的变化。
LiDCO血流动力学分析仪同时具备无创与微创两种监测模式。
无创模式基于血管卸荷技术,该技术使用无创指套获得实时的动脉波形,无创袖带校准,经过计算获取血流动力学参数。
LiDCO血流动力学分析仪针对△SV(每搏量增加率)和Frank-Starling原则,依据物理学的定律,结合生理和病理生理学概念,对循环系统中血液运动的规律性进行定量的、动态的、连续的测量和分析,内置了详细的容量负荷试验指导流程,多种容量负荷试验流程适配不同状态的患者。
在不依赖深静脉置管的情况下,LiDCO也能合理判断患者液体容量状态,反映心脏、血管、容量、组织的氧供氧耗等方面功能的多项指标,更好地帮助麻醉科、手术室、重症监护病房、急诊科和其他科室医护人员了解患者血流动力学实时变化,为临床治疗提供数字化的依据,帮助医生制定更贴合患者个体情况的用药和补液方案,辅助临床决策。
有关LiDCO血流动力学分析仪的检测参数,主要有以下几点:CO(心排量)、SV(每搏量/每搏量指数)、SVR(外周阻力/外周阻力指数)、SVV(每搏量变异率)、PPV(脉压变异率)、HRV(心率变异率)、△SV(每搏量增加率)。
其中,主要的监测参数介绍如下:CO:每分钟左心室或右心室射入主动脉或肺动脉的血量,通常所称心输出量,是指每分重心输出量,人体静息时SV约为70毫升(60~80毫升),如果心率每分钟平均为75次,则每分钟输出的血量约为5000毫升(4500~6000毫升)。
SV:指一次心搏,一侧心室射出的血量,称每搏输出量,简称搏出量,搏出量等于心舒末期容积与心缩末期容积之差值,约60~80毫升,影响搏出量的主要因素有:心肌收缩力、静脉回心血量(前负荷)、动脉血压(后负荷)。
SVV:在一个机械通气周期中,吸气时SV增加,呼气时SV下降,以此来算出SVV,SVV来评估液体应答能力,当SVV高于13%时,进行补液或血管活性药物,需要注意的是,纠正SVV不是目标,SVV仅仅是一个工具,提供临床医师用药补液的参考。
无创血流动力学监测

围手术期血流动力学监测
手术风险评估
在手术前进行无创血流动力学监测,可以评估患者的血流动力学状态,预测手术风险,为手术决策提供依据。
术中血流动力学管理
在手术过程中,无创血流动力学监测有助于实时监测患者的血流动力学变化,及时调整治疗方案,保障手术安全。
评估病情严重度
对于重症患者,无创血流动力学监测可以评估患者的血流动力学状态,了解病情严重程度,指导治疗。
超声心动图技术
通过测量脉搏波信号,分析血管阻力和顺应性,评估血流动力学状态。
总结词
脉搏波分析技术通过测量脉搏波信号,分析血管阻力和顺应性,评估血流动力学状态。该技术可以检测动脉血压、血管阻力、血管顺应性等指标,有助于早期发现血管疾病和评估治疗效果。
详细描述
脉搏波分析技术
总结词
利用生物电信号测量身体组织的阻抗变化,评估血流动力学状态。
成本效益
03
无创血流动力学监测技术需要具有成本效益,以便在临床中广泛应用。解决方案:优化技术方案,降低制造成本,同时开展经济性评价,证明技术的经济效益。
临床应用挑战与解决方案
无创血流动力学监测技术需要遵循相关法规和标准,确保技术的合法性和安全性。解决方案:了解并遵守相关法规和标准,如医疗器械管理条例、临床试验规范等。
评估疗效
无创血流动力学监测的重要性
无创血流动力学监测的历史与发展
历史回顾
无创血流动力学监测技术自20世纪50年代开始发展,经历了从有创到无创、从复杂到简便的演变过程。
技术进步
随着科技的不断发展,无创血流动力学监测技术也在不断进步和完善,如超声心动图、心电图、生物阻抗分析等。
未来展望
未来无创血流动力学监测技术将朝着更加智能化、便携化和网络化的方向发展,为心血管疾病的预防和治疗提供更为便捷和高效的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无创性血流动力学监测
[单项选择题]
1、关于“手指扪脉”哪一项不对()
A.可监测心率快慢、不规则心律及房颤
B.检测部位多为浅表的动脉
C.是临床上判断心跳骤停的经典方法
D.低血压时,浅表动脉的搏动微弱
E.心动过速时脉率计数不准确
参考答案:A
[单项选择题]
2、关于食管听诊器哪项不正确()
A.不能用于新生儿和重症婴儿
B.因位于食管内,会导致气道阻塞
C.直径有F12、13和F24三种
D.心诊器头靠近心脏,心音响且清楚
E.容易损伤新生儿食管粘膜
参考答案:A
[单项选择题]
3、有关Korotkoff音原理下列哪一点不对()
A.是血压计袖套放气后在其远端听到的声音
B.典型的Korotkoff音可分为五相
C.第一相开始有响亮的柯氏音,即为收缩压
D.第五相开始,音调变低,为舒张压
E.一般放气速度为每2~3次心跳放气2~3mmHg
参考答案:D
[单项选择题]
4、TEE用于心功能监测时哪项不正确()
A.可同时测定CO、EF和EDV等参数
B.有二尖瓣返流时,CO测定值比实际CO值小
C.不规则心律可致时间、流速积分发生变化
D.只要二尖瓣口舒张期保持恒定,及瓣口必须呈环形才能测定CO
E.可代替漂浮导管,耗费较漂浮导管低
参考答案:B
[单项选择题]
5、关于“手指扪脉”不正确的是()
A.是最常用、最简单的无创方法
B.常用的检测部位是浅表的颞动脉或桡动脉
C.低血压时可扪肱动脉、股动脉或颈总动脉
D.可监测心率快慢、规则与否及搏动强弱
E.扪桡动脉依然是临床判断心跳骤停的经典方法
参考答案:E
[单项选择题]
6、关于袖套测压法错误的是()
A.袖套太宽,读数相对较低
B.一般袖套宽度应为上臂周径的2/3
C.婴儿只宜使用2.5cm的袖套
D.小儿袖套宽度需覆盖上臂长度的2/3
E.袖套太狭窄,压力读数偏高
参考答案:B
[单项选择题]
7、以食管超声心动图测量CO,下述哪项不是必须条件()
A.环形二尖瓣瓣口
B.血流层流
C.无返流
D.心律规则
E.心率50~100次/分
参考答案:E
[单项选择题]
8、关于自动化间断测压法错误的是()
A.基本原理是采用振荡技术
B.不能反映每一心动周期的血压
C.无创性、重复性好
D.有动脉压波形显示
E.低温、血容量不足时均会影响测量结果
参考答案:D
[单项选择题]
9、超声心动图测量心输出量时常将左室视为()
A.椭圆体
B.长方体
C.球体
D.台形圆锥体
E.圆锥体
参考答案:A
[单项选择题]
10、最简单基本的心血管监测是()
A.心输出量
B.中心静脉压
C.心率
D.肺动脉压
E.心电图
参考答案:C
[单项选择题]
11、最有发展前景的心排血量和心功能无创监测方法是()
A.食管超声心动图
B.超声心动图
C.热稀释法测量心排血量
D.桡动脉搏动图分析
E.多普勒心排血量监测
参考答案:A
[单项选择题]
12、食管超声最佳适应证()
A.动脉导管结扎术
B.垂体瘤手术
C.食管癌手术
D.合并心房纤颤的甲亢手术
E.坐位后颅窝手术
参考答案:E
[单项选择题]
13、最常用和最简单的无创伤性心率监测法是()
A.心音图
B.胸前区听诊
C.食管听诊器
D.“手指扪脉”。