材料科学基础(武汉理工大学,张联盟版)课后习题及答案 第八章
《材料科学基础》第二版 (张联盟 著)课后习题答案 武汉理工大学出版社

2-13 根据半径比关系,说明下列离子与O2—配位时的配位数各是多少?已 知rO2-=0.132nm,rSi4+=0.039nm,rK+=0.131nm,rAl3+=0.057nm,rMg2+=0.078nm。
2-14 为什么石英不同系列变体之间的转化温度比同系列变体之间的转化温度高得多?
2-15 有效离子半径可通过晶体结构测定算出。在下面NaCl型结构晶体中,测得MgS和MnS的晶胞参数均 为a=0.520nm(在这两种结构中,阴离子是相互接触的)。
为NaCl型结构时,体积变化的百分数是多少?已
知CN=6时,rMn
2+=0.08nm,rS2
-=0.184nm;CN
=4时,rMn
2+=0.073nm,r
2 S
-=0.167nm。
2-25 钛酸钡是一种重要的铁电陶瓷,其晶型是钙钛矿结构,试问:(1)属于什么点阵?(2)这个结构 中离子的配位数为若干?(3)这个结构遵守鲍林规则吗?请作充分讨论。
2-5 依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么?
2-6 等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空 隙?
2-7 n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积 的?
2-8 写出面心立方格子的单位平行六面体上所有结点的坐标。
2-14 为什么石英不同系列变体之间的转化温度比同系列变体之间的转化温度高得多?
答: 石英同一系列之间的转变是位移性转变,不涉及晶体结构中键的破裂和重建,仅是键长、键角的调 整、需要能量较低,且转变迅速可逆;而不同系列之间的转变属于重建性转变,都涉及到旧键的破裂和新键 的重建,因而需要较的能量,且转变速度缓慢;所以石英不同系列之间的转化温度比同系列变体之间转化的 温度要高的多。
材料科学基础习题与参考答案(doc14页)(优质版)

材料科学基础习题与参考答案(doc14页)(优质版)第一章材料的结构一、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离子键、金属键、组元、合金、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第二相强化。
二、填空题1、材料的键合方式有四类,分别是(),(),(),()。
2、金属原子的特点是最外层电子数(),且与原子核引力(),因此这些电子极容易脱离原子核的束缚而变成()。
3、我们把原子在物质内部呈()排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),(),()。
4、三种常见的金属晶格分别为(),()和()。
5、体心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有体心立方晶格的常见金属有()。
6、面心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有面心立方晶格的常见金属有()。
7、密排六方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),具有密排六方晶格的常见金属有()。
8、合金的相结构分为两大类,分别是()和()。
9、固溶体按照溶质原子在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原子与溶剂原子相对分布分为()和()。
10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。
11、金属化合物(中间相)分为以下四类,分别是(),(),(),()。
12、金属化合物(中间相)的性能特点是:熔点()、硬度()、脆性(),因此在合金中不作为()相,而是少量存在起到第二相()作用。
13、CuZn、Cu5Zn8、Cu3Sn的电子浓度分别为(),(),()。
《材料科学基础》课后答案章

第一章8.计算下列晶体的离于键与共价键的相对比例 (1)NaF (2)CaO (3)ZnS解:1、查表得:X Na =0.93,X F =3.98根据鲍林公式可得NaF 中离子键比例为:21(0.93 3.98)4[1]100%90.2%e ---⨯=共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21(1.00 3.44)4[1]100%77.4%e---⨯=共价键比例为:1-77.4%=22.6%3、ZnS 中离子键比例为:21/4(2.581.65)[1]100%19.44%ZnS e --=-⨯=中离子键含量共价键比例为:1-19.44%=80.56%10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。
答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。
稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。
稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。
但在一定条件下,亚稳态结构向稳态结构转变。
第二章1.回答下列问题:(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(132)与[123],(322)与[236](2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。
(3)在立方晶系的一个晶胞中画出同时位于(101).(011)和(112)晶面上的[111]晶向。
解:1、2.有一正交点阵的a=b,c=a/2。
某晶面在三个晶轴上的截距分别为6个、2个和4个原子间距,求该晶面的密勒指数。
材料科学基础课后习题答案

《材料科学基础》课后习题答案第一章材料结构的基本知识4. 简述一次键和二次键区别答:根据结合力的强弱可把结合键分成一次键和二次键两大类。
其中一次键的结合力较强,包括离子键、共价键和金属键。
一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。
二次键的结合力较弱,包括范德瓦耳斯键和氢键。
二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。
6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高?答:材料的密度与结合键类型有关。
一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。
相反,对于离子键或共价键结合的材料,原子排列不可能很致密。
共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。
9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。
答:单相组织,顾名思义是具有单一相的组织。
即所有晶粒的化学组成相同,晶体结构也相同。
两相组织是指具有两相的组织。
单相组织特征的主要有晶粒尺寸及形状。
晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。
单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。
等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。
对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。
如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。
如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。
材科基

NJ University of Technology
NJ University of Technology
NJ University of Technology
NJ University of Technology
NJ University of Technology
第六章、扩散与固相反应
பைடு நூலகம்
NJ University of Technology
第三章、非晶体固体
1、熔体的概念:不同聚合程度的各种聚合物的混合物 硅酸盐熔体的粘度与组成的关系 2、非晶态物质的特点 3、玻璃的通性(4个) 4、 Tg 、Tf ,相对应的粘度和特点 5、网络形成体、网络变化体、网络中间体
NJ University of Technology
第一章、晶体结构基础
1、晶体的基本概念 晶体的本质:质点在三维空间成周期性重复排列 晶体的基本性质:结晶均一性、各向异性、自限性、对称性、 最小内能性 2、对称的概念 物体中的相同部分作有规律的重复 对称要素:对称面、对称中心、对称轴(对称轴的类型和特点) 4次倒转轴不能被其他的对称要素及其组合取代 (L1、L2、L3、L4、L6、C、P、 L4i ) 对称操作:借助对称要素,使晶体的相同部分完全重复的操作 对称要素的组合必须满足晶体的整体对称要求,不是无限的
材料科学基础第8章习题答案

第8章 习题答案8.2 什么叫相变?按照相变机理来划分,可分为哪些相变?相变:随自由能变化而发生的相结构的变化。
按相变机理可分为:成核-生长机理、连续型相变、马氏体相变、有序-无序转变。
8.10为什么在成核一生成机理相变中,要有一点过冷或过热才能发生相变? 什么情况下需过冷,什么情况下需过热,试证明之。
解:由热力学可知,在等温、等压下有:G H T S ∆=∆-∆在平衡条件下,0G ∆=,则有00H T S ∆-∆=,0/S H T ∆=∆式中: 0T 是相变的平衡温度;H ∆为相变热。
若在任意温度T 的不平衡条件下,则有0G H T S ∆=∆-∆≠若H ∆与S ∆不随温度而变化,将上式代入上式得:0000/T T T G H T H T H H T T -∆∆=∆-∆=∆=∆ 可见,相变过程要自发进行,必须有0G ∆<,则0/0H T T ∆∆<。
若相变过程放热(如凝聚、结晶等)0H ∆<。
要使0G ∆<,必须有0T ∆>,00T T T ∆=->,即0T T >,这表明系统必须“过冷”。
若相变过程吸热(如蒸发、熔融等)0H ∆>,要满足0G ∆<这一条件则必须0T ∆<,即0T T <,这表明系统要自发相变则必须“过热”。
8.13 铁的原子量为55.84 ,密度为 7.32 克 /cm 3,熔点为 1593 ℃,熔化热为 11495 J/mol ,固液界面能为 2.04×10-5 J/cm 2,试求在过冷度为 10 ℃、 100 ℃时的临界晶核大小并估计这些晶核分别由多少个晶胞所组成(已知铁为体心立方晶格,晶格常数a =3.05 nm)解: 当过冷度为10℃时337.311495108.0555.841866m V m H Tg cm J mol G J cm MT g mol ρ∆∆-⨯∆==⨯=-℃℃ 52*6322 2.0410 5.110518.05LS V r J cm r cm nm G J cm--⨯⨯=-=-=⨯=∆- 晶核体积:()3*143V r π= 晶胞体积:32V a = 因此,晶胞个数:()()3*373344 3.145133 1.95100.305r n a π⨯⨯===⨯个 当过冷度为100℃时 337.31149510080.555.841866m V m H Tg cm J mol G J cm MT g mol ρ∆∆-⨯∆==⨯=-℃℃ 52*7322 2.0410 5.110 5.180.5LS V r J cm r cm nm G J cm--⨯⨯=-=-=⨯=∆- 因此,晶胞个数:()()()33*43344 3.14 5.133 1.95100.305r n a π⨯⨯===⨯个 8.14 熔体析晶过程在 1000 ℃时,单位体积自由焓变化418 J/cm 3 ;在 900 ℃时是 2090 J/cm 3 。
材料科学基础(武汉理工大学,张联盟版)课后习题及答案 - 副本

第二章答案2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321);(2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。
2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[]答:2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些?答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么?答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙?答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。
2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。
不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。
2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
答:面心立方格子的单位平行六面体上所有结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1)。
张联盟《材料科学基础》(第2版)笔记和课后习题答案复习考研资料

张联盟《材料科学基础》(第2版)笔记和课后习题(含考研真题)详解完整版>精研学习网>免费在线试用20%资料全国547所院校视频及题库资料考研全套>视频资料>课后答案>往年真题>职称考试目录隐藏第1章材料引言1.1复习笔记1.2课后习题详解1.3名校考研真题详解第2章晶体结构2.1复习笔记2.2课后习题详解2.3名校考研真题详解第3章晶体结构缺陷3.1复习笔记3.2课后习题详解3.3名校考研真题详解第4章非晶态结构与性质4.1复习笔记4.2课后习题详解4.3名校考研真题详解第5章表面结构与性质5.1复习笔记5.2课后习题详解5.3名校考研真题详解第6章相平衡和相图6.1复习笔记6.2课后习题详解6.3名校考研真题详解第7章基本动力学过程—扩散7.1复习笔记7.2课后习题详解7.3名校考研真题详解第8章材料中的相变8.1复习笔记8.2课后习题详解8.3名校考研真题详解第9章材料制备中的固态反应9.1复习笔记9.2课后习题详解9.3名校考研真题详解第10章烧结10.1复习笔记10.2课后习题详解10.3名校考研真题详解第11章腐蚀与氧化11.1复习笔记11.2课后习题详解11.3名校考研真题详解第12章疲劳与断裂12.1复习笔记12.2课后习题详解12.3名校考研真题详解内容简介隐藏本书是张联盟主编的《材料科学基础》(第2版)的学习辅导书,主要包括以下内容:(1)梳理知识脉络,浓缩学科精华。
本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。
因此,本书的内容几乎浓缩了该教材的知识精华。
(2)详解课后习题,巩固重点难点。
本书参考大量相关辅导资料,对张联盟主编的《材料科学基础》(第2版)的课后习题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。
(3)精选考研真题,培养解题思路。
本书从历年考研真题中挑选具有代表性的部分,并对之做了详尽的解析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章答案
8-1若由MgO和Al2O3球形颗粒之间的反应生成MgAl2O4是通过产物层的扩散进行的,(1)画出其反应的几何图形,并推导出反应初期的速度方程。
(2)若1300℃时D Al3+>D Mg2+,O2-基本不动,那么哪一种离子的扩散控制着MgAl
2O4的生成?为什么?
解:(1)假设:
a)反应物是半径为R0的等径球粒B,x为产物层厚度。
b)反应物A是扩散相,即A总是包围着B的颗粒,且A,B同产物C是完全接触的,反应自球表面向中心进行。
c)A在产物层中的浓度梯度是线性的,且扩散截面积一定。
反应的几何图形如图8-1所示:
根据转化率G的定义,得
将(1)式代入抛物线方程中,得反应初期的速度方程为:
(2
)整个反应过程中速度最慢的一步控制产物生成。
D小的控制产物生成,即D Mg2+
小,
Mg2+
扩散慢,整个反应由Mg2+的扩散慢,整个反应由Mg2+的扩散控制。
8-2镍(Ni)在0.1atm的氧气中氧化,测得其质量增量(μg/cm2)如下表:
温度时间
温度
时间
1(h)2(h)3(h)4(h)1(h)2(h)3(h)4(h)
550℃600℃9
17
13
23
15
29
20
36
650℃
700℃
29
56
41
75
50
88
65
106
(1)导出合适的反应速度方程;(2)计算其活化能。
解:(1)将重量增量平方对时间t作图,如图8-2所示。
由图可知,重量增量平方与时间呈抛物线关系,即符合抛物线速度方程式。
又由转化率的定义,得
将式(1)代入抛物线速度方程式中,得反应速度方程为:
图8-2重量增量平方与时间关系图
(2)取各温度下反应1h时进行数据处理拟合,如图8-3所示,
T(℃)
G(%)
1/T
(×10-3K-1)
ln[1-(1-G)1/3] 550 9
1.22 -3.475
600 17 1.14 -2.810
650 29 1.08 -2.227
700 56 1.03 -1.430
图8-3数据处理
由杨德尔方程可得,
对数据作线性回归,得(相关系数为0.98839)
由上式得活化能kJ/mol
8-3由Al2O3和SiO2粉末反应生成莫来石,过程由扩散控制,如何证明这一点?已知扩散活化能为209kJ/mol,1400℃下,1h完成10%,求1500℃下,1h和4h各完成多少?(应用杨德方程计算)
解:如果用杨德尔方程来描述Al2O3和SiO2粉末反应生成莫来石,经计算得到合理的结果,则可认为此反应是由扩散控制的反应过程。
由杨德尔方程,得
又,故
从而1500℃下,反应1h和4h时,由杨德尔方程,知
所以,在1500℃下反应1h时能完成15.03%,反应4h时能完成28.47%。
8-4比较杨德方程、金斯特林格方程优缺点及适应条件。
解:两个方程都只适用稳定扩散的情况。
杨德尔方程在反应初期具有很好的适应性,但杨氏模型中假设球形颗粒截面始终不变。
因而只适用反应初期转化率较低的情况。
而金斯格林方程考虑了在反应进程中反应截面面积随反应过程变化这一事实,因而金氏方程适用范围更广,可以适合反应初、中期。
8-5粒径为1μm球状Al2O3由过量的MgO微粒包围,观察尖晶石的形成,在恒定温度下,第1h有20%的Al2O3起了反应,计算完全反应的时间。
(1)用杨德方程计算;(2)用金斯特林格方程计算。
解:(1)用杨德尔方程计算:
代入题中反应时间1h和反应进度20%,得
h-1
故完全反应(G=1)所需的时间h
(2)用金斯格林方程计算:
同理,代入题中反应时间1h和反应进度20%,得
h-1
故完全反应(G=1)时,
所以完全反应所需的时间h
8-6当测量氧化铝-水化物的分解速率时,发现在等温反应期间,质量损失随时间线性增加到50%左右,超过50%时质量损失的速率就小于线性规律。
速率随温度指数增加,这是一个由扩散控制的反应,还是由界面一级反应控制的反应?当温度从451℃增至493℃时,速率增大到10倍,计算此过程的活化能。
(利用表8-2及图8-22进行分析)
解:根据表8-2部分重要的固相反应动力学方程及图8-22各种类型反应中G-t/t0.5曲线分析,由题意,知
G<50%,G-t呈线性关系
G>50%,G-t小于线性规律,是由扩散控制的反应,且G2=kt
又因为,代入T1=451℃,T2=493℃,G1=G,G2=10G,得
kJ/mol
8-7由Al2O3和SiO2粉末形成莫来石反应,由扩散控制并符合扬德方程,实验在温度保持不变的条件下,当反应进行1h的时候,测知已有15%的反应物发生了反应。
(1)将在多少时间内全部反应物都生成产物?(2)为了加速莫来石的生成,应采取什么有效措施?
解:(1)由杨德尔方程,得
反应完全(G=1)所需的时间为h
(2)可以采用一切有利扩散的因素来加速莫来石的生成:减小粒度,采用活性反应物(如Al2O3·3H2O),适当加压等等
8-8试分析影响固相反应的主要因素。
解:(1)反应物化学组成与结构的影响:反应物中质点作用力越大,反应能力越小;同一反应体系中,固相反应速度与各反应物间的比例有关;矿化剂的特殊作用。
(2)颗粒度和分布影响:粒径越小,反应速度越快;同一反应体系中由于物料尺寸不同,反应速度会属于不同动力学范围控制;少量较大尺寸的颗粒存在会显著延缓反应过程的完成。
(3)反应温度的影响:温度越高,质点热运动增强,反应能力和扩散能力增强。
(4)压力、气氛的影响:两固相间的反应,增大压力有助颗粒的接触面积,加速物质传递过程,使反应速度增加;对有液汽相参加的固相反应,提高压力不表现积极作用,甚至适得其反。
(5)矿化剂的影响:晶格能越大,结构越完整和稳定,反应活性越低。
加入矿化剂可以提高固相反应。
8-9如果要合成镁铝尖晶石,可供选择的原料为MgCO3、Mg(OH)2、MgO、Al2O3·3H2O、γ-Al2O3、α-Al2O3。
从提高反应速率的角度出发,选择什么原料较好?请说明原因。
解:应选用MgCO3,Mg(OH)2和Al2O3·3H2O作原料较好。
因为MgCO3,Mg(OH)2在反应中可以发生热分解,Al2O3·3H2O发生脱水反应和晶型转变,将获得具有较大比表面和晶格缺陷的初生态或无定形物质从而提高了反应活性,加剧了固相反应的进行。