材料科学基础课后习题答案第二章
材料科学基础第二章习题3

26
11. (自己看)己内酰胺在封管内进行开环聚合。按1 mol己内 酰胺计,加有水0.0205mol、醋酸0.0205mol,测得产物的端羧 基为19.8 mmol,端氨基2.3mmol。从端基数据,计算数均分 子量。
27
28
12、 等摩尔的二元酸和二元胺缩聚时,画出P=0.95, 0.99和0.995时的数均分子质量分布曲线和质均分子质 量分布曲线,并计算数均聚合度和质均聚合度,比较 二者的相对分子质量分布的宽度。 解: 已知r=1 P=0.99 或 0.995,根据Flory分布函数, 聚合度为X的聚合物的数均分布函数为
99 X n 100, 所需反应时间 t12 k c 0
所以,t2大约是t1的两倍,故由0.98到0.99所需的时间相近
9
10
5、(作业) 由1mol丁二醇与1mol己二酸合成Mn=5000的聚 酯,试作下列计算: a. 两基团数相等,忽略端基的影响,求终止缩聚的反应程 度P。
b. 在缩聚过程中,如果有0.5%(mol分数)丁二醇缩水成
39
16、AA、BB、A3混合体系进行缩聚,NA0=NB0=3.0 mol , A3中A基团数占混合物中A总数(ρ)的10%, 求p=0.970时的Xn以及Xn=200时的p。
解: 已知NA0=NB0=3.0 mol , A3的ρ=10%, 则:A3中A基团数为:3.0×10%=0.3 mol AA含基团数为:3-0.3=2.7 mol
Xn 1 r 1 r 2rp =……=44.53
b.
所以:Mn=Xn×M0=44.53×100 = 4453
12
c. 同一Mn,即Mn = 5000,Xn= 50 1 r Xn P = 0.982 1 r 2rp =50 d.
材料科学基础习题与答案

第二章思考题与例题1.离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因?2.从结构、性能等方面描述晶体与非晶体的区别。
3.何谓理想晶体?何谓单晶、多晶、晶粒及亚晶?为什么单晶体成各向异性而多晶体一般情况下不显示各向异性?何谓空间点阵、晶体结构及晶胞?晶胞有哪些重要的特征参数?4.比较三种典型晶体结构的特征。
(Al 、α-Fe、Mg 三种材料属何种晶体结构?描述它们的晶体结构特征并比较它们塑性的好坏并解释。
)何谓配位数?何谓致密度?金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同?5.固溶体和中间相的类型、特点和性能。
何谓间隙固溶体?它与间隙相、间隙化合物之间有何区别?(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么?6.已知Cu的原子直径为2.56 A ,求Cu的晶格常数,并计算1mm3Cu的原子数。
7.已知Al 相对原子质量Ar(Al )=26.97,原子半径γ=0.143nm,求Al 晶体的密度。
38 bcc 铁的单位晶胞体积,在912℃时是0.02464nm3;fcc 铁在相同温度时其单位晶胞体积是0.0486nm3。
当铁由bcc转变为fcc 时,其密度改变的百分比为多少?9.何谓金属化合物?常见金属化合物有几类?影响它们形成和结构的主要因素是什么?其性能如何?10.在面心立方晶胞中画出[012]和[1 2 3]晶向。
在面心立方晶胞中画出(012)和(1 2 3)晶面。
11.设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。
反之,求(1213)及(21 12)的正交坐标的表示。
(练习),上题中均改为相应晶向指数,求相互转换后结果。
12.在一个立方晶胞中确定6 个表面面心位置的坐标,6 个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。
13.写出立方晶系的{110} 、{100} 、{111} 、{112}晶面族包括的等价晶面,请分别画出。
材料科学基础第二章作业答案

2-2晶胞是晶体结构中的重复单元,可以取最小原胞如P 胞,也可以取可以反映对称性的较大的原胞如面心立方结构中的晶胞是P 胞的4倍。
空间格子是等同点构成的点阵连成的格子,它和晶体结构的不同之处在于把具体的原子集团抽象成一个等同点或者叫阵点,而其重复的单元是平行六面体。
所以这个平行六面体和晶胞的区别也是平行六面体中的阵点代替了晶胞中的具体的原子团。
2-3(1)由已知1:2:361:31:21所以晶面指数为(3 2 1) (2)晶面指数为(3 2 1) 2-4bcb(011 cbcc2-5 2-6 2-7(略)2-8{0211}有(0112) ,(1102),(0121),(1021)(2011), (0211)。
{2110}有(2110),(0121),(2101),(1210),(0211),(1021),c[0001][)2-9(1)(121)和 (100)面所在的晶带的晶带指数为2:1:01012:0111:0021::==w v u ,所以晶带指数为[012](100)和(010)面所在的晶带的晶带指数为000110::::0:0:1100001u v w ==,所以晶带指数为[001]或写为[001](2)[001]和[111]晶向所决定的晶面的晶面指数为0:1:11100:1110:1101::==l k h ,所以晶面指数为(110)或(110)[010]和[100]晶向所决定的晶面的晶面指数为1:0:01001:0100:0010::==l k h ,所以晶面指数为(001)或(001)2-10(1)(100)晶面的晶面间距nm a d 143.0121100==(110)晶面的晶面间距nm a d 202.001122110=++=(123) 晶面的晶面间距nm ad 0764.0321222123=++=(2)(100)晶面的晶面间距nm a d 183.0121100==(111)晶面的晶面间距nm ad 211.0111111=++=(112)晶面的晶面间距nm a d 149.02112112=++=2.12解:如图:(1)(0,0,0),(0.5,0,0.5)a ,(0.5,0.5,0)a , (0,0.5,0.5)a ,(1,1,1)a ,(0.5,1,0.5)a , (1,0.5,0.5)a ,(0.5,0.5,1)a 。
材料科学基础(武汉理工大学,张联盟版)课后习题及答案

第二章答案2-1略。
2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321);(2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。
2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[]答:2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些?答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么?答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙?答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。
2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。
不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。
2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
答:面心立方格子的单位平行六面体上所有结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1)。
《材料科学与工程基础》-第二章-课后习题答案.pdf

材料科学与工程基础第二章课后习题答案1. 介绍材料科学和工程学的基本概念和发展历程材料科学和工程学是研究材料的组成、结构、性质以及应用的学科。
它涉及了从原子、分子层面到宏观的材料特性的研究和工程应用。
材料科学和工程学的发展历程可以追溯到古代人类使用石器和金属制造工具的时代。
随着时间的推移,人类不断发现并创造出新的材料,例如陶瓷、玻璃和合金等。
工业革命的到来加速了材料科学和工程学的发展,使得煤炭、钢铁和电子材料等新材料得以广泛应用。
2. 分析材料的结构和性能之间的关系材料的结构和性能之间存在着密切的关系。
材料的结构包括原子、晶体和晶界等方面的组成和排列方式。
而材料的性能则反映了材料在特定条件下的机械、热学、电学、光学等方面的性质。
材料的结构直接决定了材料的性能。
例如,金属的结晶结构决定了金属的塑性和导电性。
硬度和导电性等机械和电学性能取决于晶格中原子的排列方式和原子之间的相互作用。
因此,通过对材料的结构进行了解,可以预测和改变材料的性能。
3. 论述材料的性能与应用之间的关系材料的性能决定了材料的应用范围。
不同的材料具有不同的性能特点,在特定的应用领域中会有优势和局限。
例如,金属材料具有良好的导电性和导热性,适用于制造电子器件和散热器件。
聚合物材料具有良好的绝缘性和韧性,适用于制造电线和塑料制品等。
陶瓷材料具有良好的耐高温性和耐腐蚀性,适用于制造航空发动机和化学设备等。
因此,在材料科学和工程学中,对材料性能的研究是为了确定材料的应用和优化材料的性能。
4. 解释与定义材料的特性及其测量方法材料的特性是指材料所具有的特定性质或行为。
它包括了物理、化学、力学、热学、电学等方面的特性。
测量材料的特性需要使用特定的实验方法和设备。
例如,材料的硬度通常可以通过洛氏硬度试验仪或布氏硬度试验仪进行测量。
材料的强度可以通过拉伸试验或压缩试验来测量。
材料的导电性可以通过四探针法或霍尔效应进行测量。
通过测量材料的特性,可以对材料的性能进行评估和比较,并为材料的应用提供参考。
《材料科学与工程基础》-第二章-课后习题答案.pdf

材料科学与工程基础 - 第二章 - 课后习题答案2.1 选择题1.D2.B3.C4.A5.D2.2 填空题1.结构、性质、性能、制备、应用2.金属、陶瓷、聚合物3.晶体4.金属材料、陶瓷材料、聚合物材料、复合材料5.原子、分子2.3 简答题1.材料科学与工程的基础概念和特点有:–材料科学:研究材料的结构、性质、制备和性能等方面的科学。
–材料工程:研究通过控制材料的结构和制备方法,得到具有特定性能和使用寿命的材料并应用于工程中。
材料科学与工程的特点包括:–综合性:材料科学与工程是一门综合性的学科,涉及物理、化学、力学、热学等各个学科。
–实用性:材料科学与工程以实际应用为目的,研究如何通过控制材料的结构和性能,满足工程和产品的需求。
–发展性:随着科技的进步和社会的发展,材料科学与工程也在不断发展,涌现出各种新材料和新技术。
2.不同材料的结构特点及其对材料性能的影响–金属材料:金属材料具有密排列的晶体结构,其晶粒间有较好的连续性,导致金属材料具有良好的导电性、导热性和机械性能。
–陶瓷材料:陶瓷材料以离子键或共价键为主要结合方式,具有非常硬、脆和耐高温的特点,但导电性差。
–聚合物材料:聚合物材料由长链状分子构成,具有良好的绝缘性、柔韧性和可塑性,但强度和硬度较低。
–复合材料:复合材料由不同的两种或更多种材料组成,通过它们的相互作用产生优异的整体性能。
同时,复合材料的结构也决定其性能。
3.材料的制备方法包括:–金属材料的制备方法有铸造、锻造、挤压、焊接等。
–陶瓷材料的制备方法有干法制备和湿法制备等。
–聚合物材料的制备方法有合成聚合法、溶液聚合法、熔融聚合法等。
–复合材料的制备方法有增强相法、混合相法、层压法等。
4.材料性能的测试方法包括:–机械性能的测试方法有拉伸试验、压缩试验、弯曲试验等。
–热性能的测试方法有热膨胀试验、热导率测试等。
–电学性能的测试方法有导电性测试、介电常数测试等。
–光学性能的测试方法有透光率测试、折射率测试等。
材料科学基础课后习题答案

(3) cosφ
=
n3 ⋅ F | n3 || F
|
=
1 3
cosα
=
b⋅F |b || F
|
=
1 2
由 Schmid 定律,作用在新生位错滑移面上滑移方向的分切应力为:
τ 0 = σ cosϕ cos λ = 17.2 ×
1× 3
1 = 7.0 MPa 2
∴作用在单位长度位错线上的力为:
f = τb = aτ 0 = 10 − 3 N/m 2
滑移面上相向运动以后,在相遇处
。
(B
)
A、相互抵消
B、形成一排空位
C、形成一排间隙原子
7、位错受力运动方向处处垂直与位错线,在运动过程中是可变的,
晶体作相对滑动的方向
。
(C
)
A、亦随位错线运动方向而改变 B、始终是柏氏矢量方向 C、始
终是外力方向
8、两平行螺型位错,当柏氏矢量同向时,其相互作用力
。
(B
二、(15 分)有一单晶铝棒,棒轴为[123],今沿棒轴方向拉伸,请分析:
(1)初始滑移系统; (2)双滑移系统 (3)开始双滑移时的切变量 γ; (4)滑移过程中的转动规律和转轴; (5)试棒的最终取向(假定试棒在达到稳定取向前不断裂)。
三、(10
分)如图所示,某晶体滑移面上有一柏氏矢量为
v b
的圆环形位错环,并受到一均匀
14、固态金属原子的扩散可沿体扩散与晶体缺陷扩散,其中最慢的扩
散通道是:
。
(A)
A、体扩散
B、晶界扩散
C、表面扩散
15、高温回复阶段,金属中亚结构发生变化时,
。
(C)
A、位错密度增大 B、位错发生塞积 C、刃型位错通过攀移和滑移构
材料科学基础A第二章习题及答案

材料科学基础A第二章习题及答案2.3 等径球最紧密堆积的空隙有哪两种?一个球周围有多少个四面体空隙、多少个八面体空隙?答:等径球最紧密堆积的空隙有四面体空隙和八面体空隙。
一个球周围有8个四面体空隙和6个八面体空隙。
2.4 n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?答:n个等径球作最紧密堆积时可形成四面体空隙数为(n×8)/4=2n个,八面体空隙数为(n×6)/6=n个。
不等径球堆积时,较大的球体作等径球的紧密堆积,较小的球填充在大球紧密堆积形成的空隙中。
其中稍小的球体填充在四面体空隙,稍大的球体填充在八面体空隙。
2.7 解释下列概念:(1)晶系:晶胞参数相同的一类空间点阵。
(2)晶胞:从晶体结构中取出来的反映晶体周期性和对称性的重复单元。
(3)晶胞参数:表示晶胞的形状和大小的6个参数,即3条边棱的长度a、b、c和3条边棱的夹角α、β、γ。
(4)空间点阵:把晶体结构中原子或分子等结构基元抽象为周围环境相同的阵点之后,描述晶体结构的周期性和对称性的图像。
(5)米勒指数(晶面指数):结晶学中常用(hkl)来表示一组平行晶面的取向,其数值是晶面在三个坐标轴(晶轴)上截距的倒数的互质整数比。
(6)离子晶体的晶格能:1mol离子晶体中的正负离子由相互远离的气态结合成离子晶体时所释放的能量。
(7)原子半径:从原子核中心到核外电子的几率分布趋向于零的位置间的距离。
(8)离子半径:以晶体中相邻的正负离子中心之间的距离作为正负离子的半径之和。
(9)配位数:在晶体结构中,该原子或离子的周围,与它相接相邻结合的原子个数或所有异号离子的个数。
(10)离子极化:离子在外电场作用下,改变其形状和大小的现象(或在离子紧密堆积时,带电荷的离子所产生的电场,必然要对另一个离子的电子云产生吸引或排斥作用,使之发生变形的现象)。
(11)同质多晶:化学组成相同的物质,在不同的热力学条件下形成结构不同的晶体的现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章习题
2-1 a )试证明均匀形核时,形成临界晶粒的△
G K 与其临界晶核体积
V K 之间的关系式为
2
G V
;
b )当非均匀形核形成球冠形晶核时,其△
所以
所以
2-2如果临界晶核是边长为 a 的正方体,试求出其厶G K 与a 的关系。
为什么形成立方体晶核 的厶G K 比球形晶核要大? 解:形核时的吉布斯自由能变化为
a )证明因为临界晶核半径 r K
临界晶核形成功 G K
16
故临界晶核的体积
V K
4
r ;
G V )2
2 G K
G V
b )当非均匀形核形成球冠形晶核时, 非
r
K
2
SL
G
V
临界晶核形成功 3
3( G ;7(2
3cos
3
cos 故临界晶核的体积 V K
3(r 非)3(2 3
3cos
3
cos
V K G V
1
( 3
卸2
3
3cos cos )G V
3 3(書
(2 3cos
cos 3
)
G K %
G K 与V K 之间的关系如何?
G
K
G V G v A a3G v 6a2
3
得临界晶核边长a K
G V
临界形核功
将两式相比较
可见形成球形晶核得临界形核功仅为形成立方形晶核的 1/2。
2-3为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否 会出现过热?为什么?
答:金属结晶时要有过冷度是相变热力学条件所需求的,
只有△ T>0时,才能造成固相的自
由能低于液相的自由能的条件,液固相间的自由能差便是结晶的驱动力。
金属结晶需在一定的过冷度下进行,是因为结晶时表面能增加造成阻力。
固态金属熔 化时是否会出现过热现象,需要看熔化时表面能的变化。
如果熔化前后表面能是降低的, 则
不需要过热;反之,则可能出现过热。
如果熔化时,液相与气相接触,当有少量液体金属在固体表面形成时,就会很快覆盖 在整个固体表面(因为液态金属总是润湿其同种固体金属
)。
熔化时表面自由能的变化为:
G
表面 G 终态 G 始态
A(
GL SL
SG
)
式中G 始态表示金属熔化前的表面自由能; G 终态表示当在少量液体金属在固体金属表面形成
时的表面自由能;A 表示液态金属润湿固态金属表面的面积;b GL 、CSL 、CSG 分别表示气液相 比表面能、固液相比表面能、固气相比表面能。
因为液态金属总是润湿其同种固体金属,根 据润湿时表面张力之间的关系式可写出:b
SG 》6GL +
(SL 。
这说明在熔化时,表面自由能的变
化厶G 表w o ,即不存在表面能障碍,也就不必过热。
实际金属多属于这种情况。
如果固体
16 3
3( G v )2 1 32 3 6 2
(G v )2
b
K
t
K
4
G V
)3
G V 6(
4 G v
)2
64 3 96 3 32 r K
2
~G ?,
球形核胚的临界形核功
(G v )2
(G v )2
(G v )2
G b
K
2 G v
)3
16 3( G v )2
金属熔化时液相不与气相接触,则有可能时固态金属过热。
3
液体覆盖在整个固体表面
2-4试比较均匀形核与非均匀形核的异同点。
答:相同点
1)形核的驱动力和阻力相同;
2)临界晶核半径相等;
3)形成临界晶核需要形核功;
4)结构起伏和能量起伏是形核的基础;
5)形核需要一个临界过冷度;
6)形核率在达到极大值之前,随过冷度增大而增加。
与均匀形核相比,非均匀形核的特点:
1)非均匀形核与固体杂质接触,减少了表面自由能的增加;
2)非均匀形核的晶核体积小,形核功小,形核所需结构起伏和能量起伏就小;形核容易,
临界过冷度小;
3)非均匀形核时晶核形状和体积由临界晶核半径和接触角共同决定;临界晶核半径相同时, 接触角越小,晶核体积越小,形核越容易;
4)非均匀形核的形核率随过冷度增大而增加,当超过极大值后下降一段然后终止;此外,
非均匀形核的形核率还与固体杂质的结构和表面形貌有关。
2-5说明晶体成长形状与温度梯度的关系。
解:纯金属生长形态是指晶体长大时截面的形貌。
界面形貌取决于界面前沿液体中的温度分布。
纯金属凝固时,液固相界面前沿的液体过冷区由金属的理论结晶温度和实际温度分布曲
线围成。
由于理论结晶温度为定值,因此过冷区的形状仅由实际温度分布所决定。
(1)平面状界面。
当液体具有正温度梯度时,晶体以平界面方式推移长大。
此时,界面上任
何偶然的、小的凸起深入液体时,都会使其过冷度减小,长大速率降低或停止长大,而被周
围部分赶上,因而能保持平界面的推移。
长大中晶体沿平行温度梯度的方向生长,或沿散热的反方向生长,而其他方向的生长则受到抑制。
(2)树枝状平面。
当液体具有负温度梯度时,在界面上若形成偶然的凸起伸入前沿液体时,
由于前方液体有更大的过冷度,有利于晶体长大和凝固潜热的散失,从而形成枝晶的一次轴。
一个枝晶的形成,其潜热使邻近液体温度升高,过冷度降低,因此,类似的枝晶只在相邻一
定间距的界面上形成,相互平行分布。
在一次枝晶处的温度比枝晶间温度要高,如图(a)中所示的bb断面上TA>TB,这种负温度梯度使一次轴上又长出二次轴分枝,如图(b)所示。
同样,还会产生多次分枝的枝晶生长的最后阶段,由于凝固潜热放出,使枝晶周围的液体温度
升高至熔点以上,液体中出现正温度梯度,此时晶体长大依靠平界面方式推进,直至枝晶间
隙全部被填满为止。
2-6简述三晶区形成的原因及每个晶区的性能特点。
答:铸锭三晶区的形成原因:
最外层为细小等晶区。
其形成是由于模壁的温度较低,液体的过冷度较大,因而形核率较高所致。
中间为柱状晶区。
其形成主要是模壁的温度升高,晶核的成长率大于晶核的形成率,且沿垂直于模壁方向的散热较为有利。
在细晶区中取向有利的晶粒优先生长为柱状晶。
中心为等轴晶区。
其形成是由于模壁温度进一步升高,液体过冷度进一步降低,剩余余液体中,这些都促使等轴晶的形成。
液体的散热方向性已不明显,处于均匀冷却状态; 同时,未熔杂质、破断枝晶等易集中于剩
铸锭三晶区的性能特点:外表层的细晶区:晶粒细小、组织致密、力学性能良好;中间的柱状晶区:晶粒取向、组织致密、缺陷聚集、塑性较差;心部的等轴晶区:晶粒无方向性、树枝状晶体、组织不够致密、性能一般。
2-7 为了得到发达的柱状晶区应该采取什么措施?为了得到发达的等轴晶区应该采取什么措施?其基本原理如何?
答:铸锭组织控制,主要是对柱状晶区和等轴晶区的分布范围和晶粒大小的控制。
变更合金成分和浇铸条件可以改变各晶区分布范围的大小。
对给定合金而言,有利于柱状晶区发展的因素有:较快的冷却速度,高的熔化温度和浇注温度,定向散热等;有利于等轴晶区发展的因素有:较慢的冷却速度,低的熔化温度和浇注温度,均匀散热等。
为了获得细小的等轴晶粒,可采用变质处理、振动和搅拌等措施。
2-8 指出下列各题错误之处,并改正之。
1)所谓临界晶核,就是体系自由能的减少完全补偿表面自由能增加时的晶胚大小。
改正:临界晶核是体积自由能的减少补偿2/3 表面自由能增加时的晶胚大小。
2)在液态金属中,凡是涌现小于临界晶核半径的晶胚都不能成核,但是只要有足够的能量起伏提供形核功,还是可以成核的。
改正:即使有足够的能量起伏供给,小于临界晶核半径的晶胚也不能成核。
3)无论温度分布如何,纯金属都是以树枝状方式生长。
改正:在负的温度梯度下,纯金属以树枝状方式生长。
本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。