上海市上海实验学校2019~2020学年高一下学期期末考试数学试卷及答案

合集下载

人教A版数学高二弧度制精选试卷练习(含答案)1

人教A版数学高二弧度制精选试卷练习(含答案)1

人教A 版数学高二弧度制精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是 ( ) A .1 B .2 C .3 D .4【来源】黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(理)试题【答案】B 2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为( ) A . B . C . D .【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】C3.扇形圆心角为3π,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1:3B .2:3C .4:3D .4:9【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(二)(带解析)【答案】B4.已知扇形的圆心角为2弧度,弧长为4cm , 则这个扇形的面积是( ) A .21cm B .22cm C .24cm D .24cm π【来源】陕西省渭南市临渭区2018—2019学年高一第二学期期末数学试题【答案】C5.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题【答案】B 6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π- C .23π D .23π-【来源】浙江省台州市2019-2020学年高一上学期期末数学试题【答案】B7.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【来源】安徽省池州市2019-2020学年高一上学期期末数学试题【答案】C8.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( )A .14B .12或2C .1D .14或1 【来源】广西贵港市桂平市2019-2020学年高一上学期期末数学试题【答案】D9.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( )A .7B .6C .5D .4【来源】安徽省六安市六安二中、霍邱一中、金寨一中2018-2019学年高二下学期期末联考数学(文)试题【答案】B10.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( )A .2B .sin1C .2sin1D .2cos1【来源】湖北省宜昌市一中、恩施高中2018-2019学年高一上学期末联考数学试题【答案】C11.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)( )A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸【来源】山东省潍坊市2018-2019学年高一下学期期中考试数学试题【答案】A12.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1 C .2sin 1 D .sin 2【来源】黑龙江省部分重点高中2019-2020学年高一上学期期中联考数学试题【答案】C13.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【来源】江苏省南京市2019-2020学年高一上学期期末数学试题【答案】B14.已知α 为第三象限角,则2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【来源】四川省南充高级中学2016-2017学年高一4月检测考试数学试题【答案】D15.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【来源】江苏省盐城市大丰区新丰中学2019-2020学年高一上学期期末数学试题【答案】B16.周长为6,圆心角弧度为1的扇形面积等于( )A .1B .32πC .D .2【来源】河北省邯郸市魏县第五中学2019-2020学年高一上学期第二次月考数学试题【答案】D17.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( )A .2B .3C .6D .9【来源】2013-2014学年辽宁省实验中学分校高二下学期期末考试文科数学试卷(带解析)【答案】D18.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( ) A . B . C .D .【来源】2015高考数学理一轮配套特训:3-1任意角弧度制及任意角的三角函数(带解析)【答案】C19.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1B .1122-cos 1C .1122-sin 12D .1122-cos 12【来源】河北省衡水中学2019-2020学年高三第一次联合考试数学文科试卷【答案】A20.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53π B .23π C .52π D .2π 【来源】河南省新乡市2018-2019学年高一下学期期末数学试题【答案】C21.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【来源】吉林省长春市2019-2020学年上学期高三数学(理)试题【答案】A22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【来源】上海市实验学校2018-2019学年高一下学期期末数学试题【答案】B23.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【来源】安徽省阜阳市太和县2019-2020学年高三上学期10月质量诊断考试数学(文)试题【答案】D24.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24 C .12 D .6【来源】湖南师范大学附属中学2016-2017学年高一下学期期中考试数学试题【答案】B25.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π 【来源】河南省新乡市辉县市一中2018-2019高一下学期第一阶段考试数学试题【答案】D26.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1 C .2sin1 D .4sin1【来源】黑龙江省大兴安岭漠河一中2019-2020学年高一上学期11月月考数学试题【答案】D27.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90α︒-B .90α︒+C .360α︒-D .180α︒+【来源】福建省厦门双十中学2017-2018学年高一下学期第二次月考数学试题【答案】C28.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2 C . D .【来源】河南省南阳市2016—2017学年下期高一期终质量评估数学试题【答案】B二、填空题29.已知大小为3π的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为______. 【来源】安徽省马鞍山市第二中学2018-2019学年高一下学期开学考试数学试题【答案】23π. 30.135-=o ________弧度,它是第________象限角.【来源】浙江省杭州市七县市2019-2020学年高一上学期期末数学试题【答案】34π- 三 31.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【来源】2011-2012学年安徽省亳州一中高一下学期期中考试数学试卷(带解析)【答案】32.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2R π(R 为地球半径),则这两地间的球面距离为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】3R π 33.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【来源】浙江省宁波市2019-2020学年高一上学期期末数学试题【答案】2 134.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______.【来源】上海市普陀区2016届高三上学期12月调研(文科)数学试题 【答案】3π 35.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【来源】福建省漳州市2019-2020学年学年高一上学期期末数学试题 【答案】6π 36.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【来源】福建省福州市八县一中2019-2020学年高一上学期期末联考数学试题 【答案】52π37.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PA PB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__.【来源】上海市复兴高级中学2015-2016学年高二上学期期末数学试题【答案】4338.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .【来源】山东省泰安市2019届高三上学期期中考试数学(文)试题 【答案】91639.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________【来源】上海市向明中学2018-2019学年高三上学期第一次月考数学试题【答案】16cm40.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【来源】上海市七宝中学2015-2016学年高一下学期期中数学试题 【答案】2341.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【来源】江苏省苏州市2019届高三上学期期中调研考试数学试题【答案】6π42.若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm .【来源】黑龙江省齐齐哈尔八中2018届高三8月月考数学(文)试卷43.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm .【来源】浙江省杭州市西湖高级中学2019-2020学年高一上学期12月月考数学试题【答案】2 444.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________【来源】江西省宜春市上高县第二中学2019-2020学年高一上学期第三次月考数学(理)试题【答案】2.45.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【来源】[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(带解析)【答案】二三、解答题46.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限;(Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【来源】安徽省合肥市巢湖市2019-2020学年高一上学期期末数学试题【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 47.已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【来源】山东省济南市外国语学校三箭分校2018-2019学年高一下学期期中数学试题【答案】(1)()10cm 3π(2)2α= 48.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【来源】江西省南昌市新建一中2019-2020学年高一上学期期末(共建部)数学试题【答案】2π+12,6π﹣49.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【来源】宁夏大学附中2019-2020学年高一上学期第一次月考数学试题【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.50.已知扇形的圆心角为α(0α>),半径为R .(1)若60α=o ,10cm R =,求圆心角α所对的弧长;(2)若扇形的周长是8cm ,面积是24cm ,求α和R .【来源】安徽省阜阳市颍上二中2019-2020学年高一上学期第二次段考数学试题【答案】(1)10cm 3π(2)2α=,2cm R =。

上海市光明中学2019-2020学年度高一数学第一学期期末考试(详解版)

上海市光明中学2019-2020学年度高一数学第一学期期末考试(详解版)

光明中学2019学年第一学期期末考试高一数学试题命题人 向宪贵 审题人 蔡晓荣 2020.01考生注意: l .本试卷共有19道试题,满分100分.考试时间90分钟.2.答卷前,考生务必在答题纸上将学校、班级、姓名、学号、准考证号等填写清楚.友情提示: 诚实守信,沉着冷静,细致踏实,自信自强!一、填空题(本大题共有10道小题,1-6题填对得3分,7-10题填对得4分,满分34分)1、函数12()f x x =的定义域是 ;2、不等式111x <-的解集为 ; 3、函数2()1(0)f x x x =-≥的反函数1()f x -= ;4、函数()ln(2)f x x =-的递增区间为 ;5、方程96370x x -⋅-=的解是 ;6、已知函数()f x 为偶函数,且当0x >时2()1f x =x x -+,则当0x <时()f x = ; 7、已知函数⎩⎨⎧≥-<=)4(),1()4(,2)(x x f x x f x ,那么(5)f 的值为____________;8、函数2()f x x bx c =++与函数21()x x g x x ++=在区间1[,2]2上的同一点处取相同的最小值,则()f x 在区间1[,2]2上的最大值是 ;9、直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 ;10、设函数定义域为R ,对于给定的正数K ,定义函数取函数.当=时,函数的单调递增区间为 .二、单选题(本大题共有4道题,每道题只有一个正确选项,选对得4分,满分16分)11、下面四个条件中,使a b >成立的充分而不必要的条件是( ).A 1a b >+ .B 1a b >- .C 22a b > .D 33a b >()y f x =(),(),(),().K f x f x K f x K f x K ≤⎧=⎨>⎩()2x f x -=K 12()K f x12、定义域为R 的函数()f x 是奇函数,且在[0,5]x ∈上是增函数,在[5,)+∞上是减函数,又(5)2f =,则()f x ( ).A 在[5,0]x ∈-上增函数且有最大值-2 .B 在[5,0]x ∈-上增函数且有最小值-2.C 在[5,0]x ∈-上减函数且有最大值-2 .D 在[5,0]x ∈-上减函数且有最小值-213、若函数()f x 为R 上的偶函数,且()f x 在[)0+∞,上单调递减,则不等式(21)()f x f x -≥的解集为( )A. 113⎡⎤⎢⎥⎣⎦,B. [)1,1,3⎛⎤-∞+∞ ⎥⎝⎦U C. (][),11,-∞+∞U D. (],1-∞ 14、有下面四个命题:①奇函数一定是单调函数;②函数3(0)xy k k =⋅>(k 为常数)图像可由3x y =的图像平移得到;③若幂函数a y x =是奇函数,则a y x =是定义域上的增函数;④既是奇函数又是偶函数的函数是0()y x R =∈.其中正确的有( ).A 3个 .B 2个 .C 1个 .D 0个三、解答题(本大题共有5道题,满分50分)15、(本题满分8分,第一问4分,第二问4分) 已知1{|39}3x A x =<<, {}2|log 0B x x =>. (1)求A B ⋂和A B ⋃;(2)定义{|A B x x A -=∈且}x B ∉,求A B -和B A -.16、(本题满分10分,第一问4分,第二问6分)函数()2x f x =和3()g x x =的图像的示意图如图所示,两函数的图像在第一象限只有两个交点()()111212,,,,A x y B x y x x <(1)请指出示意图中曲线12C C 、分别对应哪一个函数;(2)设函数()()()h x f x g x =-,则函数()h x 的两个零点为12x x 、,如果12[,1],[,1]x a a x b b ∈+∈+,其中,a b 为整数,指出,a b 的值,并说明理由.17、(本题满分10分,第一问4分,第二问6分) 已知函数3()log 0,13m x f x m m x -=>≠+(). (1)判断()f x 的奇偶性并证明;(2)若12m =,试用定义法判断()f x 在3,+∞()的单调性.18、(本题满分10分,第一问3分,第二问7分)科学家发现某种特别物质的温度y (单位:摄氏度)随时间x (时间:分钟)的变化规律满足关系式:122x x y m -=⋅+(04x ≤≤,0m >).(1)若2m =,求经过多少分钟,该物质的温度为5摄氏度;(2)如果该物质温度总不低于2摄氏度,求m 的取值范围.19、(本题满分12分,第一问3分,第二问4分,第三问5分)已知函数1()22x xf x =-,()(4lg )lg ()g x x x b b R =-⋅+∈. (1)若()0f x >,求实数x 的取值范围;(2)若存在12,[1,)x x ∈+∞,使得12()()f x g x =,求实数b 的取值范围;(3)若()0<g x 对于(0,)x ∈+∞恒成立,试问是否存在实数x ,使得[()]f g x b =-成立?若存在,求出实数x 的值;若不存在,说明理由.上海市光明中学2019学年第一学期期终考试高一数学试题参考答案一、填空题(本大题共有10道小题,1-6题填对得3分,7-10题填对得4分,满分34分)1、[)0,+∞2、(,0)(2,)-∞+∞U 3、1(1)f x x -≥-4、()2,+∞5、3log 7x =6、2()1f x =x +x +7、88、49、5(1,)4 10、二、单选题(本大题共有4道题,每道题只有一个正确选项,选对得4分,满分16分)11、A 12、B 13、A 14、C三、解答题(本大题共有5道题,满分50分)15、(本题满分8分,第一问4分,第二问4分)解:(1)()1{|39}1,23x A x =<<=-; --------1分 {}()2|log 01,B x x =>=+∞ --------2分()1,2A B ⋂=, --------3分()1,A B ⋃=-+∞--------4分(2) (]1,1A B -=-, --------2分[)2,B A -=+∞--------4分16、(本题满分10分,第一问4分,第二问6分)【解】(1)C 1对应的函数为3()g x x =,--------2分C 2对应的函数为()2x f x =. --------4分(2)计算得1,9a b == --------1分理由如下:令3()()()2x x f x g x x ϕ=-=-, --------2分 (,1)-∞-由于93103(1)10,(2)40,(0,(10)210909)2h h h h =>=-<=<=->-,--------4分 则函数()x ϕ的两个零点2(1,2),(9,10)i x x ∈∈--------5分 因此整数1,9a b == --------6分17、(本题满分10分,第一问4分,第二问6分)【解】(1)()f x 是奇函数;证明如下: 由303x x -+>解得3,3x x <->或; 所以()f x 的定义域为(,3)(3,)-∞-+∞U 关于原点对称. --------1分∵()3333m m x x f x log log x x --+-==-+-=()13()3m x log f x x -+=--, --------3分 故()f x 为奇函数.--------4分(2)任取1212,3,x x x x ∈+∞<(),且 - ()()1212123333m m x x f x f x log log x x ---=-++=()()()()12123333m x x log x x -++-, --------2分 ∵()()()()()112221333036x x x x x x -+-+-=<-,∴()()()()121203333x x x x <-+<+-,即()()()()1212330133x x x x -+<+-<, -------4分 当12m =时,()()()()12112233033x x log x x -+>+-,即()12()f x f x >.--------5分 故()f x 在3,+∞()上单调递减.--------6分18、(本题满分10分,第一问3分,第二问7分)【解】(1)由题意,当2m =,令122222252x x x xy -=⋅+=⋅+=, 04x ≤≤Q 时,解得1x =, -------2分因此,经过1分钟时间,该物质的温度为5摄氏度;--------3分(2)由题意得1222x x m -⋅+≥对一切04x ≤≤恒成立,则由1222x x m -⋅+≥,得出22222x x m ≥-,--------2分 令2x t -=,则1116t ≤≤,且222m t t ≥-,--------4分构造函数()221122222f t t t t ⎛⎫=-=--+ ⎪⎝⎭, 所以当12t =时,函数()y f t =取得最大值12,则12m ≥.--------6分 因此,实数m 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.--------7分19、(本题满分12分,第一问3分,第二问4分,第三问5分)【解】(1)()0f x >即22x x ->,∴x x >-,∴0x >.--------3分 (2)设函数()f x ,()g x 在区间[)1,+∞上的值域分别为A ,B ,因为存在[)12,1,x x ∈+∞,使得()()12f x g x =,所以A B ⋂≠∅,--------1分∵()122x x f x =-在[)1,+∞上为增函数,∴3,2A ⎡⎫=+∞⎪⎢⎣⎭,--------2分 ∵()()2lg 24g x x b =--++,[)1,x ∈+∞,∴()(],4g x b ∈-∞+,∴(],4B b =-∞+.--------3分 ∴342b +≥即52b ≥-.--------4分 (3)∵()()2lg 240g x x b =--++<对于()0,x ∈+∞恒成立,∴40b +<,4b <-,--------1分且()g x 的值域为(],4b -∞+.--------2分∵()122x x f x =-为增函数,--------3分 且0x <时,()0f x <,∴()0f g x ⎡⎤<⎣⎦.--------5分∴()0f g x b ⎡⎤+<⎣⎦,-------6分∴不存在实数x ,使得()f g x b ⎡⎤=-⎣⎦成立. --------7分。

人教版数学高一下册期末测试精选(含答案)1

人教版数学高一下册期末测试精选(含答案)1

人教版高一下册期末测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.设,m n 为两条不同的直线,,,αβγ为三个不重合平面,则下列结论正确的是( ) A .若m αP ,n αP ,则m n P B .若m α⊥,m n P ,则n α⊥ C .若αγ⊥,βγ⊥,则αβ∥D .若m α⊥,αβ⊥,则m βP【来源】广西柳州市铁一中学2019-2020学年高一上学期期末数学试题 【答案】B2.在四棱锥P ABCD -中,PA ⊥平面ABC ,ABC ∆中,32BA BC AC ===,2PA =,则三棱锥P ABC -的外接球的表面积为( )A .B .22πC .12πD .20π【来源】广西柳州市铁一中学2019-2020学年高一上学期期末数学试题 【答案】B3.直线10x -+=的倾斜角为( ) A .3π B .6π C .23π D .56π 【来源】山西省康杰中学2017-2018学年高二上学期期中考试数学(文)试题 【答案】B4.鲁班锁是中国古代传统土木建筑中常用的固定结合器,也是广泛流传于中国民间的智力玩具,它起源于古代中国建筑首创的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,外观看上去是严丝合缝的十字几何体,其上下、左右、前后完全对称,十分巧妙.鲁班锁的种类各式各样,其中以最常见的六根和九根的鲁班锁最为著名.九根的鲁班锁由如图所示的九根木榫拼成,每根木榫都是由一根正四棱柱状的木条挖一些凹槽而成.若九根正四棱柱底面边长均为1,其中六根最短条的高均为3,三根长条的高均为5,现将拼好的鲁班锁放进一个球形容器内,使鲁班锁最高的三个正四棱柱形木榫的上、下底面顶点分别在球面上,则该球形容器的表面积(容器壁的厚度忽略不计)的最小值为( )A .24πB .25πC .26πD .27π【来源】湖南省永州市2019-2020学年高一上学期期末数学试题 【答案】D 5.函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .【来源】湖南省邵阳市邵东县创新实验学校2019-2020学年高一上学期期中数学试题 【答案】C6.一个棱长为2的正方体被一个平面截去一部分后,剩余几何体的三视图如图所示,则截去的几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱【来源】北京市西城区2018年1月高三期末考试文科数学试题 【答案】B7.已知直线0x y m -+=与圆O :221x y +=相交于A ,B 两点,若OAB ∆为正三角形,则实数m 的值为( )A .B .2C .D 【来源】西藏自治区拉萨中学2018届高三第七次月考数学(文)试题 【答案】D8.如果直线l 上的一点A 沿x 轴在正方向平移1个单位,再沿y 轴负方向平移3个单位后,又回到直线l 上,则l 的斜率是( ) A .3 B .13C .-3D .−13【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】C9.一个平面四边形的斜二测画法的直观图是一个边长为1的正方形,则原平面四边形的面积等于( ) A .√2 B .2√2 C .8√23D .8√2【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】B10.直线y =kx +3与圆(x −2)2+(y −3)2=4相交于M,N 两点,若|MN|≥2,则k 的取值范围是( )A .[−√3,√3]B .(−∞,−√3]∪[√3,+∞)C .[−√33,√33] D .[−23,0]【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】A11.已知点P(2,1)在圆C:x 2+y 2+ax −2y +b =0上,点P 关于直线x +y −1=0的对称点也在圆C 上,则实数a,b 的值为( )A .a =−3,b =3B .a =0,b =−3C .a =−1,b =−1D .a =−2,b =1 【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】B12.已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为() A .27πB .36πC .54πD .81π【来源】山西省2019-2020学年高二上学期10月联合考试数学(理)试题 【答案】B13.在三棱锥A BCD -中,AD CD ⊥,2AB BC ==,AD =CD =,则该三棱锥的外接球的表面积为( ) A .8πB .9πC .10πD .12π【来源】辽宁省辽阳市2019-2020学年高三上学期期末考试数学(文)试题 【答案】A14.直线()2140x m y +++=与直线 320mx y +-=平行,则m =( ) A .2B .2或3-C .3-D .2-或3-【来源】江苏省南京市六校联合体2018-2019学年高一下学期期末数学试题 【答案】B15.如图,在正方体1111ABCD A B C D -中,M ,N 分别是为1BC ,1CD 的中点,则下列判断错误的是( )A .MN 与1CC 垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与11A B 平行【来源】2015届福建省三明市一中高三上学期半期考试理科数学试卷(带解析) 【答案】D16. (2017·黄冈质检)如图,在棱长均为2的正四棱锥P -ABCD 中,点E 为PC 的中点,则下列命题正确的是( )A .BE ∥平面PAD ,且BE 到平面PADB .BE ∥平面PAD ,且BE 到平面PAD 的距离为3C .BE 与平面PAD 不平行,且BE 与平面PAD 所成的角大于30° D .BE 与平面PAD 不平行,且BE 与平面PAD 所成的角小于30°【来源】2014-2015学年湖北省安陆市一中高一下学期期末复习数学试卷(带解析)【答案】D17.如图,在直角梯形ABCD 中,0190,//,12A AD BC AD AB BC ∠====,将ABD ∆沿BD 折起,使得平面ABD ⊥平面BCD .在四面体A BCD -中,下列说法正确的是( )A .平面ABD ⊥平面ABCB .平面ACD ⊥平面ABC C .平面ABC ⊥平面BCDD .平面ACD ⊥平面BCD【来源】湖南省衡阳市第一中学2018-2019学年高一上学期期末考试数学试题 【答案】B18.已知直线l :()y t k x t -=-()2t >与圆O :224x y +=有交点,若k 的最大值和最小值分别是,M m ,则log log t t M m +的值为( ) A .1B .0C .1-D .222log 4t t t ⎛⎫⎪-⎝⎭【来源】福建省三明市2019-2020学年高二上学期期末数学试题 【答案】B19.若x 2+y 2–x +y –m =0表示一个圆的方程,则m 的取值范围是 A .m >−12 B .m ≥−12 C .m <−12D .m >–2【来源】2018年12月9日——《每日一题》高一 人教必修2-每周一测 【答案】A20.如图所示,直线PA 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面PAC 的距离等于线段BC 的长.其中正确的是( )A .①②B .①②③C .①D .②③【来源】二轮复习 专题12 空间的平行与垂直 押题专练 【答案】B二、多选题21.如图,在长方体1111ABCD A B C D -中,5AB =,4=AD ,13AA =,以直线DA ,DC ,1DD 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则( )A .点1B 的坐标为()4,5,3B .点1C 关于点B 对称的点为()5,8,3- C .点A 关于直线1BD 对称的点为()0,5,3 D .点C 关于平面11ABB A 对称的点为()8,5,0【来源】福建省三明市2019-2020学年高二上学期期末数学试题 【答案】ACD三、填空题22.若直线:l y x m =+上存在满足以下条件的点P :过点P 作圆22:1O x y +=的两条切线(切点分别为,A B ),四边形PAOB 的面积等于3,则实数m 的取值范围是_______ 【来源】福建省厦门市2018-2019学年度第二学期高一年级期末数学试题【答案】-⎡⎣23.点E 、F 、G 分别是正方体1111ABCD A B C D -的棱AB ,BC ,11B C 的中点,则下列命题中的真命题是__________(写出所有真命题的序号).①以正方体的顶点为顶点的三棱锥的四个面中最多可以四个面都是直角三角形; ②点P 在直线FG 上运动时,总有AP DE ⊥;③点Q 在直线11B C 上运动时,三棱锥1A D QC -的体积是定值;④若M 是正方体的面1111D C B A ,(含边界)内一动点,且点M 到点D 和1C 的距离相等,则点M 的轨迹是一条线段.【来源】湖北省武汉市(第十五中学、十七中学、常青一中)2019-2020学年高二上学期期末数学试题 【答案】①②④24.如图,M 、N 分别是边长为1的正方形ABCD 的边BC 、CD 的中点,将正方形沿对角线AC 折起,使点D 不在平面ABC 内,则在翻折过程中,有以下结论:①异面直线AC 与BD 所成的角为定值. ②存在某个位置,使得直线AD 与直线BC 垂直.③存在某个位置,使得直线MN 与平面ABC 所成的角为45°.④三棱锥M -ACN 体积的最大值为48. 以上所有正确结论的序号是__________.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题 【答案】①③④25.已知两点(2,0)M -,(2,0)N ,若以线段MN 为直径的圆与直线430x y a -+=有公共点,则实数a 的取值范围是___________.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题 【答案】[]10,10-26.已知正方体1111ABCD A B C D -的棱长为点M 是棱BC 的中点,点P在底面ABCD 内,点Q 在线段11A C 上,若1PM =,则PQ 长度的最小值为_____.【来源】北京市海淀区2018届高三第一学期期末理科数学试题27.某几何体的三视图如下图所示,则这个几何体的体积为__________.【来源】黄金30题系列 高一年级数学(必修一 必修二) 小题好拿分 【答案】20328.设直线3450x y +-=与圆221:9C x y +=交于A , B 两点,若2C 的圆心在线段AB 上,且圆2C 与圆1C 相切,切点在圆1C 的劣弧AB 上,则圆2C 半径的最大值是__________.【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】229.已知直线240x my ++=与圆22(1)(2)9x y ++-=的两个交点关于直线0nx y n +-=对称,则m n -=_______.【来源】辽宁省辽阳市2019-2020学年高二上学期期末数学试题 【答案】3- 30.给出下列命题: ①任意三点确定一个平面;②三条平行直线最多可以确定三个个平面;③不同的两条直线均垂直于同一个平面,则这两条直线平行; ④一个平面中的两条直线与另一个平面都平行,则这两个平面平行; 其中说法正确的有_____(填序号).【来源】河南省三门峡市2019-2020学年高一上学期期末数学试题 【答案】②③31.设直线2y x a =+与圆22220x y ay +--=相交于A ,B 两点,若||AB =,则a =________【来源】吉林省吉林市吉化第一高级中学2019-2020学年高一上学期期末数学试题【答案】四、解答题32.已知圆C 的一般方程为22240x y x y m +--+=. (1)求m 的取值范围;(2)若圆C 与直线240x y +-=相交于,M N 两点,且OM ON ⊥(O 为坐标原点),求以MN 为直径的圆的方程.【来源】广西柳州市铁一中学2019-2020学年高一上学期期末数学试题【答案】(1)5m <;(2)224816555x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭ 33.如图4,¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FC ⊥平面BED ,FB .(1)证明:EB FD ⊥; (2)求点B 到平面FED 的距离.【来源】2010年普通高等学校招生全国统一考试(广东卷)文科数学全解全析 【答案】(1)证明见解析(2)d =34.已知圆的方程为228x y +=,圆内有一点0(1,2)P -,AB 为过点0P 且倾斜角为α的弦.(1)当135α=︒时,求AB 的长;(2)当弦AB 被点0P 平分时,写出直线AB 的方程. 【来源】2019年12月14日《每日一题》必修2-周末培优【答案】(1(2)250x y -+=.35.如图,在长方体1111ABCD A B C D -中,2AB AD ==,14AA =,M 是AC 与BD 的交点.求证:(1)1//D M 平面11A C B (2)求1BC 与1D M 的所成角的正弦值.【来源】广西柳州市铁一中学2019-2020学年高一上学期期末数学试题【答案】(1)见解析;(2)1036.如图所示,直角梯形ABCD 中,AD BC ∥,AD AB ⊥,22AE AB BC AD ====,四边形EDCF 为矩形,CF =(1)求证:平面ECF ⊥平面ABCD ;(2)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为10,若存在,求出线段BP 的长,若不存在,请说明理由.【来源】湖北省武汉市(第十五中学、十七中学、常青一中)2019-2020学年高二上学期期末数学试题【答案】(1)见解析;(237.已知圆C 的圆心在直线390x y --=上,且圆C 与x 轴交于两点(50)A ,,0(1)B ,. (1)求圆C 的方程;(2)已知圆M :221(1)12x y ⎛⎫-++= ⎪⎝⎭,设(,)P m n 为坐标平面上一点,且满足:存在过点(,)P m n 且互相垂直的直线1l 和2l 有无数对,它们分别与圆C 和圆M 相交,且圆心C 到直线1l 的距离是圆心M 到直线2l 的距离的2倍,试求所有满足条件的点(,)P m n 的坐标【来源】湖南省永州市2019-2020学年高一上学期期末数学试题【答案】(1)22(3)4x y -+=(2)79,55⎛⎫- ⎪⎝⎭或31,55⎛⎫ ⎪⎝⎭ 38.如图,四棱锥S -ABCD 的底面是边长为2的正方形,每条侧棱的长都是底面边长P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P -AC -D 的大小.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题【答案】(1)证明见解析(2)30°39.如图,在正三棱柱111ABC A B C -中,2AB =,侧棱1AA =E ,F 分别是BC ,1CC 的中点.(1)求证:1//BC 平面AEF ;(2)求异面直线AE 与1A B 所成角的大小.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题【答案】(1)证明见解析(2)45°40.已知直线1:2l y x =-+,直线2l 经过点(40),,且12l l ⊥.(1)求直线2l 的方程;(2)记1l 与y 轴相交于点A ,2l 与y 轴相交于点B ,1l 与2l 相交于点C ,求ABC V 的面积.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题【答案】(1)40x y --=(2)941.已知曲线x 2+y 2+2x −6y +1=0上有两点P(x 1,y 1),Q(x 2,y 2)关于直线x +my +4=0对称,且满足x 1x 2+y 1y 2=0.(1)求m 的值;(2)求直线PQ 的方程.【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析)【答案】(1)m =−1;(2)y =−x +1.42.如图,边长为4的正方形ABCD 与矩形ABEF 所在平面互相垂直,,M N 分别为,AE BC 的中点,3AF =.(1)求证:DA ⊥平面ABEF ;(2)求证://MN 平面CDEF ;(3)在线段FE 上是否存在一点P ,使得AP MN ⊥?若存在,求出FP 的长;若不存在,请说明理由.【来源】2014届北京市东城区高三上学期期末统一检测文科数学试卷(带解析)【答案】(1)详见解析;(2)详见解析;(3)存在,94FP = 43.如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的菱形,且60BAD ︒∠=,PD ⊥平面ABCD ,,E F 分别为棱,AB PD 的中点.(1)证明://EF 平面PBC .(2)若四棱锥P ABCD -的体积为A 到平面PBC 的距离.【来源】湖南省娄底市2019-2020学年高一上学期期末数学试题【答案】(1)证明见详解;(2.44.已知圆22:6200C x y y +--+=.(1)过点的直线l 被圆C 截得的弦长为4,求直线l 的方程;(2)已知圆M 的圆心在直线y x =-上,且与圆C 外切于点,求圆M 的方程.【来源】湖南省娄底市2019-2020学年高一上学期期末数学试题【答案】(1)x =0x +-=;(2)224x y +=.45.已知ABC V 的顶点坐标分别为()1,2A ,()2,1B --,()2,3C -.(1)求BC 边上的中线所在的直线的方程;(2)若直线l 过点B ,且与直线AC 平行,求直线l 的方程.【来源】四川省凉山彝族自治州西昌市2019-2020学年高二上学期期中数学(理)试题【答案】(1)420x y --=;(2)5110x y ++=46.如图,在四棱锥P ABCD -中,四边形ABCD 为平行四边形,090BAP CDP ∠=∠=,E 为PC 中点,(1)求证://AP 平面EBD ;(2)若PAD ∆是正三角形,且PA AB =.(Ⅰ)当点M 在线段PA 上什么位置时,有DM ⊥平面PAB ?(Ⅱ)在(Ⅰ)的条件下,点N 在线段PB 上什么位置时,有平面DMN ⊥平面PBC ?【来源】湖南省衡阳市第一中学2018-2019学年高一上学期期末考试数学试题【答案】(1)详见解析;(2)(Ⅰ) 点M 在线段PA 中点时;(Ⅱ) 当14PN PB =时. 47.已知点P 是圆22:(3)4C x y -+=上的动点,点(3,0)A - ,M 是线段AP 的中点(1)求点M 的轨迹方程;(2)若点M 的轨迹与直线:20l x y n -+=交于,E F 两点,且OE OF ⊥,求n 的值.【来源】湖南省衡阳市第一中学2018-2019学年高一上学期期末考试数学试题【答案】(1)221x y +=;(2)n =. 48.已知四棱锥P ABCD -的底面ABCD 是等腰梯形,//AB CD ,AC BD O =I ,22AO OC ==,PA PB AB ===AC PB ⊥.(1)证明:平面PBD ⊥平面ABCD ;(2)求二面角A PD B --的余弦值.【来源】福建省三明市2019-2020学年高二上学期期末数学试题【答案】(1)证明见解析;49.若圆C 经过点3(2,)A -和(2,5)B --,且圆心C 在直线230x y --=上,求圆C 的方程.【来源】2010年南安一中高二下学期期末考试(理科)数学卷【答案】22(1)(2)10x y +++=50.如图,已知矩形ABCD 中,10AB =,6BC =,将矩形沿对角线BD 把ABD ∆折起,使A 移到1A 点,且1A 在平面BCD 上的射影O 恰在CD 上,即1A O ⊥平面DBC .(1)求证:1BC A D ⊥;(2)求证:平面1A BC ⊥平面1A BD ;(3)求点C 到平面1A BD 的距离.【来源】吉林省吉林市2019-2020学年高一上学期期末数学试题【答案】(1)证明见解析;(2)证明见解析;(3)245。

2019-2020学年上海市浦东新区进才中学高一(上)10月月考数学试卷及答案

2019-2020学年上海市浦东新区进才中学高一(上)10月月考数学试卷及答案

2019-2020学年上海市浦东新区进才中学高一(上)10月月考数学试卷一.填空题1.(3分)设集合{x|x2﹣2x+a=0}是单元素集合,则实数a=.2.(3分)若α、β是一元二次方程x2+4x+1=0的两个实数根,则=.3.(3分)满足M∪{a}⊆{a,b}的集合M的个数是个.4.(3分)用列举法表示方程的解集.5.(3分)已知命题P:x>2,命题Q:x2﹣2x﹣3=0,则命题“P或Q”为真的运算结果为.6.(3分)若不等式ax2+2ax﹣1<0解集为R,则a的范围是.7.(3分)若集合,B={x||x|<2},则A∩B=.8.(3分)已知集合A={x|x=4k±1,k∈Z},U=Z,则∁U A=.9.(3分)设关于x的不等式ax+b>0的解集是(1,+∞),则关于x的不等式的解为.10.(3分)a、b、c为三个人,命题A:“如果b的年龄不是最大,那么a的年龄最小”和命题B:“如果c的年龄不是最小,那么a的年龄最大”都是真命题,则a、b、c的年龄由小到大依次为.11.(3分)Q是有理数集,集合,在下列集合中:①;②;③{x1+x2|x1∈M,x2∈M};④{x1x2|x1∈M,x2∈M};与集合M相等的集合序号是.12.(3分)设集合I={1,2,3,4,5},若非空集合A满足:①A⊆I;②|A|≤min(A)(其中|A|表示集合A中元素的个数,min(A)表示集合A中的最小元素),则称A为I的一个好子集,I的所有好子集的个数为二.选择题13.(3分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.(﹣∞,1]B.(﹣∞,1)C.[2,+∞)D.(2,+∞)14.(3分)已知实数a,b,c满足c<b<a,那么“ac<0”是“ab>ac”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件15.(3分)下列命题,其中说法错误的是()A.命题“若x2﹣3x﹣4=0,则x=4”的逆否命题为“若x≠4,则x2﹣3x﹣4≠0”B.“x=4”是“x2﹣3x﹣4=0”的充分条件C.命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为真命题D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”16.(3分)已知不等式a(x﹣x1)(x﹣x2)>0的解集为A,不等式b(x﹣x1)(x﹣x2)≥0的解集为B,其中a、b都是非零常数,则“ab<0”是“A∪B=R”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件三.解答题17.解不等式:0<x2+x﹣2<4.18.设m>n>0,试比较与的大小关系.19.设函数f(x)=|x﹣a|.(1)当a=2时,解不等式f(x)≥7﹣|x﹣1|;(2)若f(x)≤1解集为[0,2],求a的值.20.已知集合A=(﹣4,6),集合B={x|(x﹣a)(x﹣3a)≤0,x∈R}.(1)若A∪B=A,求实数a的取值范围;(2)若A∩B=∅,求实数a的取值范围.21.已知数集A={a1,a2,…,a n}(1≤a1<a2<…<a n,n≥2)具有性质P:对任意的i,j(1≤i≤j≤n)a i a j与两数中至少有一个属于A.(1)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;(2)证明:a1=1,且=a n;(3)当n=5时,证明:===.2019-2020学年上海市浦东新区进才中学高一(上)10月月考数学试卷参考答案与试题解析一.填空题1.(3分)设集合{x|x2﹣2x+a=0}是单元素集合,则实数a=1.【分析】由题意可得,x2﹣2x+a=0有一个解,结合二次方程根的存在条件可求.【解答】解:由题意可得,x2﹣2x+a=0有一个解,∴△=4﹣4a=0,解可得a=1,故答案为:1【点评】本题主要考查了集合基本概念的简单应用,属于基础试题.2.(3分)若α、β是一元二次方程x2+4x+1=0的两个实数根,则=﹣4.【分析】由根与系数的关系可得答案【解答】解:由根与系数的关系可得:α+β=﹣4,αβ=1,所以=﹣4故答案为:﹣4.【点评】本题主要考查根与系数的关系,属于基础题.3.(3分)满足M∪{a}⊆{a,b}的集合M的个数是4个.【分析】由题意可知M⊆{a,b},再利用子集的个数规律2n,即可算出结果.【解答】解:∵M∪{a}⊆{a,b},M⊆{a,b},故集合M的个数为22=4,故答案为:4.【点评】本题主要考查了集合的基本关系,以及集合子集的个数,是基础题.4.(3分)用列举法表示方程的解集.【分析】联立方程可求方程的解,再结合集合的表示方法即可求解.【解答】解:联立程可得,,解可得,x=,y=,故答案为:{(,)}【点评】本题主要考查了集合的基本表示方法,属于基础试题.5.(3分)已知命题P:x>2,命题Q:x2﹣2x﹣3=0,则命题“P或Q”为真的运算结果为x>2或x=﹣1.【分析】根据题意,分析两个命题P、Q都是假命题时x的取值范围,由复合命题的判断方法分析“P或Q”为假时x的取值范围,进而分析可得答案.【解答】解:根据题意,命题P:x>2,当x≤2时,P为假命题;命题Q:x2﹣2x﹣3=0,解可得x=﹣1或x=3,当x≠﹣1且x≠3时,Q为假命题;若命题“P或Q”为假,即命题P、Q都是假命题,则有,即x≤2且x ≠﹣1,若命题“P或Q”为真,则a的取值范围为x>2或x=﹣1;故答案为:x>2或x=﹣1.【点评】本题考查复合命题真假的判断,注意复合命题真假的判断方法,属于基础题.6.(3分)若不等式ax2+2ax﹣1<0解集为R,则a的范围是﹣1<a≤0.【分析】讨论a=0和a≠0时,求出不等式ax2+2ax﹣1<0解集为R时a的取值范围.【解答】解:a=0时,不等式ax2+2ax﹣1<0化为﹣1<0,解集为R;a≠0时,不等式ax2+2ax﹣1<0解集为R时,应满足,解得﹣1<a<0;所以实数a的取值范围是﹣1<a≤0.故答案为:﹣1<a≤0.【点评】本题考查了不等式恒成立问题,也考查了分类讨论思想,是基础题.7.(3分)若集合,B={x||x|<2},则A∩B={x|﹣2<x<1}.【分析】利用不等式的性质先求出集合A和B,由此能求出A∩B.【解答】解:∵集合={x|﹣2≤x<1},B={x||x|<2}={x|﹣2<x<2},∴A∩B={x|﹣2<x<1}.故答案为:{x|﹣2<x<1}.【点评】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.8.(3分)已知集合A={x|x=4k±1,k∈Z},U=Z,则∁U A={x|x=2k,k∈Z}.【分析】推导出集合A={奇数},U=Z,由此能求出∁U A.【解答】解:∵集合A={x|x=4k±1,k∈Z}={奇数},U=Z,∴∁U A={偶数}={x|x=2k,k∈Z}.故答案为:{x|x=2k,k∈Z}.【点评】本题考查补集的求法,考查补集定义等基础知识,考查运算求解能力,是基础题.9.(3分)设关于x的不等式ax+b>0的解集是(1,+∞),则关于x的不等式的解为{x|x<﹣1或x>6}.【分析】由题意,可得a>0,且﹣=1,然后将不等式转化为(ax﹣b)(x﹣6)>0,再求出解集.【解答】解:因为关于x的不等式ax+b>0的解集为(1,+∞),所以a>0,且﹣=1.由>0,得(ax﹣b)(x﹣6)>0,用穿根法求得不等式的解集为{x|x<﹣1或x>6},故答案为:{x|x<﹣1或x>6}.【点评】本题主要考查一次不等式和分式不等式的解法,体现了等价转化的数学思想,属于中档题.10.(3分)a、b、c为三个人,命题A:“如果b的年龄不是最大,那么a的年龄最小”和命题B:“如果c的年龄不是最小,那么a的年龄最大”都是真命题,则a、b、c的年龄由小到大依次为c<a<b.【分析】由命题A为真命题时,得出a<b<c或c<a<b;由命题B为真命题时,得出a <c<b或c<a<b,从而得出结论.【解答】解:若命题A:“如果b的年龄不是最大,那么a的年龄最小”为真命题;则a最小,b不是最大,即c最大,或a不是最小,b最大,c最小,即a<b<c或c<a<b;若命题B:“如果c的年龄不是最小,那么a的年龄最大”为真命题;则c不是最小,a最大,b最小,或a不是最大,c最小,b最大,即a<c<b或c<a<b;若两个命题均为真命题,则c<a<b.故答案为:c<a<b.【点评】本题考查了命题的真假判断与应用问题,也考查了逻辑推理能力,解题的关键是正确理解互为逆否的两个命题真假性相同,是基础题目.11.(3分)Q是有理数集,集合,在下列集合中:①;②;③{x1+x2|x1∈M,x2∈M};④{x1x2|x1∈M,x2∈M};与集合M相等的集合序号是①②④.【分析】利用集合的定义,元素与集合的关系,集合相等的定义进行逐一判断即可.【解答】解:①是有理数,2b也是有理数,故与集合M相等;②,因为都是有理数,符合集合M的形式,故与集合M相等;③,则x 1+x2=0∉M;④令,则,,因为ac+2bd,ad+bc都是有理数,符合集合M的形式,与集合M相等;故答案为:①②④.【点评】考查了集合的新定义,学生对概念的理解,属基础题.12.(3分)设集合I={1,2,3,4,5},若非空集合A满足:①A⊆I;②|A|≤min(A)(其中|A|表示集合A中元素的个数,min(A)表示集合A中的最小元素),则称A为I的一个好子集,I的所有好子集的个数为12【分析】根据好子集的定义可以得出,I的好子集A的元素个数小于等于1,从而得出A 的可能情况为:{1},{2},{3},{4},{5},共5个.【解答】解:当|A|=1(即集合A中元素的个数为1)时,A的可能情况为:{1},{2},{3},{4},{5},当|A|=2(即集合A中元素的个数为2)时,A的可能情况为:{2,3},{2,4},{2,5},{3,4},{3,5},{4,5},当|A|=3(即集合A中元素的个数为3)时,A的可能情况为:{3,4,5},∴I的所有好子集的个数为12.故答案为:12.【点评】考查对好子集定义的理解,以及子集的定义.二.选择题13.(3分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.(﹣∞,1]B.(﹣∞,1)C.[2,+∞)D.(2,+∞)【分析】化简集合B,根据A∩B=B,建立条件关系即可求实数a的取值范围.【解答】解:由题意,集合A={x|x<a},B={x|x2﹣3x+2<0}={x|1<x<2},∵A∩B=B,∴B⊆A,则:a≥2.∴实数a的取值范围为[2,+∞).故选:C.【点评】本题主要考查集合的基本运算,比较基础.14.(3分)已知实数a,b,c满足c<b<a,那么“ac<0”是“ab>ac”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据不等式的基本性质,及充要条件的定义,可得答案.【解答】解:∵实数a,b,c满足c<b<a,若“ac<0”,则a>0,“ab>ac”成立,若“ab>ac”,则a>0,但“ac<0”不一定成立,故“ac<0”是“ab>ac”成立的充分不必要条件,故选:A.【点评】本题考查的知识点是充要条件的定义,难度不大,属于基础题.15.(3分)下列命题,其中说法错误的是()A.命题“若x2﹣3x﹣4=0,则x=4”的逆否命题为“若x≠4,则x2﹣3x﹣4≠0”B.“x=4”是“x2﹣3x﹣4=0”的充分条件C.命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为真命题D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”【分析】命题“若x2﹣3x﹣4=0,则x=4”的逆否命题为“若x≠4,则x2﹣3x﹣4≠0;“x=4”是“x2﹣3x﹣4=0”的充分条件;命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题是假命题;命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”.【解答】解:命题“若x2﹣3x﹣4=0,则x=4”的逆否命题为“若x≠4,则x2﹣3x﹣4≠0”,故A正确;∵“x=4”⇒“x2﹣3x﹣4=0”,“x2﹣3x﹣4=0”⇒“x=4,或x=﹣1”,∴“x=4”是“x2﹣3x﹣4=0”的充分条件,故B正确;命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为:∵若方程x2+x﹣m=0有实根,则△=1+4m≥0,解得m,∴“若方程x2+x﹣m=0有实根,则m>0”,是假命题,故C不正确;命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”,故D正确.故选:C.【点评】本题考查命题的真假判断,是基础题.解题时要认真审题,仔细解答.16.(3分)已知不等式a(x﹣x1)(x﹣x2)>0的解集为A,不等式b(x﹣x1)(x﹣x2)≥0的解集为B,其中a、b都是非零常数,则“ab<0”是“A∪B=R”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件【分析】根据充分必要条件的定义判断.【解答】解:“ab<0”能推导出“A∪B=R”,而“A∪B=R”可得ab≥0,则“ab<0”是“A∪B=R”的充分不必要条件.故选:A.【点评】本题考查充分必要条件的定义,考查推理能力,属于基础题.三.解答题17.解不等式:0<x2+x﹣2<4.【分析】不等式化为,求出解集即可.【解答】解:不等式0<x2+x﹣2<4可化为,即,解得;所以不等式的解集为(﹣3,﹣2)∪(1,2).【点评】本题考查了不等式组的解法与应用问题,是基础题.18.设m>n>0,试比较与的大小关系.【分析】通过作差,通分,提取公因式即可得出,然后根据m>n>0说明即可得出与的大小关系.【解答】解:===,∵m>n>0,∴m﹣n>0,mn>0,(m2+n2)(m+n)>0,∴,∴.【点评】本题考查了作差比较法比较两个式子大小的方法,考查了计算能力,属于基础题.19.设函数f(x)=|x﹣a|.(1)当a=2时,解不等式f(x)≥7﹣|x﹣1|;(2)若f(x)≤1解集为[0,2],求a的值.【分析】(1)将a=2代入,分类讨论去绝对值直接求解后取并集即可;(2)由绝对值不等式的解法直接可以得解.【解答】解:(1)当a=2时,原不等式等价于|x﹣2|+|x﹣1|≥7,当x≤1时,原不等式等价于﹣x+2﹣x+1≥7,解得x≤﹣2;当1<x<2时,原不等式等价于﹣x+2+x﹣1≥7,此时无解;当x≥2时,原不等式等价于x﹣2+x﹣1≥7,解得x≥5;综上,不等式的解集为(﹣∞,﹣2]∪[5,+∞);(2)依题意,|x﹣a|≤1,即a﹣1≤x≤a+1,又f(x)≤1解集为[0,2],∴a﹣1=0,a+1=2,∴a=1.【点评】本题主要考查绝对值不等式的解法,考查分类讨论思想,属于基础题.20.已知集合A=(﹣4,6),集合B={x|(x﹣a)(x﹣3a)≤0,x∈R}.(1)若A∪B=A,求实数a的取值范围;(2)若A∩B=∅,求实数a的取值范围.【分析】(1)由B⊆A,分a>0,a=0,a<0三种情况,列出不等式组,求出实数a的取值范围.(2)由集合A={x|2<x<4},B={x|(x﹣a)(x﹣3a)<0},A∩B=∅,列出不等式组能求出实数a的取值范围.【解答】解:(1)∵集合A={x|2<x<4},B={x|(x﹣a)(x﹣3a)≤0}.由于若A∪B=A,所以B⊆A,∴当a>0时,B={x|a≤x≤3a},要使得B⊆A,,解得a∈∅;当a=0时,B={0}不满足B⊆A;当a<0时,B={x|3a≤x≤a},要使得B⊆A,,解得a∈∅;∴实数a的取值范围为∅.(2)∵集合A={x|2<x<4},B={x|(x﹣a)(x﹣3a)≤0},A∩B=∅,或或或,或a=0,解得a≤,或a≥4,∴实数a的取值范围是(﹣∞,]∪[4,+∞).【点评】本题考查实数的取值范围的求法,考查交集定义、子集定义、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,属于基础题.21.已知数集A={a1,a2,…,a n}(1≤a1<a2<…<a n,n≥2)具有性质P:对任意的i,j(1≤i≤j≤n)a i a j与两数中至少有一个属于A.(1)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;(2)证明:a1=1,且=a n;(3)当n=5时,证明:===.【分析】(1)由定义直接判断.(2)由已知得a n a n与中至少有一个属于A,从而得到a1=1;再由1=a1<a2<…<a n,得到a k a n∉A(k=2,3,…,n).由A具有性质P可知∈A(k=1,2,3,…,n),由此能证明a1=1,且=a n.(3)当n=5时,,从而a3a4∈A,∈A,由此能证明===.【解答】解:(1)由于3×4与均不属于数集{1,3,4},所以数集{1,3,4}不具有性质P.由于1×2,1×3,1×6,2×3,,,,,,都属于数集{1,2,3,6},所以数集{1,2,3,6}具有性质P.证明:(2)因为A={a1,a2,…,a n}具有性质P,所以a n a n与中至少有一个属于A.由于1≤a1<a2<…<a n,所以a n a n>a n,故a n a n∉A,从而1=∈A,故a1=1;因为1=a1<a2<…<a n,所以a k a n>a n,故a k a n∉A(k=2,3,…,n).由A具有性质P可知∈A(k=1,2,3,…,n),又因为<<…<,所以=a1,,…,,,从而=a1+a2+…+a n﹣1+a n,故a1=1,且=a n.证明:(3)由(2)知,当n=5时,有=a2,,即,因为1=a1<a2<…<a5,所以a3a4>a2a4=a5,故a3a4∈A,由A具有性质P,可知∈A,由,得=∈A,且1<<a3,所以==a2,故,所以:===.【点评】本题考查数集是否具有性质P的判断,考查等式的证明,是中档题,解题时要认真审题,注意性质P的合理运用.。

部编版2019---2020学年度下学期小学五年级语文期末测试卷及答案

部编版2019---2020学年度下学期小学五年级语文期末测试卷及答案

最新部编版2019---2020学年度下学期小学五年级语文期末测试卷及答案-CAL-FENGHAI.-(YICAI)-Company One12最新部编版2019---2020学年度下学期小学五年级语文期末测试卷及答案(满分:100分 时间: 90分钟)题号 一 二 三 四 五 六 七 八 九 十 总分 得分一、选择题。

(共12分)1.下面加点字的读音全都正确的一项是( )。

A.提供.(ɡòn ɡ)—供.认(ɡōn ɡ) 晃.眼(hu ǎn ɡ)—摇头晃.脑(hu àn ɡ)B.停泊.(b ó)—血泊.(p ō) 监.牢(ji ān )—国子监.(ji àn )C.丈夫.(f ū)—逝者如斯夫.(f ū) 喧哗.(hu á)—哗.哗流水(hu á)2.下面加点的字书写全都正确的一项是( )。

A.师傅. 副.业 负.担 附.庸 B.俊.马 竣.工 严骏. 峻.杰 C.树稍. 船艄. 捎.话 梢.胜一筹3.下面句子中加点的字哪一项解释有误( ) A.其人弗能应.也。

应:应答。

B.果.有杨梅。

果:果然。

C.未闻.孔雀是夫子家禽。

闻:听说。

4.下列句子中没有语病的一项是( )。

A.此次家长会上,学校领导认真总结并听取了家委会成员的建议B.今天全班都来参加毕业典礼彩排,只有龙一鸣一人请假C.中国为了实现半导体国产化这一夙愿,展现出毫不松懈的态度5.下面三幅书法作品中,哪一幅是怀素草书《千字文》(局部)( )A. B. C.6.对这幅漫画的寓意理解正确的一项是( )。

A.有些医生自己生病了,却不愿意进行急救B.讽刺少数医生良心出了问题却不承认,不改正C.有些人总喜欢把没有生病的人送进抢救室二、用修改符号修改下面的一段话。

(共2分)马老师多么和蔼可亲呀!上课时,他教我们耐心地写字的方法;下课时,他常常和我们在一起。

昨天下午,他给淘淘补了一天的课,他非常感动马老师。

2021-2022学年上海市格致中学高一下学期数学期中考试试卷含详解

2021-2022学年上海市格致中学高一下学期数学期中考试试卷含详解

上海市格致中学2021-2022学年高一下期中数学试卷一、填空题(本大题共有12小题,满分48分)1.已知向量(3,1)a =-与(,2)b x = 共线,则x =_______.2.已知θ是=_______.3.已知扇形的圆心角18πα=,扇形的面积为π,则该扇形的弧长的值是______.4.已知(1,2),(2,2)a b =-=- ,则a b - 的单位向量的坐标为_______.5.若函数2sin 4=+y x x 的最小值为1,则实数=a __________.6.若关于x 的方程12cos 2ax ⎛⎫= ⎪⎝⎭无解,则a 的取值范围是_____.7.在ABC ∆中,4a =,5b =,6c =,则sin 2sin AC =__________.8.已知AB AC ⊥,1AB t = ,AC t =,若点P 是ABC 所在平面内一点,且4AB AC AP AB AC=+,则PB PC ⋅的最大值等于________.9.若1122l log sin si 2n og αβ+=,且()cos cos 1279βα=,求()cos 22αβ+=____________.10.将函数()2sin 3f x x πω⎛⎫=- ⎪⎝⎭(ω>0)的图像向左平移3ωπ个单位,得到函数y =g(x)的图象.若y =g(x)在0,4⎡⎤⎢⎥⎣⎦π上为增函数,则ω的最大值为________.11.设a b c 、、是同一平面上的三个两两不同的单位向量,若():():()1:1:2a b b c c a ⋅⋅⋅= ,则a b ⋅ 的值为_______.12.已知1A 、2A 、3A 、4A 、5A 五个点,满足1120(1,2,3)n n n n A A A A n +++⋅== ,112||||21(1,2,3)n n n n A A A A n n +++⋅=-=,则15||A A 的最小值为______.二、选择题(本大题共有4小题,满分16分,每题4分)13.设m ,n 为非零向量,则“存在正数λ,使得m n λ= ”是“0m n ⋅> ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件14.函数π3tan 34y x ⎛⎫=-⎪⎝⎭的一个对称中心是()A.π,03⎛⎫⎪⎝⎭B.π,06⎛⎫⎪⎝⎭C.π,04⎛⎫-⎪⎝⎭D.π,02⎛⎫-⎪⎝⎭15.将函数sin (0)y x ωω=>的图象向左平移π6个单位,平移后的图象如图所示,则平移后的图象所对应函数的解析式是()A.πsin 6y x ⎛⎫=+⎪⎝⎭ B.πsin 6y x ⎛⎫=-⎪⎝⎭C.πsin 23y x ⎛⎫=+⎪⎝⎭D.πsin 23y x ⎛⎫=- ⎪⎝⎭16.设,,,A B C D 是平面直角坐标系中不同的四点,若(),AC AB R λλ=∈ (),AD AB R μμ=∈ 且112λμ+=,则称,C D 是关于,A B 的“好点对”.已知,M N 是关于,A B 的“好点对”,则下面说法正确的是A.M 可能是线段AB 的中点B.,M N 可能同时在线段BA 延长线上C.,M N 可能同时在线段AB 上D.,M N 不可能同时在线段AB 的延长线上三、解答题(本大题共4题,满分56分)17.已知25cos()5αβ+=,1tan 7β=,且π,0,2αβ⎛⎫∈ ⎪⎝⎭.(1)求22cos 2sin sin cos ββββ-+的值;(2)求2αβ+的值.18.已知向量()cos ,1m x =-r,向量1,2n x ⎫=-⎪⎭,函数()()f x m n m =+⋅r r r.(1)求函数()f x 的最小正周期T ,以及()f x 在π0,2⎡⎤⎢⎥⎣⎦上的单调区间;(2)已知,,a b c 分别为ABC 内角A 、B 、C 的对边,且A 为锐角,1a =,c =(A)f 恰是()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最大值,求ABC 的面积.19.如图,梯形ABCD ,2DA = ,π3CDA ∠=,2=DA CB ,E 为AB 中点,(0)DP DC λλ=≠ .(1)当13λ=时,用向量,DC DA 表示的向量PE ;(2)若||(= DC t t 为大于零的常数),求||PE 的最小值,并指出相应的实数λ的值.20.某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一周期内的图象时,列表并填入的部分数据如表:x23π-π31x 2x 10π3x ωϕ+0π2π32π2πsin()x ωϕ+0101-0()f x 032y 0(1)请利用上表中的数据,写出1x 、2y 的值,并求函数()f x 的解析式;(2)将函数()f x 的图象向右平移2π3个单位,再把所得图象上各店的横坐标缩小为原来的12,纵坐标不变,得到函数()g x 的图象,若|()|2g x m -<在,42ππ⎡⎤⎢⎥⎣⎦上恒成立,求实数m 的取值范围;(3)在(2)的条件下,若23()()()13=+⋅-F x g x g x 在(0,2019π)x ∈上恰有奇数个零点,求实数a 与零点个数n 的值.上海市格致中学2021-2022学年高一下期中数学试卷一、填空题(本大题共有12小题,满分48分)1.已知向量(3,1)a =-与(,2)b x = 共线,则x =_______.【答案】6-【分析】利用向量共线的坐标表示即可求解.【详解】因为向量(3,1)a =-与(,2)b x =共线,所以()3210x ⨯--=,故6x =-.故答案为:6-.2.已知θ=_______.【答案】cos θ【分析】根据同角的平方关系即可化简得到结果.cos θ==,且θ是第四象限角,则cos 0θ>,即cos cos θθ=cos θ=故答案为:cos θ3.已知扇形的圆心角18πα=,扇形的面积为π,则该扇形的弧长的值是______.【答案】3π【分析】先结合212S r α=求出r ,再由l r α=求解即可【详解】由2162S r r α=⇒==,则6183l r ππα==⨯=故答案为:3π【点睛】本题考查扇形的弧长和面积公式的使用,属于基础题4.已知(1,2),(2,2)a b =-=- ,则a b - 的单位向量的坐标为_______.【答案】34,55⎛⎫-⎪⎝⎭【分析】先由向量的线性运算求得(3,4)a b -=-,再由模的坐标表示求得5a b -= ,从而求得所求.【详解】因为(1,2),(2,2)a b =-=-,所以(3,4)a b -=-,故5a b -== ,则a b - 的单位向量的坐标为34,55a b a b ⎛⎫- ⎪⎝-=⎭-.故答案为:34,55⎛⎫-⎪⎝⎭.5.若函数2sin 4=+y x x 的最小值为1,则实数=a __________.【答案】5【分析】由辅助角公式得2sin x x +的最小值为,由此可求得a 值.【详解】2sin 4)4y x x x ϕ=++=++,其中tan 2ϕ=,且ϕ终边过点.所以min 41y ==,解得5a =.故答案为:5.【点睛】本题考查三角函数辅助角公式,掌握辅助角公式对解题关键.设()sin cos f x a x b x =+,则())f x x ϕ=+,其中tan b aϕ=,ϕ角终边过点(,)a b .由此易求得函数的最值,易研究函数的其他性质.6.若关于x 的方程12cos 2ax ⎛⎫= ⎪⎝⎭无解,则a 的取值范围是_____.【答案】(),1-∞-【分析】先由三角函数的值域得到[]2cos 2,2y x =∈-,再由方程12cos 2a x ⎛⎫= ⎪⎝⎭无解得到212a ⎛⎫ ⎪⎝>⎭或212a⎛⎫⎪⎝<-⎭,解之即可.【详解】因为[]2cos 2,2y x =∈-,所以由方程12cos 2a x ⎛⎫= ⎪⎝⎭无解可得212a ⎛⎫ ⎪⎝>⎭或212a⎛⎫⎪⎝<-⎭,因为指数函数12x y ⎛⎫= ⎪⎝⎭在R 上单调递减,且102xy ⎛⎫=> ⎪⎝⎭恒成立,所以由111222a->=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭得1a <-,由212a⎛⎫⎪⎝<-⎭可知a ∈∅,综上:1a <-,则(),1a ∞∈--.故答案为:(),1-∞-.7.在ABC ∆中,4a =,5b =,6c =,则sin 2sin AC=__________.【答案】1【详解】试题分析:222sin 22sin cos 2cos 44cos 1sin sin 332A A A a A b c a A C C c bc+-=====考点:正余弦定理解三角形8.已知AB AC ⊥,1AB t =,AC t = ,若点P 是ABC 所在平面内一点,且4AB AC AP AB AC=+ ,则PB PC ⋅ 的最大值等于________.【答案】13【分析】建立直角坐标系,由向量式的几何意义易得P 的坐标,可化PB PC ⋅ 为1174t t ⎛⎫-+ ⎪⎝⎭,再利用基本不等式求得它的最大值.【详解】解:由题意建立如图所示的坐标系,可得()0,0A ,1,0B t⎛⎫ ⎪⎝⎭,()0,C t,4AB AC AP AB AC=+()1,4P ∴,11,4PB t ⎛⎫∴=-- ⎪⎝⎭,()1,4PC t =--11PB PC t ⎛⎫∴⋅=-- ⎪⎝⎭ ()144174t t t ⎛⎫-=-+ ⎪⎝⎭1713≤-=,当且仅当14t t =,即12t =时,取等号PB PC ∴⋅的最大值为13,故答案为:13.【点睛】本题考查平面向量数量积的运算,涉及基本不等式求最值,属中档题.9.若1122l log sin si 2n og αβ+=,且()cos cos 1279βα=,求()cos 22αβ+=____________.【答案】4972【分析】将等式化简可得1sin sin 4αβ=,2cos cos 3αβ-=,可得()11cos 12αβ+=,进而利用二倍角公式求解即可【详解】由题,()111222log log sin sin l g s 2o in sin ααββ+==,即211sin sin 24αβ⎛⎫== ⎪⎝⎭,又()cos cos 1279βα=,则3cos cos 233αβ-=,即2cos cos 3αβ-=,则()2111cos cos cos sin sin 3412αβαβαβ+=-=--=-,所以()()()221149cos 22cos 22cos 1211272αβαβαβ⎛⎫+=+=+-=⨯--=⎡⎤ ⎪⎣⎦⎝⎭故答案为4972【点睛】本题考查对数、指数的计算法则,考查和角公式,考查余弦的二倍角公式,考查运算能力10.将函数()2sin 3f x x πω⎛⎫=-⎪⎝⎭(ω>0)的图像向左平移3ωπ个单位,得到函数y =g(x)的图象.若y =g(x)在0,4⎡⎤⎢⎥⎣⎦π上为增函数,则ω的最大值为________.【答案】2【详解】试题分析:根据“左加右减”原则,向左平移3πω个单位,可知()2sin 2sin 33g x x x ππωωω⎡⎤⎛⎫=+-= ⎪⎢⎝⎭⎣⎦,y =g(x)在0,4π⎡⎤⎢⎥⎣⎦上为增函数,可知周期44T π≥,所以1244ππω⋅≥,即2ω≤,ω的最大值为2.考点:三角函数的性质与图像的平移.11.设a b c、、是同一平面上的三个两两不同的单位向量,若():():()1:1:2a b b c c a ⋅⋅⋅=,则a b ⋅的值为_______.【答案】132-【分析】利用():():()1:1:2a b b c c a ⋅⋅⋅=可设a b k ⋅= ,设,a b 的夹角为θ,则,b c 的夹角为θ,,a c 的夹角为2θ或22πθ-,利用得2a c a b ⋅=⋅,建立θ方程关系求解即可.【详解】():():()1:1:2a b b c c a ⋅⋅⋅=,设a b k ⋅= ,则,2b c k a c k ⋅=⋅= ,a b c、、是同一平面上的三个两两不同的单位向量,设,a b 的夹角为θ,则,b c的夹角为θ,,a c 的夹角为2θ或22πθ-,cos22()2cos a c a b θθ⋅==⋅=,22cos 2cos 10θθ--=,解得13cos 2θ=,或13cos 2θ=(舍去).所以13cos 2a b θ-⋅==.故答案为:132-.【点睛】本题考查向量的数量积以及三角恒等变换求值,考查了转化与化归思想,属于中档题.12.已知1A 、2A 、3A 、4A 、5A 五个点,满足1120(1,2,3)n n n n A A A A n +++⋅== ,112||||21(1,2,3)n n n n A A A A n n +++⋅=-= ,则15||A A的最小值为______.【答案】263【分析】根据题意设出合理的向量模,再将其置于坐标系中,利用坐标表示出15||A A,再用基本不等式求解出最值即可.【详解】由题意设12||A A x = ,则23||1A A x = ,3445||3,||35A A x A A x== ,设1(0,0)A ,如图,因为求15||A A的最小值,则2(,0)A x ,31(,)A x x ,41(2,)A x x -,52(2,)3A x x--,所以215224||9843A A x x =+≥ ,当且仅当22449x x =,即13x =时取等号,所以15||A A 的最小值为263.故答案为:263.【点睛】关键点睛:首先是对向量模的合理假设,然后为了进一步降低计算的复杂性,我们选择利用坐标法将涉及的各个点用坐标表示,最后得到212254||94x A A x=+,再利用基本不等式即可求出最值.二、选择题(本大题共有4小题,满分16分,每题4分)13.设m ,n 为非零向量,则“存在正数λ,使得m n λ= ”是“0m n ⋅>”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【分析】根据共线定理定理和平面向量的数量积的定义,结合充分条件、必要条件的判定方法,即可求解.【详解】由题意,存在正数λ,使得λ= m n ,所以m ,n同向,所以||||cos ,0m n m n m n ⋅=⋅⋅> ,即充分性是成立的,反之,当非零向量,a b 夹角为锐角时,满足0m n ⋅>,而λ= m n 不成立,即必要性不成立,所以“存在正数λ,使得λ= m n ”是“0m n ⋅>”的充分不必要条件.故选A.【点睛】本题主要考查了以共线向量和向量的数量积为背景的充分条件、必要条件的判定,着重考查了分析问题和解答问题的能力.14.函数π3tan 34y x ⎛⎫=- ⎪⎝⎭的一个对称中心是()A.π,03⎛⎫⎪⎝⎭B.π,06⎛⎫⎪⎝⎭C.π,04⎛⎫-⎪⎝⎭D.π,02⎛⎫-⎪⎝⎭【答案】C【分析】求解出对称中心为ππ,0,Z 612k k ⎛⎫+∈ ⎪⎝⎭,对k 赋值则可判断.【详解】令ππ3,Z 42k x k -=∈,解得ππ,Z 612k x k =+∈,所以函数π3tan 34y x ⎛⎫=-⎪⎝⎭图象的对称中心是ππ,0,Z 612k k ⎛⎫+∈ ⎪⎝⎭,令2k =-,得函数π3tan 34y x ⎛⎫=- ⎪⎝⎭图像的一个对称中心是π,04⎛⎫- ⎪⎝⎭,故选:C.15.将函数sin (0)y x ωω=>的图象向左平移π6个单位,平移后的图象如图所示,则平移后的图象所对应函数的解析式是()A.πsin 6y x ⎛⎫=+⎪⎝⎭ B.πsin 6y x ⎛⎫=-⎪⎝⎭C.πsin 23y x ⎛⎫=+ ⎪⎝⎭D.πsin 23y x ⎛⎫=- ⎪⎝⎭【答案】C【分析】依题意可得,7ππ3π2π,Z 1262k k ωω⨯+=+∈,从而可求得ω,结合平移后的函数图象可确定ω的取值范围,继而可得ω的值,最后得函数的解析式.【详解】解: 函数sin (0)y x ωω=>的图象向左平移π6个单位,为ππsin sin 66y x x ωωω⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,∴由图象得:7ππ3π2π,Z 1262k k ωω⨯+=+∈①,解得:82,Z 3k k ω=+∈,又有图可知,最小正周期2πT ω=满足12π7π21232π7π412ωω⎧⋅<⎪⎪⎨⎪⋅>⎪⎩,即121877ω<<②结合①②得:2ω=∴平移后的图象所对应的函数的解析式为:πsin 23y x ⎛⎫=+⎪⎝⎭.故选:C .16.设,,,A B C D 是平面直角坐标系中不同的四点,若(),AC AB R λλ=∈ (),AD AB R μμ=∈ 且112λμ+=,则称,C D 是关于,A B 的“好点对”.已知,M N 是关于,A B 的“好点对”,则下面说法正确的是A.M 可能是线段AB 的中点B.,M N 可能同时在线段BA 延长线上C.,M N 可能同时在线段AB 上D.,M N 不可能同时在线段AB 的延长线上【答案】D【详解】试题分析:解:若M 是线段AB 的中点,则12λ=,从而1120λμ=⇒=这是不可能的,所以选项A 不正确.若,M N 同时在线段BA 延长线上,则有1,1λμ<-<-,与112λμ+=矛盾,所以选项B 不正确.若,M N 同时在线段AB 上,则有01,01λμ<<<<,所以112λμ+>与112λμ+=矛盾,所以选项C 不正确.若,M N 同时在线段AB 的延长线上,则有1,1λμ>>,所以1102λμ<+<与112λμ+=矛盾,所以选项D 正确.故选:D考点:数乘向量的概念与性质.三、解答题(本大题共4题,满分56分)17.已知cos()5αβ+=,1tan 7β=,且π,0,2αβ⎛⎫∈ ⎪⎝⎭.(1)求22cos 2sin sin cos ββββ-+的值;(2)求2αβ+的值.【答案】(1)2725(2)π4【分析】(1)利用22sin cos 1ββ+=将所求式子转化为齐次分式,从而利用sin tan cos βββ=即可得解;(2)先由cos()5αβ+=及π,0,2αβ⎛⎫∈ ⎪⎝⎭求得5sin()5αβ+=,从而得到1tan()2αβ+=,再利用正切的和差公式求得1tan 3α=,进而得解.【小问1详解】因为1tan 7β=,所以222222cos 2sin sin cos cos 2sin sin cos sin cos ββββββββββ-+-+=+2212tan tan 27tan 125βββ-+==+.【小问2详解】因为π,0,2αβ⎛⎫∈ ⎪⎝⎭,所以0παβ<+<,又因为25cos()5αβ+=,所以π02αβ<+<,sin()5αβ+==,所以1tan()2αβ+=,又1tan 7β=,所以由tan tan 1tan()1tan tan 2αβαβαβ++==-,解得1tan 3α=,所以11tan()tan 23tan(2)tan[()]111tan()tan 16αβααβαβααβα++++=++===-+-,又π02αβ<+<,π02α<<,故02παβ<+<,所以π24αβ+=.18.已知向量()cos ,1m x =-r ,向量1,2n x ⎫=-⎪⎭,函数()()f x m n m =+⋅r r r.(1)求函数()f x 的最小正周期T ,以及()f x 在π0,2⎡⎤⎢⎥⎣⎦上的单调区间;(2)已知,,a b c 分别为ABC 内角A 、B 、C 的对边,且A 为锐角,1a=,c =(A)f 恰是()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最大值,求ABC 的面积.【答案】(1)()f x 的最小正周期πT =.()f x 在π0,6⎡⎤⎢⎥⎣⎦上递增,在ππ,62⎡⎤⎢⎥⎣⎦上单减.(2)32或34.【分析】(1)先求出()πsin 226f x x ⎛⎫=++ ⎪⎝⎭,即可求出最小正周期和单调区间;(2)先求出角A ,再利用正弦定理求出角C ,即可求出B ,进而求出ABC 的面积.【小问1详解】因为向量()cos ,1m x =-r,向量1,2n x ⎫=-⎪⎭,函数()()f x m n m =+⋅r r r,所以()()f x m n m=+⋅r r r()3cos ,cos ,12x x x ⎛⎫=+-⋅- ⎪⎝⎭23cos cos2x x x =++1cos 2222x x =++πsin 226x ⎛⎫=++ ⎪⎝⎭所以函数()f x 的最小正周期2ππ2T ==.令π26t x =+,因为π0,2x ⎡⎤∈⎢⎥⎣⎦,所以π7π,66t ⎡⎤∈⎢⎥⎣⎦.因为sin y t =在ππ,62⎡⎤⎢⎥⎣⎦上递增,在π7π,26⎡⎤⎢⎥⎣⎦上单减,所以()f x 在π0,6⎡⎤⎢⎥⎣⎦上递增,在ππ,62⎡⎤⎢⎥⎣⎦上单减.【小问2详解】由题意及(1)中的单调性,可得:π6A =.在ABC 中,1a =,c =sin sin a c A C =得:13πsin sin 6C =,解得:3sin 2C =.所以π3C =或2π3C =.当π3C =时,π2B =,所以ABC 的面积11sin 11222ABC S ac B ==创;当2π3C =时,π6B =,所以ABC 的面积111sin 12224ABC S ac B ==⨯= .故ABC 的面积为32或34.19.如图,梯形ABCD ,2DA = ,π3CDA ∠=,2= DA CB ,E 为AB 中点,(0)DP DC λλ=≠ .(1)当13λ=时,用向量,DC DA 表示的向量PE ;(2)若||(= DC t t 为大于零的常数),求||PE 的最小值,并指出相应的实数λ的值.【答案】(1)3146PE DA DC=+ (2)334;1324λ=+t 【分析】(1)结合图形,先证得四边形ABCF 是平行四边形,从而利用向量的线性运算即可得解.(2)结合(1)中的结论,得到PE关于λ的表达式,进而利用向量的数量积运算求模得到2PE关于λ的二次表达式,从而可求得||PE 的最小值及相应的λ值.【小问1详解】过C 作//CF AB 交AD 于F ,如图,因为2=DA CB ,所以//DA BC ,2DA BC =,则四边形ABCF 是平行四边形,故22DA BC AF ==,即F 是AD 的中点,所以111111222242===-=-BE BA CF DF DC DA DC ,当13λ=时,23=PC DC ,所以211131324246=++=++-=+PE PC CB BE DC DA DA DC DA DC ..【小问2详解】因为DP DC λ=,所以(1)λ=- PC DC ,所以111(1)242PE PC CB BE DC DA DC λ=++=-++- 1324DC DA λ⎛⎫=-+ ⎪⎝⎭,因为2cos60DC DA t t ⋅=︒= ,22= DC t ,24=DA ,所以22221931132724222416PE t t t λλλ⎡⎤⎛⎫⎛⎫⎛⎫=-++-=-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以当1324t λ⎛⎫-=-⎪⎝⎭,即1324λ=+t 时,2PE 取得最小值2716.所以PE的最小值为4,此时1324λ=+t .20.某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一周期内的图象时,列表并填入的部分数据如表:(1)请利用上表中的数据,写出1x 、2y 的值,并求函数()f x 的解析式;(2)将函数()f x 的图象向右平移2π3个单位,再把所得图象上各店的横坐标缩小为原来的12,纵坐标不变,得到函数()g x 的图象,若|()|2g x m -<在,42ππ⎡⎤⎢⎥⎣⎦上恒成立,求实数m 的取值范围;(3)在(2)的条件下,若23()()()13=+⋅-F x g x g x 在(0,2019π)x∈上恰有奇数个零点,求实数a 与零点个数n 的值.【答案】(1)14π3x =,2y =()f x 的解析式为1π()23f x x ⎛⎫=+ ⎪⎝⎭;(2)62,22⎫-+⎪⎪⎭;(3)2a =,()F x 在(0,2019π)共有3029个不同的零点.【分析】(1)利用“五点法”列方程求出1x 、2y 的值,进而求出解析式;(2)先利用图像变换求出()g x x =,列不等式组即可求出实数m 的取值范围;(3)令sin t x =,考虑方程2310t at +-=的根的情况,[]11,1t ∈-或[]21,1t ∈-,分类讨论:①1211t t -<<<,②[]12(1,1),1,1t t ∈-∉-和[]21(1,1),1,1t t ∈-∉-,③21t =,④11t =-,分别求解.【小问1详解】由“五点法”及表格数据分析可得:A =所以2y =由2π03ππ32ωϕωϕ⎧-⨯+=⎪⎪⎨⎪⨯+=⎪⎩,解得:12π3ωϕ⎧=⎪⎪⎨⎪=⎪⎩,所以1π()23f x x ⎛⎫=+ ⎪⎝⎭.由11ππ23x +=,解得:14π3x =.综上所述:14π3x =,2y =()f x 的解析式为1π()23f x x ⎛⎫=+ ⎪⎝⎭.【小问2详解】由(1)知1π()23f x x ⎛⎫=+ ⎪⎝⎭,将函数()f x 的图象向右平移2π3个单位,得到ππ)2332x x y =-+=,再把所得图象上各店的横坐标缩小为原来的12,纵坐标不变,得到函数()g x的图象,所以()g x x =.当ππ,42x ⎡⎤∈⎢⎥⎣⎦时,()2t g x x ==∈⎣.因为|()|2g x m -<在ππ,42⎡⎤⎢⎥⎣⎦上恒成立,所以||2t m -<在62t ∈⎣上恒成立,所以||2m t -<在62t ∈⎣上恒成立,所以22t m t -<<+在62t ∈⎣上恒成立,6222m -<<+.即实数m的取值范围为2,22⎫+⎪⎪⎭.【小问3详解】由(2)可知:2()3sin sin 1F x x a x =+-,()F x 周期为2πT =.当(]0,2πx ∈时,令sin t x =,考虑方程2310t at +-=的根的情况:因为2120a ∆=+>,所以方程2310t at +-=在R 上必有两个不同的实数根1212,,t t t t t t ==<.因为()F x 在(0,2019π)有奇数个零点,所以[]11,1t ∈-或[]21,1t ∈-.①若1211t t -<<<,则方程12sin ,sin t x t x ==在(]0,2π共有4个不同的实数根,在(0,π)有0个或2个实数根.所以()0F x =在(0,2019π)有20191440362-⨯=个根或201914240382-⨯+=个根,与()F x 有奇数个零点相矛盾,舍去;②若[]12(1,1),1,1t t ∈-∉-,则1sin t x =在在(]0,2π共有2个不同的实数根,在(0,π)有0个或2个实数根.所以()0F x =在(0,2019π)有20191220182-⨯=个根或201912220202-⨯+=个根,与()F x 有奇数个零点相矛盾,舍去.同理:[]21(1,1),1,1t t ∈-∉-也不符合题意,舍去.所以11t =-或21t =③若21t =,则2a =-,方程2310t at +-=的根121,13t t =-=.方程1sin ,1sin 3x x -==在(]0,2π共有3个不同的实数根,而在(0,π)上1sin 3x -=无解,1sin x =有一个不同的根,,所以()0F x =在(0,2019π)在201913130282-⎛⎫⨯+= ⎪⎝⎭个根,与()F x 有奇数个零点相矛盾,舍去.④若11t =-,则2a =,此时2310t at +-=的根为211,13t t ==-.方程1sin ,1sin 3x x =-=在(]0,2π共有3个不同的实数根,而在(0,π)上1sin 3x =有两个不同的根,1sin x -=无解,所以()0F x =在(0,2019π)在201913230292-⎛⎫⨯+=⎪⎝⎭个根,符合题意.综上所述:2a =,()F x 在(0,2019π)共有3029个不同的零点.。

2019-2020学年上海市华师大二附中高一下学期数学期中考试试卷 带详解

【答案】
【解析】
【分析】
通过换元,令 则 ,将函数零点转化为函数 的图象与直线 有三个交点,利用数形结合求得 的范围.
【详解】函数 , ,令 则 ,函数 恰有三个零点,可转化为函数 的图象与直线 有三个交点,如图: 根据三角函数图象的性质可得 , ,所以 , 即 ,由 ,可得 ,所以 的取值范围是 .
④ 图像关于 中心对称;
⑤ 的最小正周期为 .
【答案】②③⑤
【解析】
分析:①根据 可判断;②由 、 可判断;③ 时, ,进而可得结论;④ 是奇函数图象关于 对称,结合周期性可判断;⑤由
,利用周期公式可得结论.
详解:① ,
,
, 不是 对称轴,①错误;
② , ,
, 是 的最小正周期,②正确;
③ 时, ,
(1)求 值;
(2)将函数 的图像向左平移 个单位,再将所得函数的图像上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到函数 的图像,若函数 在区间 上存在零点,求实数k的取值范围.
18.已知 满足 ,若其图像向左平移 个单位后得到 函数为奇函数.
(1)求 的解析式;
(2)在锐角 中,角 的对边分别为 ,且满足 ,求 的取值范围.
【详解】 的递减区间是 ,又 , ,所以 ,所以 ,所以 .
故选:B.【点睛】本小题主要考查三角函数的单调性,属于基础题.
14.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为 米,肩宽约为 米,“弓”所在圆的半径约为1.25米,则掷铁饼者双手之间的距离约为()
(3)将函数 的图象向右平移 个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的 倍后所得到的图象对应的函数记作 ,已知常数 , ,且函数 在 内恰有 个零点,求常数 与 的值.

考点17 分组求和法(1月)(期末复习热点题型)(人教A版2019)(解析版)

考点17 分组求和法一、单选题1.若数列{}n a 的通项公式是()()131nn a n =--,则1210···+a a a ++= A .15 B .12 C .12-D .15-【试题来源】吉林省蛟河市第一中学校2020-2021学年第一学期11月阶段性检测高二(理) 【答案】A【解析】因为()()131nn a n =--,所以12253a a +=-+=,348113a a +=-+=,5614173a a +=-+=,7820233a a +=-+=,91026293a a +=-+=, 因此1210···+3515a a a ++=⨯=.故选A . 2.已知数列{}n a 满足11n n a a λ+=+,且11a =,23a =,则数列{}n a 前6项的和为 A .115 B .118 C .120D .128【试题来源】河南省豫北名校2020-2021学年高二上学期12月质量检测(文) 【答案】C【分析】由题干条件求得2λ=,得到121n n a a +=+,构造等比数列可得数列{}n a 的通项公式,再结合等比数列求和公式即可求得数列{}n a 前6项的和. 【解析】21113a a λλ=+=+=,则2λ=,可得121n n a a +=+,可化为()1121n n a a ++=+,有12nn a +=,得21n n a =-,则数列{}n a 前6项的和为()()6262122226612012⨯-+++-=-=-.故选C .3.设数列{a n }的前n 项和为S n ,且a 1=2,a n +a n +1=2n (n ∈N *),则S 2020=A .2020223-B .202022 3+C .202122 3-D .202122 3+【试题来源】河南省濮阳市2019-2020学年高二下学期升级考试(期末)(文) 【答案】C【分析】根据递推公式a n +a n +1 =2n (n ∈N *)的特点在求S 2020时可采用分组求和法,然后根据等比数列的求和公式即可得到正确选项. 【解析】由题意,可知2020122020123420192020()()()S a a a a a a a a a =+++=++++++132019222=+++2021223-=.故选C . 4.定义:在数列{}n a 中,0n a >,且1n a ≠,若1n an a +为定值,则称数列{}n a 为“等幂数列”.已知数列{}n a 为“等幂数列”,且122,4,n a a S ==为数列{}n a 的前n 项和,则2009S 为 A .6026 B .6024 C .2D .4【试题来源】山西省长治市第二中学2019-2020学年高一下学期期末(文) 【答案】A【分析】根据数列新定义求出数列的前几项,得出规律,然后求和.【解析】因为122,4a a ==,所以334242a a a ==,32a =,4216a =,44a =,所以212n a -=,24n a =,*n N ∈,2009(24)100426026S =+⨯+=.故选A . 【名师点睛】本题考查数列的新定义,解题关键是根据新定义计算出数列的项,然后寻找出规律,解决问题. 5.数列111111,2,3,4,,248162n n +++++的前n 项和等于 A .21122n n n +-++B .2122n n n++C .2122n n n +-+D .【试题来源】四川省三台中学实验学校2019-2020学年高一6月月考(期末适应性) 【答案】A 【解析】因,故,故选A .6.已知一组整数1a ,2a ,3a ,4a ,…满足130m m a a +++=,其中m 为正整数,若12a =,则这组数前50项的和为 A .-50 B .-73 C .-75D .-77【试题来源】四川省自贡市旭川中学2020-2021学年高一上学期开学考试 【答案】C【分析】先利用已知条件写出整数列的前五项,得到其周期性,再计算这组数前50项的和即可.【解析】因为130m m a a +++=,12a =,所以2130a a ++=,得25a =-;3230a a ++=,得32a =-;4330a a ++=,得41a =-;5430a a ++=,得52a =-,由此可知,该组整数从第3项开始,以-2,-1,-2,-1,…的规律循环, 故这组数的前50项和为()()25212475+-+--⨯=-.故选C .7.已知n S 为数列{}n a 的前n 项和,且满足11a =,23a =,23n n a a +=,则2020S = A .1010232⨯-B .101023⨯C .2020312-D .1010312+【试题来源】山西省孝义市第二中学校2019-2020学年高一下学期期末 【答案】A【分析】利用递推关系得出数列的奇数项与偶数项分别成等比数列,对2020S 进行分组求和. 【解析】因为11a =,23a =,23n n a a +=,所以数列{}n a 的奇数项成等比数列,偶数项也成等比数列,且仅比均为3,所以101010102020132019242020133(13)()()1313S a a a a a a --=+++++++=+--1010232=⨯-.故选A .【名师点睛】本题考查等比数列的判定,等比数列的前n 项和公式,考查分组求和法,解题时注意对递推式23n n a a +=的认识,它确定数列的奇数项与偶数项分别成等比数列,而不是数列{}n a 成等比数列.8.已知数列{(1)(21)}n n -+的前n 项和为n S ,*N n ∈,则11S = A .13- B .12- C .11-D .10-【试题来源】山东省青岛胶州市2019-2020学年高二下学期期末考试 【答案】A【分析】本题根据数列通项公式的特点可先求出相邻奇偶项的和,然后运用分组求和法可计算出11S 的值,得到正确选项.【解析】由题意,令(1)(21)nn a n =-+,则当n 为奇数时,1n +为偶数, 1(21)[2(1)1]2n n a a n n ++=-++++=,111211S a a a ∴=++⋯+ 123491011()()()a a a a a a a =++++⋯+++222(2111)=++⋯+-⨯+2523=⨯-13=-.故选A .【名师点睛】本题主要考查正负交错数列的求和问题,考查了转化与化归思想,整体思想,分组求和法,以及逻辑推理能力和数学运算能力.本题属中档题.9.已知数列{}n a 的前n 项和为n S ,且11a =,13nn n a a +=,那么100S 的值为A .()50231-B .5031-C .5032-D .50342-【试题来源】吉林省四平市公主岭范家屯镇第一中学2019-2020学年高一下学期期末考试 【答案】A【分析】根据题中条件,得到23n na a +=,推出数列{}n a 的奇数项和偶数项都是成等比数列,由等比数列的求和公式,分别计算奇数项与偶数项的和,即可得出结果.【解析】因为11a =,13nn n a a +=,所以23a =,1123n n n a a +++=,所以1213n n n n a a a a +++=,即23n na a +=,所以135,,,a a a ⋅⋅⋅成以1为首项、3为公比的等比数列,246,,,a a a ⋅⋅⋅也成以3为首项、3为公比的等比数列,所以()()()5050100139924100313131313Sa a a a a a --=++⋅⋅⋅++++⋅⋅⋅+=+--505050313532322-+⋅-==⋅-.故选A .【名师点睛】本题主要考查等比数列求和公式的基本量运算,考查分组求和,熟记公式即可,属于常考题型.10.已知数列{}n a 满足12321111222n n a a a a n -++++=,记数列{2}n a n -的前n 项和为n S ,则n S =A .2222nn n--B .22122nn n---C .212222n n n +--- D .2222nn n--【试题来源】河北省秦皇岛市第一中学2020-2021学年高二上学期第一次月考 【答案】C【分析】利用递推关系求出数列{}n a 的通项公式,然后利用等差数列和等比数列的前n 项和公式进行求解即可.【解析】因为12321111(1)222n n a a a a n -++++=,所以有11a =, 当2,n n N *≥∈时,有1231221111(2)222n n a a a a n --++++=-,(1)(2)-得,111122n n n n a a --=⇒=,显然当1n =时,也适合,所以12()n n a n N -*=∈,令 2n n a n b -=,所以2n n b n =-,因此有:2323(21)(22)(23)(2)(2222)(123)n n n n S n =-+-+-++-=++++-++++22112(12)(1)222 2.1222222n n n n n n n n n ++-+=-=---=----故选C.【名师点睛】本题考查了由递推关系求数列的通项公式,考查了等差数列和等比数列的前n 项和公式,考查了数学运算能力.11.已知数列{}n a 的前n 项和为n S ,且(),n P n a 为函数221x y x =+-图象上的一点,则n S =A .2122n n ++-B .212n n ++C .22n -D .22n n +【试题来源】四川省仁寿第二中学2020-2021学年高三9月月考(理) 【答案】A【分析】根据已知条件求得n a ,利用分组求和法求得n S【解析】因为(),n P n a 为函数221x y x =+-图象上的一点,所以()212nn a n =-+,则()()121212322121321222nnn S n n =++++⋅⋅⋅+-+=++⋅⋅⋅+-+++⋅⋅⋅+()()212121212nn n -+-=+-1222n n +=+-.故选A .12.数列112、134、158、1716、的前n 项和n S 为A .21112n n -+-B .2122n n +-C .2112n n +-D .21122n n -+-【试题来源】安徽省亳州市涡阳县第四中学2019-2020学年高一下学期线上学习质量检测 【答案】C【分析】归纳出数列的通项公式为1212nn a n ⎛⎫=-+ ⎪⎝⎭,然后利用分组求和法可求得n S . 【解析】数列112、134、158、1716、的通项公式为1212nn a n ⎛⎫=-+ ⎪⎝⎭,所以,2341111113572122222n n S n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++++++-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()231111211111221352112222212n n n n n ⎛⎫- ⎪+-⎛⎫⎝⎭=++++-+++++=+⎡⎤ ⎪⎣⎦⎝⎭-2112n n =+-.故选C .13.若数列{}n a 的通项公式是1(1)(32)n n a n +=-⋅-,则122020a a a ++⋯+=A .-3027B .3027C .-3030D .3030【试题来源】江苏省扬州市宝应中学2020-2021学年高二上学期阶段考试 【答案】C【分析】分组求和,结合等差数列求和公式即可求出122020a a a ++⋯+. 【解析】12202014710...60556058a a a ++⋯+=-+-++-()()101010091010100917...6055410...60551010610104622⨯⨯⎛⎫=+++-+++=+⨯-⨯+⨯ ⎪⎝⎭3030=-.故选C .14.在数列{}n a 中,129a =-,()*13n n a a n +=+∈N ,则1220a a a +++=A .10B .145C .300D .320【试题来源】山西省太原市2021届高三上学期期中 【答案】C【分析】由等差数列的性质可得332n a n =-,结合分组求和法即可得解.【解析】因为129a =-,()*13n n a a n N +=+∈,所以数列{}n a 是以29-为首项,公差为3的等差数列,所以()11332n a a n d n =+-=-,所以当10n ≤时,0n a <;当11n ≥时,0n a >;所以()()12201210111220a a a a a a a a a +++=-++⋅⋅⋅++++⋅⋅⋅+1101120292128101010103002222a a a a ++--+=-⨯+⨯=-⨯+⨯=.故选C . 15.数列{}n a 的通项公式为2π1sin 2n n a n =+,前n 项和为n S ,则100S = A .50 B .-2400 C .4900-D .9900-【试题来源】河南省焦作市2020—2021学年高三年级第一次模拟考试(理) 【答案】C【分析】由πsin2n y =的周期为4,可得22222210010013579799S =+-+-+⋅⋅⋅+-,利用并项求和可得解.【解析】2111a =+,21a =,2313a =-,41a =,…,考虑到πsin2n y =的周期为4, 所以()222222100100135797991002135799S =+-+-+⋅⋅⋅+-=-⨯++++⋅⋅⋅+(199)50100249002+⨯=-⨯=-.故选C .16.已知{}n a 的前n 项和为n S ,11a =,当2n ≥时,12n n a S n -+=,则2019S 的值为 A .1008 B .1009 C .1010D .1011【试题来源】广东省广州市增城区增城中学2020-2021学年高二上学期第一次段考 【答案】C【分析】由2n ≥时,可得1n n n S S a -=-,结合题设条件,推得11n n a a -+=,进而求得2019S 的值,得到答案.【解析】由题意,当2n ≥时,可得1n n n S S a -=-,因为12n n a S n -+=,所以2()n n n S a a n +-=,即2n n S a n =+,当2n ≥时,1121n n S a n --=+-,两式相减,可得121n n n a a a -=-+,即11n n a a -+=, 所以2345671,1,1,a a a a a a +=+=+=,所以()()()12345201820120991201911110102a a a a a a a S -=+++++++=+⨯=.故选C . 17.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列{}n a ,已知11a =,22a =,且满足()211+-=+-nn n a a (n *∈N ),则该医院30天入院治疗流感的共有( )人 A .225 B .255 C .365D .465【试题来源】山东省烟台市2020-2021学年高二上学期期末月考 【答案】B【分析】直接利用分类讨论思想的应用求出数列的通项公式,进一步利用分组法求出数列的和【解析】当n 为奇数时,2n n a a +=,当n 为偶数时,22n n a a +-=,所以13291a a a ==⋅⋅⋅==, 2430,,,a a a ⋅⋅⋅是以2为首项,2为公差的等差数列,所以30132924301514()()1515222552S a a a a a a ⨯=++⋅⋅⋅++++⋅⋅⋅+=+⨯+⨯=,故选B 18.意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即()()121F F ==,()()()12F n F n F n =-+- (3n ≥,n *∈N ),此数列在现代物理、化学等方面都有着广泛的应用,若此数列的每一项被2除后的余数构成一个新数列{}n a ,则数列{}n a 的前2020项的和为 A .1348 B .1358 C .1347D .1357【试题来源】江苏省镇江市八校2020-2021学年高三上学期期中联考 【答案】C【分析】由题意可知,得数列{}n a 是周期为3的周期数列,前3项和为1102++=,又202067331=⨯+,由此可得答案.【解析】由数列1,1,2,3,5,8,13,21,34,55,…,各项除以2的余数,可得数列{}n a 为1,1,0,1,1,0,1,1,0,⋅⋅⋅,所以数列{}n a 是周期为3的周期数列,前3项和为1102++=, 因为202067331=⨯+,所以数列{}n a 的前2020项的和为673211347⨯+=,故选C. 19.已知数列{}n a 的前n 项和为n S ,11a =,当2n ≥时,12n n a S n -+=,,则S 2019的值为 A .1008 B .1009 C .1010D .1011【试题来源】江苏省南通市2020-2021学年高三上学期期中考前热身 【答案】C【分析】由2n ≥时,12n n a S n -+=,得到121n n a S n ++=+,两式相减,整理得()112n n a a n ++=≥,结合并项求和,即可求解.【解析】当2n ≥时,12n n a S n -+=,①,可得121n n a S n ++=+,②, 由②-①得,112()1n n n n a a S S +--+-=,整理得()112n n a a n ++=≥, 又由11a =,所以20191234520182019()()()1010S a a a a a a a =+++++++=.故选C .20.已知数列{}n a 的前n 项和为n S ,且()11213n n n n S S a n +++=+-+,现有如下说法:①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为 A .0 B .1 C .2D .3【试题来源】百校联盟2021届普通高中教育教学质量监测考试(全国卷11月)(文)试卷 【答案】D【分析】由()11213n n n n S S a n +++=+-+得到()11132n n n a a n ++=-+-,再分n 为奇数和偶数得到21262k k a a k +=-+-,22165k k a a k -=+-,然后再联立递推逐项判断. 【解析】因为()11213n n n n S S a n +++=+-+,所以()11132n n n a a n ++=-+-,所以()212621k k a a k +=-+-,()221652k k a a k -=+-,联立得()212133k k a a +-+=, 所以()232134k k a a +++=,故2321k k a a +-=,从而15941a a a a ===⋅⋅⋅=,22162k k a a k ++=-,222161k k a a k ++=++,则222121k k a a k ++=-,故()()()4012345383940...S a a a a a a a a =++++++++()()()()234538394041...a a a a a a a a =++++++++()()201411820622k k =+⨯=-==∑1220,故①②③正确.故选D.21.已知正项数列{}n a 中,11a =,前n 项和为n S ,且当*2,n n N ≥∈时,2n a =,数列()1cos 12n n n a π⎧⎫-⋅+⎨⎬⎩⎭的前64项和为 A .240 B .256 C .300D .320【试题来源】重庆市第一中学2019-2020学年高一下学期期末【答案】D【分析】由题意结合数列n a 与n S 2-=,由等差数列的性质即可得21n =-,进而可得当2n ≥时,88n a n =-,结合余弦函数的性质、分组求和法可得()()()642664648264T a a a a a a --=+++⋅⋅⋅+-,即可得解.【解析】由题意,当*2,n n N ≥∈时,12n n n S a S -==-,即2=,由0n S >2=,所以数列1=,公差为2的等差数列,()12121n n =+-=-,所以当2n ≥时,()222121188n a n n n ==-+--=-⎡⎤⎣⎦,设数列()1cos12nn n a π⎧⎫-⋅+⎨⎬⎩⎭的前n 项和为数列n T ,所以该数列前64项的和为 164234234cos 1cos 1cos 1cos 12222T a a a a ππππ⎛⎫⎛⎫⎛⎫⎛⎫=-⋅++⋅++-⋅++⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭6464cos 12a π⎛⎫+⋅⋅⋅+⋅+ ⎪⎝⎭ ()()()262642664624486464a a a a a a a a a a =-+-⋅⋅⋅-+=+++⋅⋅⋅--+-641616320=+⨯=.故选D .【名师点睛】本题考查了数列n a 与n S 的关系、等差数列的判断及性质的应用,考查了分组求和法求数列前n 项和的应用,属于中档题. 22.数列{}n a 的前n 项和为n S ,项n a 由下列方式给出1121231234,,,,,,,,,,2334445555⋅⋅⋅⋅⋅⋅.若100k S ≥,则k 的最小值为 A .200 B .202 C .204D .205【试题来源】福建省莆田市第二中学2020-2021学年高二10月阶段性检测 【答案】C【分析】首先观察数列中项的特征,先分组求和,之后应用等差数列求和公式,结合题中所给的条件,建立不等关系式,之后再找其满足的条件即可求得结果. 【解析】11212312112312334442222n n S n nn --⎛⎫⎛⎫⎛⎫=+++++++++⋅⋅⋅+=+++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (1)1004n n -=≥.所以(1)400n n -≥,21n ≥.而当20n =时,95S =,只需要125212121m++⋅⋅⋅+≥,解得14m ≥. 所以总需要的项数为1231914204+++⋅⋅⋅++=,故选C .【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列求和公式,分组求和法,属于中档题目.23.已知数列{} n a 中,10a =,21a =,且当n 为奇数时,22n n a a +-=;当n 为偶数时,23n n a a +=,则此数列的前20项的和为A .10311102-+B .1131902-+C .1031902-+D .11311102-+【试题来源】福建省莆田市第二中学2020-2021学年高二10月阶段性检测 【答案】C【分析】根据n 为奇数时,22n n a a +-=;n 为偶数时,23n n a a +=,得到数列{}n a 中所有奇数项构成以0为首项,以2为公差的等差数列;所有偶数项构成以1为首项,以3为公比的等比数列;然后分别利用等差数列和等比数列前n 项和求解.【解析】因为10a =,21a =,且当n 为奇数时,22n n a a +-=;当n 为偶数时,23n n a a +=,则此数列的前20项的和:数列{}n a 中所有奇数项构成以0为首项,以2为公差的等差数列; 数列{}n a 中所有偶数项构成以1为首项,以3为公比的等比数列; 所有()()2013192420......S a a a a a a =+++++++()()10113101012100213⨯-+=⨯++-1031902-=+,故选C . 24.已知数列{}n a 的通项公式为2(1)n n a n =-,设1n n n c a a +=+,则数列{}n c 的前200项和为 A .200- B .0 C .200D .10000【试题来源】安徽省六安市第一中学2019-2020学年高一下学期期中(理)【答案】A【分析】利用分组求和法及等差数列求和公式求解. 【解析】记数列{}n c 的前200项和为n T ,122001223199200200201n T c c c a a a a a a a a =++=++++++++123419920012012[()()()]a a a a a a a a =++++++-+()()()2222[41169200199]1201=-+-++-+-22[3711399]1201=⨯+++++-()2100339921201402004040112002+=⨯+-=-+=-.故选A .25.已知等差数列{}n a 的首项为1a ,公差0d ≠,记n S 为数列(){}1nn a -⋅的前n 项和,且存在*k N ∈,使得10k S +=成立,则 A .10a d > B .10a d < C .1a d >D .1a d <【试题来源】浙江省浙考交流联盟2020-2021学年高三上学期8月线上考试 【答案】B【分析】由题意按照k 为奇数、k 为偶数讨论,利用并项求和法可得1k S +,转化条件得存在*k N ∈且k 为偶数时,102ka d --=,即可得解.【解析】因为等差数列{}n a 的首项为1a ,公差0d ≠,n S 为数列(){}1nn a -⋅的前n 项和,所以当*k N ∈且k 为奇数时,112341k k k S a a a a a a ++=-+-++⋅⋅⋅-+()()()12341102k k k a a a a a a d ++=-++-++⋅⋅⋅+-+=≠; 当*k N ∈且k 为偶数时,1123411k k k k S a a a a a a a +-+=-+-++⋅⋅⋅-+-()()()()1234111122k k k k ka a a a a a a d a kd a d -+=-++-++⋅⋅⋅+-+-=-+=--; 所以存在*k N ∈且k 为偶数时,102k a d --=即102ka d =-≠,当2k =时,1a d =-,此时1a d =,故排除C 、D ;所以1a 与d 异号即10a d <,故A 错误,B 正确.故选B . 26.已知函数()2*()sin2n f n n n N π=∈,且()(1)n a f n f n =++,则1232020a a a a ++++的值为A .4040B .4040-C .2020D .2020-【试题来源】四川省宜宾市叙州区第一中学校2020-2021学年高二上学期开学考试(文) 【答案】A【分析】由题意得2222(1)sin(1)sin sin (1)cos 2222n n n n n a n n n n ππππ+=++=++,从而可求出11a =,222232018201920203,,2019,2021a a a a a ==-⋅⋅⋅==-=,然后通过分组求和可得答案.【解析】因为()2*()sin2n f n n n N π=∈,且()(1)n a f n f n =++, 所以2222(1)sin (1)sin sin (1)cos 2222n n n n n a n n n n ππππ+=++=++, 所以11a =,222223452018201920203,5,,2019,2021a a a a a a a ==-==⋅⋅⋅==-=,所以1232020a a a a ++++13520192462020()()a a a a a a a a =+++++++++22222222222[(13)(57)(20172019)][(35)(79)(20192021)]=-+-+⋅⋅⋅+-+-++-++⋅⋅⋅+-+2(135720172019)2(35720192021)=-++++⋅⋅⋅++++++⋅⋅⋅++10102020101020242222⨯⨯=-⨯+⨯1010202010102024=-⨯+⨯4040=,故选A.27.已知数列{}n a 中,11a =,23a =,*122(3,)n n n a a a n n N --=+≥∈,设211(2)(2)n n n b a a n n --=-≥,则数列{}n b 的前40项的和为A .860B .820C .820-D .860-【试题来源】河南省开封市河南大学附属中学2020-2021学年高二9月质检 【答案】A【分析】本题先对数列{}n a 的递推公式进行转化可发现数列{}12n n a a --是以1为首项,1-为公比的等比数列,通过计算出数列{}12n n a a --的通项公式可得1n b -的表达式,进一步可得数列{}n b 的通项公式,最后在求和时进行转化并应用平方差公式和等差数列的求和公式即可得到前40项的和.【解析】由题意,可知当3n ≥时,122n n n a a a --=+,两边同时减去12n a -,可得112112222(2)n n n n n n n a a a a a a a -------=+-=--,2123211a a -=-⨯=,∴数列{}12n n a a --是以1为首项,1-为公比的等比数列, 11121(1)(1)n n n n a a ---∴-=⋅-=-,*(2,)n n ≥∈N ,21211(2)(1)n n n n b a a n n ---∴==-⋅-,故2(1)(1)n n b n ⋅=-+,令数列{}n b 的前n 项和为n T ,则4012343940T b b b b b b =++++⋯++22222223454041=-+-+-⋯-+222222[(23)(45)(4041)]=--+-+⋯+-[(23)(45)(4041)]=--+-+-⋯-+23454041=++++⋯++40(241)2⨯+=860=.故选A .【名师点睛】本题主要考查数列由递推公式推导出通项公式,以及数列求和问题.考查了转化与化归思想,整体思想,定义法,平方差公式,以及逻辑推理能力和数学运算能力.本题属中档题.28.在数列{}n a 中,122,2a a ==,且11(1)(*),nn n a a n N +-=+-∈则100S =A .5100B .2600C .2800D .3100【试题来源】河南省洛阳市第一中学2020-2021学年高二上学期10月月考 【答案】A【分析】转化条件为22n n a a +-=,进而可得21k a -,2k a ,由分组求和法结合等差数列的前n 项和公式即可得解.【解析】因为11(1)(*)n n n a a n N +-=+-∈,所以1211(1)n n n a a +++-=+-,所以()()122121n n n n a a ++-=+--+=,因为122,2a a ==,所以()211212k a a k k -=+-=,()22212k k a k a =+-=,*k N ∈,所以()()100123499100139924100S a a a a a a a a a a a a =++++⋅⋅⋅++=++⋅⋅⋅++++⋅⋅⋅+()()2100241002410025051002+=++⋅⋅⋅++++⋅⋅⋅+=⨯⨯=.故选A . 【名师点睛】本题考查了等差数列通项公式及前n 项和公式的应用,考查了分组求和法的应用及转化化归思想,属于中档题.29.正项数列{}n a 的前n 项和为n S ,且()2*2n n n S a a n N =+∈,设()2112nn n na c s +=-,则数列{}n c 的前2020项的和为A .20192020-B .20202019-C .20202021-D .20212020-【试题来源】2020届广东省华南师范大学附属中学高三年级月考(三)(理) 【答案】C【分析】先根据和项与通项关系得11n n a a --=,再根据等差数列定义与通项公式、求和公式得,n n a S ,代入化简n c ,最后利用分组求和法求结果. 【解析】因为()2*2,0n n n nS a a n Na=+∈>,所以当1n =时,21112a a a =+,解得11a =,当2n ≥时,()()2211122n n n n n n n a S S a a a a ---=-=+-+,所以 ()()1110n n n n a a a a --+--=, 因为0n a >,所以11n n a a --=,所以数列{}n a 是等差数列,公差为1,首项为1, 所以()()111,2n n n n a n n S +=+-==,所以()()21111121n n n n na c s n n +⎛⎫=-=-+ ⎪+⎝⎭,则数列{}n c 的前2020项的和11111111202011223342020202120212021⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++++=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选C . 30.若数列{}n a 的通项公式为21nn a =-,在一个n 行n 列的数表中,第i 行第j 列的元素为()1,2,,,1,2,,ij i j i j c a a a a i n j n =⋅++=⋅⋅⋅=⋅⋅⋅,则满足11222021nn c c c ++⋅⋅⋅+<的n 的最大值是 A .4B .5C .6D .7【试题来源】山西省运城市2021届高三(上)期中(理) 【答案】B【分析】求得1122nn c c c ++⋅⋅⋅+关于n 的表达式,利用数列的单调性可求得满足11222021nn c c c ++⋅⋅⋅+<的n 的最大值.【解析】数列{}n a 的通项公式为21nn a =-,在一个n 行n 列的数表中,第i 行第j 列的元素为()1,2,,,1,2,,ij i j i j c a a a a i n j n =⋅++=⋅⋅⋅=⋅⋅⋅, 所以()()2121212121iji j i jij i j i j c a a a a +=⋅++=--+-+-=-.令1122n nn S c c c =+++,则()102,n n nn S S c n n N *--=>≥∈,所以,数列{}n S 为递增数列,当11222021nn c c c +++<时,所有的元素之和为246212121212021n n n S +=-+-+-++-<,当4n =时,24684222243362021S =+++-=<, 当5n =时,246810522222513592021S =++++-=<, 当6n =时,246810126222222654542021S =+++++-=>, 故n 的最大值为5,故选B .【点评】关键点【名师点睛】本题考查数列不等式的求解,解题的关键在于求出1122nn c c c ++⋅⋅⋅+关于n 的表达式,在求解数列不等式时,要充分结合数列的单调性求解.31.公元1202年列昂那多·斐波那契(意大利著名数学家)以兔子繁殖为例,引入“兔子数列”{}n a :1,1,2,3,5,8,13,21,34,55,……,即11a =,21a =,()*12,2n n n a a a n n --=+∈>N ,此数列在现代物理、化学等学科都有着十分广泛的应用.若将此数列{}n a 的各项除以2后的余数构成一个新数列{}n b ,设数列{}n b 的前n 项的和为n T ;若数列{}n a 满足:212n n n n c a a a ++=-,设数列{}n c 的前n 项的和为n S ,则20202020T S +=A .1348B .1347C .674D .673【试题来源】浙江省宁波市慈溪市2020-2021学年高三上学期期中 【答案】B【分析】根据题意写出数列{}n a 的前若干项,观察发现此数列是以3为周期的周期数列,可得2020T ,再计算1n nc c +,结合等比数列的通项公式和求和公式,可得2020S ,进而得到所求和. 【解析】“兔子数列”的各项为1,1,2,3,5,8,13,21,34,55,⋯,∴此数列被2除后的余数依次为1,1,0,1,1,0,1,1,0,⋯⋯,即11b =,21b =,30b =,41b =,51b =,60b =,⋯⋯, ∴数列{}n b 是以3为周期的周期数列,20201231673()673211347T b b b b ∴=+++=⨯+=,由题意知22212112221121222121212()()1n n n n n n n n n n n n n n n n n n n n n n c a a a a a a a a a a a c a a a a a a a a a +++++++++++++++++-+---====----, 由于212131c a a a =-=-,所以(1)n n c =-,所以2020(11)(11)(11)0S =-++-++⋯+-+=. 则202020201347T S +=.故选B.【名师点睛】确定数列数列{}n b 是以3为周期的周期数列,利用周期性求出数列的和,摆动数列(1)n n c =-可以利用分组求和,是解决问题的关键,属于中档题. 32.已知函数()()()22,,n n f n n n ⎧⎪=⎨-⎪⎩当为奇数时当为偶数时且()(1)n a f n f n =++,则121100a a a a ++++等于A .0B .100C .-100D .10200【试题来源】广东省普宁市2020-2021学年高二上学期期中质量测试 【答案】B【分析】先求出通项公式n a ,然后两项一组,即可求解数列的前100项的和【解析】()(1)n a f n f n =++,∴由已知条件知,2222(1),(1),n n n n a n n n ⎧-+=⎨-++⎩为奇数为偶数,即()21,21,n n n a n n ⎧-+=⎨+⎩为奇数为偶数,(1)(21)n n a n ∴=-+,12(n n a a n +∴+=是奇数),123100123499100()()()2222100a a a a a a a a a a ∴+++⋯+=++++⋯++=+++⋯+=故选B .【名师点睛】解答本题的关键是求出数列{}n a 的通项(1)(21)n n a n =-+,即得到12(n n a a n ++=是奇数).33.已知数列{}n a 为等差数列,首项为2,公差为3,数列{}n b 为等比数列,首项为2,公比为2,设n n b c a =,n T 为数列{}n c 的前n 项和,则当2020n T <时,n 的最大值是 A .8 B .9 C .10D .11【试题来源】山东省菏泽市2021届高三上学期期中考试(A ) 【答案】A【分析】由已知分别写出等差数列与等比数列的通项公式,求得数列{}n c 的通项公式,利用数列的分组求和法可得数列{}n c 的前n 项和n T ,验证得答案.【解析】由题意得323(1)1n a n n ⨯-=+-=,2nn b =,2321n n n n b c a a ==⨯-=,123n T c c c ∴=+++…n c +123321321321=⨯-+⨯-+⨯-+…321n +⨯-(1233222=⨯+++…)2nn +-()212312n n ⨯-=⨯-- 1326n n +=⨯--,当8n =时,98326815222020T =⨯--=<;当9n =时,109326930572020T =⨯--=>,n ∴的最大值为8.故选A .【名师点睛】本题解题的关键是求出数列{}n c 的通项公式,利用分组求和求出数列{}n c 的前n 项和n T .34.已知数列{}n a 满足11a =,1(1)(1)n n na n a n n +=+++,*n N ∈,且23n n b π=,记n S 为数列{}n b 的前n 项和,则2020S =A .1B .12C .12-D .-1【试题来源】山西省孝义市第二中学校2019-2020学年高一下学期期末 【答案】C【分析】由题设条件以及等差数列的性质得出2n a n =,进而得出2cos3n n b n π=,利用诱导公式求出32313,,k k k b b b --,即可求得2020S . 【解析】1(1)(1)n n na n a n n +=+++,111n na a n n+∴-=+, ∴数列n a n ⎧⎫⎨⎬⎩⎭是等差数列,公差与首项都为1,21(1)n n a n a n n ∴=+-⇒=,2cos3n n b n π∴=,3241(32)cos 2(32)32k b k k k ππ-⎛⎫=--=-- ⎪⎝⎭, 3121(31)cos 2(31)32k b k k k ππ-⎛⎫=--=-- ⎪⎝⎭,33cos 23k b k k k π==, 3231332k k k b b b --+∴=+,20203674212020(36742)101022b b ⨯-=-⨯-=-=-=, ()()()1234562017201820192020202031673101022b b b b b b b b b S b ++++++++++==⨯-=-故选C .35.设()f n ()*n ∈N 的整数, 如()()()()()11,21,324252f f f f f =====,,,若正整数m 满足()()()()11114034123f f f f m ++++=,则m = A .20162017⨯ B .20172018⨯ C .20182019⨯D .20192020⨯【试题来源】陕西省西安市高新一中2018-2019学年高二上学期期末(理) 【答案】B【解析】设()f x j =,,*x j N ∈,n 是整数,则221124n n n ⎛⎫+=++ ⎪⎝⎭不是整数,因此任意正整数的正的平方根不可能是1()2n n Z +∈形式,所以1122j j -<<+,221144j j x j j -+<<++, 因为,*x j N ∈,所以221j j x j j -+≤≤+,故()f x j =时,2221,2,,x j j j j j j =-+-++共2j 个,设222111(1)(2)()p a f j j f j j f j j =+++-+-++,则22p ja j==,*p N ∈, 由题意()()()()11114034123f f f f m ++++=,403422017=⨯, 所以()()()()1111111111123(1)(2)(3)(4)(5)(6)f f f f m f f f f f f ⎡⎤⎡⎤++++=+++++++⎢⎥⎢⎥⎣⎦⎣⎦1114034(220171)(220172)()f m f m f m ⎡⎤+++=⎢⎥-⨯+-⨯+⎣⎦, 故()2017f m =,m 为方程2017f =的最大整数解, 所以22017201720172018m =+=⨯.故选B .【名师点睛】本题主要考查数列与函数的关系、数列的应用,解题关键是设()f x j =,,*x j N ∈,确定x 的范围,得出x 的个数,然后计算出满足()f x j =的所有1()f x 的和为2. 二、多选题1.将2n 个数排成n 行n 列的一个数阵,如下图:111213212223231323331312n n n n n n nna a a a a a a a a a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有A .3m =B .767173a =⨯C .1(31)3j ij a i -=-⨯D .()1(31)314n S n n =+- 【试题来源】湖南省长沙市第一中学2020-2021学年高三上学期月考(三) 【答案】ACD【解析】由题意,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,且112a =,13611a a =+,可得2213112a a m m ==,6111525a a d m =+=+,所以22251m m =++,解得3m =或12m =-(舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;又由1111111(3[((1)][2(1)3]31)3j j j j ij i a ma i m m i i a ----==+-⨯⨯==-⨯+-⨯⨯,所以选项C 是正确的;又由这2n 个数的和为S , 则111212122212()()()n n n n nn S a a a a a a a a a =++++++++++++11121(13)(13)(13)131313n n n n a a a ---=+++---1(231)(31)22nn n +-=-⋅ 1(31)(31)4n n n =+-,所以选项D 是正确的,故选ACD . 【名师点睛】本题主要考查了数表、数阵数列的求解,以及等比数列及其前n 项和公式的应用,其中解答中合理利用等比数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.2.将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+- 【试题来源】江苏省扬州市仪征中学2020-2021学年高二上学期期中模拟(2) 【答案】ACD【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a ,再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【解析】因为a 11=2,a 13=a 61+1,所以2m 2=2+5m +1,解得m =3或m 12=-(舍去), 所以a ij =a i 1•3j ﹣1=[2+(i ﹣1)×m ]•3j ﹣1=(3i ﹣1)•3j ﹣1,所以a 67=17×36,所以S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )11121131313131313nn n n a a a ---=+++---()()()12=(3n ﹣1)•2312n n +-() 14=n (3n +1)(3n ﹣1),故选ACD . 【名师点睛】本题主要考查等差数列,等比数列的通项公式的求法,分组求和法,等差数列,等比数列前n 项和公式的应用,属于中档题. 三、填空题1.已知数列{}n a 的前n 项和为n S ,满足112a =-,且()1222n n a a n N n n *++=∈+,则10S =__________.【试题来源】广西桂林市第十八中学2021届高三上学期第二次月考(理) 【答案】1011【分析】根据题中条件,由裂项的方法得到1112n n a a n n ++=-+,根据裂项相消与并项求和的方法,即可得出结果. 【解析】因为()122211222n n a a n n n n n n ++===-+++,则()()()()()1012345678910S a a a a a a a a a a =+++++++++11111111113355779911⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭11011111=-=.2.设n S 为数列{}n a 的前n 项和,10a =,若11(1)(2)n n n na a +⎡⎤=+-+-⎣⎦(*n N ∈),则100S =__________.【试题来源】江苏省徐州市沛县2020-2021学年高三上学期第一次学情调研【答案】101223- 【分析】分n 为奇数、n 为偶数两种情况讨论,可得数列{}n a 的特点,然后可算出答案. 【解析】当n 为奇数时,()12nn a +=-,则()122a =-,()342a =-,,()991002a =-,当n 为偶数时,()12222nn n n n a a a +=+-=+,则232220a a =+=,454220a a =+=,,989998220a a =+=,又10a =,所以10110024100223S a a a -=+++=. 3.已知数列{}n a 满足:11a =,12n n n a a a +=+,则数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S =__________. 【试题来源】安徽省亳州市涡阳县第四中学2019-2020学年高一下学期第二次质量检测(理) 【答案】122n n +--【分析】根据题中条件,得到11211221n n n a a a +⎛⎫+=+=+ ⎪⎝⎭,判定数列11n a ⎧⎫+⎨⎬⎩⎭是以2为公比的等比数列,求出121n na =-,由分组求和的方法,即可求出结果. 【解析】由12n n n a a a +=+得12121n n n n a a a a ++==+,所以11211221n n n a a a +⎛⎫+=+=+ ⎪⎝⎭, 因此数列11n a ⎧⎫+⎨⎬⎩⎭是以2为公比的等比数列,又11a =,所以1112a +=,因此111222n n n a -+=⨯=,所以121n n a =-,因此()()2121222 (22212)n nn n n n S n +-=+++-=-=---.故答案为122n n +--.【名师点睛】求解本题的关键在于,根据12n n n a a a +=+,由构造法,得到111121n n a a +⎛⎫+=+ ⎪⎝⎭,再根据等比数列的求和公式,以及分组求和的方法求解即可. 4.数列{}n a 的通项公式22cos4n n a n n π=-,其前n 项和为n S ,则2021S =__________. 【试题来源】甘肃省永昌县第一中学2020-2021学年高三上学期第一次月考数学理试题 【答案】1010.【分析】由于22cos(1cos )cos 422n n n n a n n n n n πππ=-=+-=,可得数列{}n a 的所有奇数项为0,前2021项的所有偶数项共有202010102=项,从而可求得其结果 【解析】因为22cos (1cos )cos 422n n n n a n n n n n πππ=-=+-=,所以数列{}n a 的所有奇数项为0,前2021项的所有偶数项共有202010102=项, 所以2021246820182020S a a a a a a =++++⋅⋅⋅++246820182020=-+-+-⋅⋅⋅-+(24)(68)(20182020)=-++-++⋅⋅⋅+-+1010210102=⨯=.故答案为1010 5.2020年疫情期间,某医院30天每天因患新冠肺炎而入院就诊的人数依次构成数列{}n a ,已知11a =,22a =,且满足21(1)nn n a a +-=--,则该医院30天内因患新冠肺炎就诊的人数共有__________.【试题来源】山东省聊城市2020-2021学年高三上学期期中 【答案】255【分析】根据题目所给递推关系式,求得数列{}n a 项的规律,由此进行分组求和,求得数列前30项的和.【解析】由于()211nn n a a +-=--,当n 为偶数时,20n na a +-=,因此前30项中的偶数项构成常数列,各项都等于22a =,共有15项,和为15230⨯=;当n 为奇数时,22n n a a +-=;又11a =,所以前30项中的奇数项构成首项为1,公差为2的等差数列,共有15项,和为151415122252⨯⨯+⨯=. 故30天的总人数为30225255+=.故答案为255. 6.数列{}n a 的前n 项和为n S ,若()*1cos2n n a n n N π=+⋅∈,则2020S =__________.【试题来源】上海市复兴高级中学2021届高三上学期期中 【答案】3030【分析】根据题意,先确定cos2n π的周期,再求出一个周期的和,即可得出结果. 【解析】由()4coscos 2cos 222n n n ππππ+⎛⎫=+= ⎪⎝⎭,知cos 2n π的周期为4,又11cos12a π=+=,212cos 12a π=+=-, 3313cos12a π=+=, 414cos 214a π=+=+,则1234426a a a a +++=+=,所以20202020630304S =⨯=.故答案为3030.7.已知数列{}n a 的前n 项和为n S ,且21n n S a =-.则数列{}n S 的前n 项和n T =__________. 【试题来源】重庆市巴蜀中学2021届高三上学期适应性月考(四) 【答案】122n n +--【分析】通过前n 项和n S 与n a 的关系式以及等比数列的定义得出{}n a 及{}n S 的表达式,进而利用分组求和即可.【解析】由21n n S a =-,得111211a a a =-⇒=,由21n n S a =-,有1121(2)n n S a n --=-≥,两式相减,11222(2)n n n n n a a a a a n --=-⇒=, 故数列{}n a 是首项为1,公比为2的等比数列,12n na ,122112nn n S -==--,()12122212n n n T n n +-∴=-=---.8.设函数()f x 的定义域为R ,满足()()12f x f x +=,且当[)0,1x ∈时,()sin f x x π=,当[)0,x ∈+∞时,函数()f x 的极大值点从小到大依次记为1a 、2a 、3a 、、n a 、,并记相应的极大值为1b 、2b 、3b 、、n b 、,则数列{}n n a b +前9项的和为__________.【试题来源】湖北省荆州中学2020-2021学年高三上学期8月月考 【答案】11032【分析】求出函数()y f x =在区间[)()1,n n n N*-∈上的解析式,利用导数求出函数()y f x =在区间[)()1,n n n N *-∈上的极大值点与极大值,可得出数列{}n n a b +的通项公式,再利用分组求和法可求得数列{}n n a b +的前9项的和. 【解析】函数()f x 的定义域为R ,满足()()12f x f x +=,则()()21=-f x f x ,且当[)0,1x ∈时,()sin f x x π=,则当[)()1,x n n n N *∈-∈,()[)10,1x n --∈,()()()()()2112122212sin 1n n f x f x f x f x n x n ππ--=-=-==--=--⎡⎤⎡⎤⎣⎦⎣⎦,()()12cos 1n f x x n πππ-'=--⎡⎤⎣⎦,当[)()1,x n n n N*∈-∈时,()[)10,1x n --∈,则()[)10,x n πππ--∈⎡⎤⎣⎦,令()0f x '=,可得()12x n πππ--=,解得12x n =-, 当112n x n -<<-时,()0f x '>,当12n x n -<<时,()0f x '<. 所以,函数()y f x =在12x n =-处取得极大值,即1122n n b f n -⎛⎫=-= ⎪⎝⎭,又12n a n =-,1122n n n a b n -∴+=-+,因此,数列{}n n a b +的前9项的和991199121103222122S ⎛⎫+-⨯ ⎪-⎝⎭=+=-. 【名师点睛】本题考查了数列的分组求和,同时也考查了利用导数求函数的极值点和极值,考查计算能力,属于中等题.9.在数列{}n a 中,若121,(1)2nn n a a a +=+-=,记n S 是数列{}n a 的前n 项和,则100S =__________.【试题来源】江苏省盐城市响水中学2020-2021学年高二上学期期中 【答案】2550【分析】当n 为奇数时,可得数列{}n a 的奇数项为公差为2的等差数列,当n 为偶数时,可得偶数项的特征,将所求问题转化为奇数项和偶数项求和即可.【解析】因为121,(1)2nn n a a a +=+-=,所以当n 为奇数时,22n n a a +-=,即数列{}n a 的奇数项为公差为2的等差数列,当n 为偶数时,22n n a a ++=,所以135995049501225002a a a a ⨯++++=⨯+⨯=, ()()()()24681012485022550a a a a a a a a ++++++++=⨯=,所以1002500502550S =+=,故答案为2550.【名师点睛】(1)得到数列{}n a 的奇数项为公差是2的等差数列; (2)得到数列{}n a 的偶数项满足22n n a a ++=.10.已知数列{}n a 的前n 项和为n S ,21122n n a a a =+,=+,则5S 的值为__________. 【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (理) 【答案】732【解析】122n n a a +=+,()1222n n a a +∴+=+,故数列{}2n a +是以2为公比,以223a +=为第二项的等比数列, 故2232n n a -+=⋅,故2322n n a -=⋅-,()5531273225122S -∴=-⨯=-,故答案为732. 【名师点睛】1n n a pa q +=+(1,0p q ≠≠的常数)递推关系求通项,构造等比数列是解题关键,属于基础题. 11.设数列{}n a 是以4为首项,12为公比的等比数列,其前n 项和为{}n S ,则{}n S 的前n 项和为__________.【试题来源】江苏省宿迁中学2020-2021学年高三上学期期中巩固测试 【答案】3288n n -+-【分析】先根据题意得382nn S -=-,由于数列{}32n-是以4为首项,12为公比的等比数列,进而利用分组求和法求和即可得答案.【解析】由等比数列的前n 项和公式得()1314112821112n nn na q S q -⎡⎤⎛⎫-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦===---, 由于数列{}32n-是以4为首项,12为公比的等比数列,。

人教A版数学高二弧度制精选试卷练习(含答案)2

人教A 版数学高二弧度制精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知扇形的周长是5cm ,面积是322cm ,则扇形的中心角的弧度数是( ) A .3B .43C .433或 D .2【来源】江西省九江第一中学2016-2017学年高一下学期期中考试数学(文)试题 【答案】C2.已知扇形的周长为8cm ,圆心角为2,则扇形的面积为( ) A .1B .2C .4D .5【来源】四川省双流中学2017-2018学年高一1月月考数学试题 【答案】C3.《掷铁饼者》 取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( )1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米【来源】安徽省五校(怀远一中、蒙城一中、淮南一中、颍上一中、淮南一中、涡阳一中)2019-2020学年高三联考数学(理)试题 【答案】B4.已知扇形的周长为4,圆心角所对的弧长为2,则这个扇形的面积是( ) A .2B .1C .sin 2D .sin1【来源】福建省泉州市南安侨光中学2019-2020学年高一上学期第二次阶段考试数学试题 【答案】B5.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题 【答案】B6.如图,2弧度的圆心角所对的弦长为2,这个圆心角所对应的扇形面积是( )A .1sin1B .21sin 1C .21cos 1D .tan1【来源】广西河池市高级中学2017-2018学年高一下学期第二次月考数学试题 【答案】B7.半径为10cm ,面积为2100cm 的扇形中,弧所对的圆心角为( ) A .2 radB .2︒C .2π radD .10 rad【来源】第一章滚动习题(一) 【答案】A8.若一扇形的圆心角为72︒,半径为20cm ,则扇形的面积为( ). A .240πcmB .280πcmC .240cmD .280cm【来源】陕西省西安市长安区第一中学2016-2017学年高一下学期第一次月考数学试题 【答案】D9.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为1S ,正八边形外侧八个扇形(阴影部分)面积之和为2S ,则12S S =( )A .34B .35C .23D .1【来源】广西省南宁市马山县金伦中学、武鸣县华侨中学等四校2017-2018学年高一10月月考数学试题. 【答案】B10.在-360°到0°内与角1250°终边相同的角是( ) . A .170° B .190° C .-190°D .-170°【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(一)(带解析) 【答案】C11.下列各角中,终边相同的角是 ( ) A .23π和240o B .5π-和314oC .79π-和299π D .3和3o【来源】新疆伊西哈拉镇中学2018-2019学年高一上学期第二次月考数学试题 【答案】C12.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是( ) A .sin 2B .2sin 2C .sin1D .2sin1【来源】广东省东莞市2018-2019学年高一第二学期期末教学质量检查数学试题 【答案】D13,弧长是半径的3π倍,则扇形的面积等于( ) A .223cm πB .26cm πC .243cm πD .23cm π【来源】河北省隆华存瑞中学(存瑞部)2018-2019学年高一上学期第二次数学试题 【答案】D14.如图所示,用两种方案将一块顶角为120︒,腰长为2的等腰三角形钢板OAB 裁剪成扇形,设方案一、二扇形的面积分别为12S , S ,周长分别为12,l l ,则( )A .12S S =,12l l >B .12S S =,12l l <C .12S S >,12l l =D .12S S <,12l l =【来源】浙江省省丽水市2018-2019学年高一下学期期末数学试题 【答案】A15.已知sin sin αβ>,那么下列命题成立的是( ) A .若,αβ是第一象限角,则cos cos αβ> B .若,αβ是第二象限角,则tan tan αβ> C .若,αβ是第三象限角,则cos cos αβ> D .若,αβ是第四象限角,则tan tan αβ>【来源】正定中学2010高三下学期第一次考试(数学文) 【答案】D16.半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【来源】宁夏石嘴山市第三中学2018-2019学年高一5月月考数学试题 【答案】D 17.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D18.扇形的中心角为120o )A .πB .45πC D 2【来源】辽宁省大连市第八中学2016-2017学年高一下学期期中考试数学试题【答案】A19.若扇形的周长为8,圆心角为2rad ,则该扇形的面积为( ) A .2B .4C .8D .16【来源】河南省洛阳市2018-2019学年高一下学期期中考试数学试卷 【答案】B20.-300° 化为弧度是( ) A .-43πB .-53πC .-54πD .-76π【来源】2014-2015学年山东省宁阳四中高一下学期期中学分认定考试数学试卷(带解析) 【答案】B21.一个扇形的面积为3π,弧长为2π,则这个扇形的圆心角为( ) A .3π B .4π C .6π D .23π 【来源】湖北省荆门市2017-2018学年高一(上)期末数学试题 【答案】D22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为23π,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3π≈,1.73≈)A .15B .16C .17D .18【来源】湖北省2018届高三5月冲刺数学(理)试题 【答案】B23.下列各式不正确的是( ) A .-210°=76π-B .405°=49πC .335°=2312πD .705°=4712π【来源】河南信阳市息县第一高级中学、第二高级中学、息县高中2018-2019学年高一下学期期中联考数学(文)试题 【答案】C24.下列函数中,最小正周期为π2的是( )A .y =sin (2x −π3)B .y =tan (2x −π3)C .y =cos (2x +π6) D .y =tan (4x +π6)【来源】20102011年山西省汾阳中学高一3月月考数学试卷 【答案】B25.已知扇形的周长为12cm ,圆心角为4rad ,则此扇形的弧长为 ( ) A .4cmB .6cmC .8cmD .10cm【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(理)试卷 【答案】C二、填空题26.已知扇形的圆心角18πα=,扇形的面积为π,则该扇形的弧长的值是______.【来源】上海市黄浦区2018-2019学年高一下学期期末数学试题 【答案】3π 27.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的底面半径为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】128.一个扇形的弧长与面积的数值都是5,则这个扇形中心角的弧度数为__________. 【来源】河南省灵宝市实验高中2017-2018学年高一下学期第一次月考考数学试题 【答案】5229.已知圆锥的侧面展开图是一个扇形,若此扇形的圆心角为65π、面积为15π,则该圆锥的体积为________.【来源】上海市杨浦区2019-2020学年高三上学期期中质量调研数学试题 【答案】12π30.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示 ,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为 .【来源】2015届山东省日照市高三3月模拟考试理科数学试卷(带解析)31.已知扇形的圆心角为1弧度,扇形半径为2,则此扇形的面积为______. 【来源】上海市复兴高级中学2018-2019学年高一下学期3月份质量检测数学试题 【答案】232.一个球夹在120°的二面角内,且与二面角的两个面都相切,两切点在球面上的最短距离为π,则这个球的半径为_______ .【来源】上海市七宝中学2017-2018学年高二下学期期中数学试题 【答案】333.用半径为,面积为cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 .【来源】2012届江苏省泗阳中学高三上学期第一次调研考试数学试卷(实验班) 【答案】31000cm 3π34.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积12=(弦⨯矢+矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为43π米,半径等于2米的弧田,则弧所对的弦AB 的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.【来源】山东省济南市2018-2019学年高一下学期期末学习质量评估数学试题【答案】1235.设扇形的半径长为2cm ,面积为24cm ,则扇形的圆心角的弧度数是 【来源】2013-2014学年山东济南商河弘德中学高一下学期第二次月考数学试卷(带解析) 【答案】236.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120o ,弧长为2π,底面圆的半径为1,则该圆锥的体积为__________.【来源】2018年春高考数学(文)二轮专题复习训练:专题三 立体几何【答案】337.现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm . 【来源】江苏省苏州市2018届高三调研测试(三)数学试题 【答案】128π38.已知扇形的周长为6,圆心角为1,则扇形的半径为___;扇形的面积为____. 【来源】浙江省宁波市镇海区镇海中学2018-2019学年高一上学期期中数学试题 【答案】2 2 39.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若sin sin αβ=,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号)【来源】江苏省南通市启东中学2018-2019学年高二5月月考数学(文)试题 【答案】③40.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是________. 【来源】广东省中山市第一中学2016-2017学年高一下学期第一次段考(3月)数学(理)试题 【答案】2三、解答题41.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小.(2)求该扇形的面积取得最大时,圆心角的大小和弦长AB .【来源】2015-2016学年四川省雅安市天全中学高一11月月考数学试卷(带解析) 【答案】(1)或;(2);.42.已知一扇形的中心角是120︒,所在圆的半径是10cm ,求: (1)扇形的弧长; (2)该弧所在的弓形的面积【来源】福建省福州市平潭县新世纪学校2019-2020学年高一上学期第二次月考数学试题【答案】(1)203π;(2)1003π-43.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆弧和延长后通过点AD 的两条线段围成.设圆弧AB 、CD 所在圆的半径分别为()f x 、R 米,圆心角为θ(弧度).(1)若3πθ=,13r =,26=r ,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD 的长度为多少时,花坛的面积最大?【来源】江苏省泰州市泰州中学2019~2020学年高一上学期期中数学试题 【答案】(1)292m π(2)当线段AD 的长为5米时,花坛的面积最大44.已知一个扇形的周长为30厘米,求扇形面积S 的最大值,并求此时扇形的半径和圆心角的弧度数.【来源】上海市华东师范大学第二附属中学2018-2019学年高一上学期期末数学试题 【答案】()2rad α= 152r =45.如图所示为圆柱形大型储油罐固定在U 型槽上的横截面图,已知图中ABCD 为等腰梯形(AB ∥DC ),支点A 与B 相距8m ,罐底最低点到地面CD 距离为1m ,设油罐横截面圆心为O ,半径为5m ,56D ∠=︒,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin530.8︒≈,tan56 1.5︒≈,3π≈,结果保留整数)【来源】上海市闵行区七宝中学2019-2020学年高一上学期9月月考数学试题 【答案】202m46.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”某教师根据这首词的思想设计如下图形,已知CE l ⊥,DF l ⊥,CB CD =,AD BC ⊥,5DF =,2BE =,AD =则在扇形BCD 中随机取一点求此点取自阴影部分的概率.【来源】山西省阳泉市2018-2019学年高一第一学期期末考试试题数学试题【答案】1)4(P A π=-47.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由试卷第11页,总11页 扇形OAD 挖去扇形OBC 后构成的).已知10, (0<<10)OA=OB =x x ,线段BA 、CD与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.【来源】上海市黄浦区2018届高三4月模拟(二模)数学试题【答案】(1)210(010)10x x x θ+=<<+;(2)当52x =米时铭牌的面积最大,且最大面积为2254平方米. 48.已知一扇形的圆心角为()0αα>,所在圆的半径为R .(1)若90,10R cm α==o ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值()0C C >,当α为多少弧度时,该扇形有最大面积?【来源】2019高考备考一轮复习精品资料 专题十五 任意角和弧度制及任意角的三角函数 教学案【答案】(1)2550π-;(2)见解析49.已知在半径为10的圆O 中,弦AB 的长为10.(1)求弦AB 所对的圆心角α(0<α<π)的大小;(2)求圆心角α所在的扇形弧长l 及弧所在的弓形的面积S .【来源】(人教A 版必修四)1.1.2弧度制(第一课时)同步练习02【答案】(1)π3(2)10π3;50(π3−√32) 50.已知在半径为6的圆O 中,弦AB 的长为6,(1)求弦AB 所对圆心角α的大小;(2)求α所在的扇形的弧长l 以及扇形的面积S.【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(文)试卷【答案】(1)3π ;(2)2l π= ,6S π=。

2019-2020学年上海市浦东新区建平中学高一(下)期中数学试卷

2019-2020学年上海市浦东新区建平中学高一(下)期中数学试卷试题数:21,总分:01.(填空题,3分)已知扇形的弧长是6,圆心角为2,则扇形的面积为___ .2.(填空题,3分)数列{a n}是等比数列,a1=12,q=12,a n=132,则n=___ .3.(填空题,3分)已知tanθ=-2,则cosθ−sinθsinθ+cosθ=___ .4.(填空题,3分)三角方程tan(x−π6)=3的解集为___ .5.(填空题,3分)sinx=13,x∈[3π2,5π2],则x用反正弦可以表示为___ .6.(填空题,3分)已知数列{a n}满足a1=0,a n+1=n√3√3a+1(n∈N*),则a2020=___ .7.(填空题,3分)等差数列{a n}的通项为a n=2n-1,令b n=a2n-1,则数列{b n}的前20项之和为___ .8.(填空题,3分)函数y=sin2ωx-cos2ωx(ω>0)的最小正周期为4π,则ω=___ .9.(填空题,3分)已知12sinα+5cosα可表示为Asin(α+φ)(A>0,0≤φ<π)的形式,则sin2φ=___ .10.(填空题,3分)已知角α,β∈(0,π4),3sinβ=sin(2α+β),4tanα2=1−tan2α2,则α+β=___ .11.(填空题,3分)方程x2−10xsinπx2+1=0实数解的个数为___ .12.(填空题,3分)设数列{a n}的通项公式为a n=2n-3(n∈N*),数列{b n}定义如下:对于正整数m,b m是使得不等式a n≥m成立的所有n中的最小值,则数列{b n}的前2m项和为___ .(结果用m表示)13.(单选题,3分)已知α是第二象限角,则α2是()A.锐角B.第一象限角C.第一、三象限角D.第二、四象限角14.(单选题,3分)在△ABC中,若tanAtanB>1,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定15.(单选题,3分)已知函数f(x)=Asin(ωx+φ)(其中A>0,|φ| <π2)的部分图象如图所示,则f(x)的解析式为()A.f(x)=sin(2x+ π3)B.f(x)=sin(12x+π3)C.f(x)=sin(12x−π3)D.f(x)=sin(2x −π3)16.(单选题,3分)已知{a n}、{b n}均是等差数列,c n=a n•b n,若{c n}前三项是7、9、9,则c10=()A.-47B.47C.-1D.117.(问答题,0分)已知函数f(x)=2sinxcosx-2sin2x+1.(1)求f(x)的单调递减区间;(2)若函数f(x)=√22,x∈[0,π),求x.18.(问答题,0分)已知sinα+cosα=−15,α∈(0,π),求下列式子的值:(1)sinαcosα;(2)tanα2;(3)sin3α+cos3α.19.(问答题,0分)如图,一智能扫地机器人在A处发现位于它正西方向的B处和北偏东30°方向上的C处分别有需要清扫的垃圾,红外线感应测量发现机器人到B的距离比到C的距离少0.4米,于是选择沿A→B→C路线清扫,已知智能扫地机器人的直线行走速度为0.2m/s,忽略机器人吸入垃圾及在B处旋转所用时间,10秒钟完成了清扫任务.(1)B、C两处垃圾的距离是多少?(2)智能扫地机器人此次清扫行走路线的夹角∠B的正弦值是多少?20.(问答题,0分)设{a n}是无穷等差数列,公差为d,前n项和为S n.(1)设a1=40,a6=38,求S n的最大值;(2)设S9=0,且a2+a3+a4+a5=-18,令b n=|a n|,求数列{b n}的前n项和T n.21.(问答题,0分)已知定义在R上的函数f(x)和数列{a n}满足下列条件:a1=a,a2≠a1,当n∈N*且n≥2时,a n=f(a n-1)且f(a n)-f(a n-1)=k(a n-a n-1),其中a、k均为非零常数.(1)若{a n}是等差数列,求实数k的值;(2)令b n=a n+1-a n(n∈N*),若b1=1,求数列{b n}的通项公式;(3)令b n=a n+1-a n(n∈N*),若c1=b1=k<0,数列{c n}满足c n+1-c n=2(b n+1-b n),若数列{c n}∈(−2,2),求k的取值范围.有最大值M,最小值m,且Mm2019-2020学年上海市浦东新区建平中学高一(下)期中数学试卷参考答案与试题解析试题数:21,总分:01.(填空题,3分)已知扇形的弧长是6,圆心角为2,则扇形的面积为___ .【正确答案】:[1]9【解析】:利用扇形的弧长公式可求扇形的半径,根据扇形的面积公式即可求解.【解答】:解:设扇形的半径为r,则r= 62=3,则扇形的面积S= 12×6×3=9.故答案为:9.【点评】:本题主要考查了扇形的弧长公式,面积公式的应用,属于基础题.2.(填空题,3分)数列{a n}是等比数列,a1=12,q=12,a n=132,则n=___ .【正确答案】:[1]5【解析】:利用等比数列的通面公式直接求解.【解答】:解:∵数列{a n}是等比数列,a1=12,q=12,a n=132,∴ a n=12×(12)n−1=132,解得n=5.故答案为:5.【点评】:本题考查等比数列的项数n的求法,考查等比数列的性质等基础知识,是基础题.3.(填空题,3分)已知tanθ=-2,则cosθ−sinθsinθ+cosθ=___ .【正确答案】:[1]-3【解析】:由已知利用同角三角函数基本关系式化简即可求解.【解答】:解:∵tanθ=-2,∴ cosθ−sinθsinθ+cosθ = 1−tanθtanθ+1= 1−(−2)−2+1=-3.故答案为:-3.【点评】:本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.4.(填空题,3分)三角方程tan(x−π6)=3的解集为___ .【正确答案】:[1] {x|x=arctan3+π6+kπ,k∈Z}【解析】:直接根据tan(x−π6)=3,解方程即可.【解答】:解:∵ tan(x−π6)=3,∴ x−π6=arctan3+kπ,k∈Z,∴ x=arctan3+π6+kπ,k∈Z.∴方程的解集为{x|x=arctan3+π6+kπ,k∈Z}.故答案为:{x|x=arctan3+π6+kπ,k∈Z}.【点评】:本题考查了三角方程的求法,属基础题.5.(填空题,3分)sinx=13,x∈[3π2,5π2],则x用反正弦可以表示为___ .【正确答案】:[1] x=2π+arcsin13【解析】:根据sinx=13,x∈[3π2,5π2],直接求出x即可.【解答】:解:∵ sinx=13,x∈[3π2,5π2],∴ x=2π+arcsin13.故答案为:x=2π+arcsin13.【点评】:本题考查了三角方程的求法,属基础题.6.(填空题,3分)已知数列{a n}满足a1=0,a n+1=n√3√3a+1(n∈N*),则a2020=___ .【正确答案】:[1]0【解析】:求出数列的前几项,判断数列是周期数列,然后求解即可.(n∈N*),【解答】:解:数列{a n}满足a1=0,a n+1=a n−√3√3a+1=- √3,可得a2= √3√3×0+1a3= √3−√3= √3,√3×(−√3)+1=0,…a4= √3−√3√3×√3+1所以数列是周期数列,周期为3,所以a2020=a3×673+1=a1=0,故答案为:0.【点评】:本题考查数列的递推关系式的应用,数列的项的求法,判断数列是周期数列是解题的关键.7.(填空题,3分)等差数列{a n}的通项为a n=2n-1,令b n=a2n-1,则数列{b n}的前20项之和为___ .【正确答案】:[1]780【解析】:由已知代入可求b n,然后结合等差数列的求和公式即可求解.【解答】:解:由a n=2n-1,可得b n=a2n-1=2(2n-1)-1=4n-3,则数列{b n}是以1为首项,以4为公差的等差数列,×4 =780.故前20项之和S20=20×1+ 20×192故答案为:780.【点评】:本题主要考查了等差数列的性质及求和公式的简单应用,属于基础试题.8.(填空题,3分)函数y=sin2ωx-cos2ωx(ω>0)的最小正周期为4π,则ω=___ .【正确答案】:[1] 14【解析】:利用二倍角的余弦函数公式化简函数解析式,根据余弦函数的周期公式即可求解.,【解答】:解:∵y=sin2ωx-cos2ωx=-cos2ωx(ω>0)的最小正周期为4π,即4π= 2π2ω.∴ω= 14.故答案为:14【点评】:本题主要考查了二倍角的余弦函数公式,余弦函数的周期公式的应用,考查了函数思想,属于基础题.9.(填空题,3分)已知12sinα+5cosα可表示为Asin(α+φ)(A>0,0≤φ<π)的形式,则sin2φ=___ .【正确答案】:[1] 120169【解析】:由题意利用三角恒等变换,辅助角公式,先求出sinφ 和cosφ的值,可得sin2φ的值.【解答】:解:∵12sinα+5cosα=13(1213sinα+ 513cosα)可表示为Asin(α+φ)(A>0,0≤φ<π)的形式,则sinφ= 513,cosφ= 1213,∴sin2φ=2sinφcosφ= 120169,故答案为:120169.【点评】:本题主要考查三角恒等变换,辅助角公式的应用,属于中档题.10.(填空题,3分)已知角α,β∈(0,π4),3sinβ=sin(2α+β),4tanα2=1−tan2α2,则α+β=___ .【正确答案】:[1] π4【解析】:从4tan α2 =1-tan2α2.中解出tanα,利用配角法化简3sinβ=sin(2α+β),即将其中的2α+β用(α+β)+α,β用(α+β)-α代换,从而求出tan(α+β),利用三角函数值求解得α+β的值.【解答】:解:∵4tan α2 =1-tan2α2,∴2•tanα=1,tanα= 12.∵3sinβ=sin(2α+β),∴3sinβ=sin(α+β)cosα+cos(α+β)sinα.∴3sin(α+β)cosα-3cos(α+β)sinα=sin(α+β)cosα+cos(α+β)sinα.∴sin(α+β)cosα=2cos(α+β)sinα.∴tan(α+β)=2tanα=1.又α,β∈(0,π4),∴α+β= π4.故答案为:π4.【点评】:本题主要考查了三角函数化简求值,角的变换是常用技巧.如2α+β=(α+β)+α,β=(α+β)-α等.三角变换中的角的变换,在本题中显得尤为突出,将单角化为复角,对字母角度的巧妙拼凑,使得问题顺利解决,属于基础题.11.(填空题,3分)方程x2−10xsinπx2+1=0实数解的个数为___ .【正确答案】:[1]12【解析】:将方程变形得sin πx2 = 110x+ x10(x≠0)分别作出sin πx2和y= 110x+ x10的函数图象,根据交点个数进行判断.【解答】:解:∵ x2−10xsinπx2+1=0,∴sin πx2 = 110x+ x10(x≠0),令f(x)= 110x + x10= 110(x+ 1x),则f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,作出y=sin πx2和y=f(x)在(0,+∞)上函数图象如图所示:由图象可知y=sin πx2和y=f(x)在(0,+∞)上有6个交点,又y=sin πx2和y=f(x)都是奇函数,∴y=sin πx2和y=f(x)在(-∞,0)上有6个交点,∴方程x2−10xsinπx2+1=0有个解,故答案为:12.【点评】:本题考查了方程的根与函数图象的关系,属于中档题.12.(填空题,3分)设数列{a n}的通项公式为a n=2n-3(n∈N*),数列{b n}定义如下:对于正整数m,b m是使得不等式a n≥m成立的所有n中的最小值,则数列{b n}的前2m项和为___ .(结果用m表示)【正确答案】:[1]m2+4m【解析】:先由题设条件求出数列{b n}的前几项,归纳出b2k-1+b2k=2k+3(k∈N*),再求出其前2m项和即可.【解答】:解:由题设条件可得:当m=1时,b1=2,当m=2时,b2=3,当m=3时,b3=3,当m=4时,b4=4,当m=5时,b5=4,…,故易知:b2k-1=2+k-1=k+1,b2k=3+k-1=k+2,k∈N*,故b2k-1+b2k=2k+3,∴数列{b n}的前2m项和为m(5+2m+3)2=m2+4m.故答案为:m2+4m.【点评】:本题主要考查数列通项公式的求法及数列求和,属于基础题.13.(单选题,3分)已知α是第二象限角,则α2是()A.锐角B.第一象限角C.第一、三象限角D.第二、四象限角【正确答案】:C【解析】:由α是第二象限角对应的范围,即可求解结论.【解答】:解:∵α是第二象限角,所以π2+2kπ<α<π+2kπ,k∈Z,∴ π4+kπ<α2<kπ +π2,k∈Z,∴ α2是第一象限或第三象限角,故选:C.【点评】:本题考查角在第几象限的判断,是基础题,解题时要认真审题,注意象限角定义的合理运用.14.(单选题,3分)在△ABC中,若tanAtanB>1,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定【正确答案】:A【解析】:利用两角和的正切函数公式表示出tan(A+B),根据A与B的范围以及tanAtanB>1,得到tanA和tanB都大于0,即可得到A与B都为锐角,然后判断出tan(A+B)小于0,得到A+B为钝角即C为锐角,所以得到此三角形为锐角三角形.【解答】:解:因为A和B都为三角形中的内角,由tanAtanB>1,得到1-tanAtanB<0,且得到tanA>0,tanB>0,即A,B为锐角,<0,所以tan(A+B)= tanA+tanB1−tanAtanB,π),即C都为锐角,则A+B∈(π2所以△ABC是锐角三角形.故选:A.【点评】:此题考查了三角形的形状判断,用的知识有两角和与差的正切函数公式.解本题的思路是:根据tanAtanB>1和A与B都为三角形的内角得到tanA和tanB都大于0,即A和B都为锐角,进而根据两角和与差的正切函数公式得到tan(A+B)的值为负数,进而得到A+B的范围,判断出C也为锐角.)的部分图象如15.(单选题,3分)已知函数f(x)=Asin(ωx+φ)(其中A>0,|φ| <π2图所示,则f(x)的解析式为()A.f(x)=sin(2x+ π)3B.f (x )=sin ( 12x +π3 ) C.f (x )=sin ( 12x −π3 ) D.f (x )=sin (2x −π3 ) 【正确答案】:A【解析】:依题意,可求得A=1,由T= 2πω =π可求得ω=2,由 π3 ω+φ=π可求得φ.【解答】:解:由图知,A=1; 又 T4 = 7π12 - π3 = π4 , ∴T=π,又T= 2πω , ∴ω=2;∵f (x )=Asin (ωx+φ)经过( π3,0),且在该处为递减趋势, ∴ π3 ω+φ=π, ∴φ=π- π3 ×2= π3 .∴f (x )的解析式为:f (x )=sin (2x+ π3 ). 故选:A .【点评】:本题考查由y=Asin (ωx+φ)的部分图象确定其解析式,确定φ的值是难点,考查观察与运算能力,属于中档题.16.(单选题,3分)已知{a n }、{b n }均是等差数列,c n =a n •b n ,若{c n }前三项是7、9、9,则c 10=( ) A.-47 B.47 C.-1 D.1【正确答案】:A【解析】:{a n }、{b n }均是等差数列,故{c n }为二次函数,设c n =an 2+bn+c ,根据前3项,求出a ,b ,c 的值,即可得到c 10.【解答】:解:设c n =a n •b n =an 2+bn+c , 则 {a +b +c =74a +2b +c =99a +3b +c =9,解得a=-1,b=5,c=3,∴c10=-1×102+5×10+3=-47,故选:A.【点评】:本题考查了等差数列的通项公式,考查分析和解决问题的能力和计算能力,属于基础题.17.(问答题,0分)已知函数f(x)=2sinxcosx-2sin2x+1.(1)求f(x)的单调递减区间;(2)若函数f(x)=√22,x∈[0,π),求x.【正确答案】:【解析】:(1)利用二倍角公式化简函数f(x)的解析式为f(x)= √2 sin(2x+ π4),令2kπ+ π2≤2x+ π4≤2kπ+ 3π2,(k∈Z),解得x的范围即得f(x)的单调递减区间.(2)由题意可得sin(2x+ π4)= 12,可求范围2x+ π4∈[ π4,9π4),根据正弦函数的图象和性质即可求解.【解答】:解:(1)∵f(x)=sin2x+cos2x= √2 sin(2x+ π4),∴令2kπ+ π2≤2x+ π4≤2kπ+ 3π2,(k∈Z),解得kπ+ π8≤x≤kπ+ 5π8,(k∈Z),∴f(x)的单调递减区间是:[π8+kπ,5π8+kπ],k∈Z;(2)∵ f(x)=√22,即√2 sin(2x+ π4)= √22,∴解得:sin(2x+ π4)= 12,∵x∈[0,π),∴2x+ π4∈[ π4,9π4),∴2x+ π4 = 5π6,或13π6,解得x= 7π24,或23π24.【点评】:本题主要考查了二倍角公式,正弦函数的图象和性质,考查了函数思想和转化思想,属于基础题.18.(问答题,0分)已知sinα+cosα=−15,α∈(0,π),求下列式子的值:(1)sinαcosα;(2)tanα2;(3)sin3α+cos3α.【正确答案】:【解析】:(1)将已知等式两边平方,利用同角三角函数基本关系式可求得sinαcosα的值;(2)由已知可求α2∈(0,π2),sinα>0,cosα<0,tan α2>0,利用平方差公式可求sinα-cosα= 75,进而可求sinα= 35,利用二倍角的正弦函数公式,同角三角函数基本关系式可求tanα2的值.(3)利用立方和公式即可求解.【解答】:解:(1)∵ sinα+cosα=−15,α∈(0,π),∴两边平方,可得1+2sinαcosα= 125,∴解得sinαcosα=- 1225;(2)∵ sinα+cosα=−15<0,①又α∈(0,π),α2∈(0,π2),∴sinα>0,cosα<0,tan α2>0,∴sinα-cosα= √(sinα−cosα)2 = √1−2sinαcosα = 75,②∴由① ② 可得sinα= 35,即2sinα2cosα2sin2α2+cos2α2= 2tanα21+tan2α2= 35,整理可得:3tan2α2-10tan α2+3=0,∴解得tan α2 =3,或- 13(舍去).(3)sin3α+cos3α=(sinα+cosα)(sin2α+cos2α-sinαcosα)=(- 15)×(1+ 1225)=- 37125.【点评】:本题主要考查了同角三角函数基本关系式,平方差公式,二倍角的正弦函数公式,立方和公式在三角函数化简求值中的应用,考查了方程思想和转化思想,属于中档题.19.(问答题,0分)如图,一智能扫地机器人在A处发现位于它正西方向的B处和北偏东30°方向上的C处分别有需要清扫的垃圾,红外线感应测量发现机器人到B的距离比到C的距离少0.4米,于是选择沿A→B→C路线清扫,已知智能扫地机器人的直线行走速度为0.2m/s,忽略机器人吸入垃圾及在B处旋转所用时间,10秒钟完成了清扫任务.(1)B、C两处垃圾的距离是多少?(2)智能扫地机器人此次清扫行走路线的夹角∠B的正弦值是多少?【正确答案】:【解析】:(1)由题意C在A处北偏东30°方向上,所以可得∠CAB=90°+30°=120°,及|AB|,|AC|与|BC|的关系,在三角形ABC中由余弦定理可得|BC|的值,(2)由(1)可得|BC|,|AC|,∠BAC=120°,由正弦定理可得sin∠B的值.【解答】:解:(1)由题意可得|AB|+|BC|=0.2×10=2,|AC|-|AB|=0.4,所以|AC|+|BC|=2.4,|AB|=2-|BC|,|AC|=2.4-|BC|,因为C在A处北偏东30°方向上,所以∠CAB=90°+30°=120°,在三角形ABC中,∠BAC=120°,由余弦定理可得|BC|2=|AB|2+|AC|2-2|AB||AC|cos120°=(2-|BC|)2+(2.4-|BC|)2+(2-|BC|)(2.4-|BC|),整理可得|BC|2-6.6|BC|+7.28=0,解得|BC|=1.4或|BC|=5.2(舍),所以B、C两处垃圾的距离是1.4米;(2)由(1)可得|BC|=1.4,|AC|=2.4-1.4=1,∠CAB=120°,由正弦定理可得 |AC|sin∠B = |BC|sin∠CAB , 所以sin∠B= |AC||BC| •sin120°= 11.4 •√32 = 5√314.【点评】:本题考查三角形中正余弦定理的应用,属于中档题. 20.(问答题,0分)设{a n }是无穷等差数列,公差为d ,前n 项和为S n . (1)设a 1=40,a 6=38,求S n 的最大值;(2)设S 9=0,且a 2+a 3+a 4+a 5=-18,令b n =|a n |,求数列{b n }的前n 项和T n .【正确答案】:【解析】:(1)首先求出数列的通项公式,进一步求出数列的和.(2)利用函数的通项公式,进一步利用含绝对值的数列的应用求出数列的和.【解答】:解:(1)数列{a n }是无穷等差数列,公差为d , 由于a 1=40,a 6=38,所以a 6=a 1+5d ,a 6-a 1=-2=5d ,解得d=- 25 . 所以S n = 40n −25×n (n−1)2 = n 2−201n 5 =- 15(n −2012)2+201220; 当n=100或101时,S n 取得最大值2020; (2)由于S 9=0,且a 2+a 3+a 4+a 5=-18, 故 {S 9=0a 2+a 3+a 4+a 5=−18 ,解得 {a 1=−12d =3,故a n =3n-15,b n =|3n-15|,所以当n≤5,故 T n =|a 1|+|a 2|+⋯|a n |=−a 1−+⋯−a n =−n (−12+3n−15)2=−32n 2+272n .当n≥5时,T n=|a1|+|a2|+…+|a n|=(-a1-a2-…-a5)+(a1+a2+…+a n)= 32n2−272n+60所以:T n={−32n2+272(n≤5)3 2n2−272n+60(n≥5).【点评】:本题考查的知识要点:数列的通项公式的求法及应用,含绝对值的数列的求和的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.21.(问答题,0分)已知定义在R上的函数f(x)和数列{a n}满足下列条件:a1=a,a2≠a1,当n∈N*且n≥2时,a n=f(a n-1)且f(a n)-f(a n-1)=k(a n-a n-1),其中a、k均为非零常数.(1)若{a n}是等差数列,求实数k的值;(2)令b n=a n+1-a n(n∈N*),若b1=1,求数列{b n}的通项公式;(3)令b n=a n+1-a n(n∈N*),若c1=b1=k<0,数列{c n}满足c n+1-c n=2(b n+1-b n),若数列{c n}有最大值M,最小值m,且Mm∈(−2,2),求k的取值范围.【正确答案】:【解析】:(1)利用等差数列的定义a n+1-a n=a n-a n-1,a n=f(a n-1),易得k=1(2)利用等比数列的定义证明数列{b n}是等比数列,进而写出数列{b n}的通项公式(3)利用累加法求得{c n}的通项公式,结合题意,找到数列{c n}的最大项和最小项,解不等式求的结果.【解答】:解:(1)由已知a n=f(a n-1),f(a n)-f(a n-1)=k(a n-a n-1),a n+1-a n=f(a n)-f(a n-1)=k(a n-a n-1),∵数列{a n}是等差数列,∴a n+1-a n=a n-a n-1,∴k=1;(2)由b1=a2-a1≠0,可得b2=a3-a2=f(a2)-f(a1)=k(a2-a1)≠0,且当n>2时,b n=a n+1-a n=f(a n)-f(a n-1)=k(a n-a n-1)=…=k n-1(a2-a1)≠0,且b nb n−1 = a n+1−a na n−a n−1= f(a n)−f(a n−1)a n−a n−1=k∴数列{b n}是一个以首项为b1,公比为k的等比数列,若b1=1,则数列{b n}的通项公式为 b n=k n-1(n∈N*);(3)由(2)可得{b n}是以k为首项,以k为公比的等比数列,∴b n=k n,c1=b1=k<0,∴c n+1-c n=2(b n+1-b n)=2(k n+1-k n)=2(k-1)k n,∴c2-c1=2(k-1)k1,c3-c2=2(k-1)k2,c4-c3=2(k-1)k3,…,c n-c n-1=2(k-1)k n-1(n≥2),累加得c n-c1=2(k-1)(k1+k2+…+k n-1)=2(k n-k),∴c n=2k n-k(n≥2),当n=1时也满足,∴c n=2k n-k(n∈N*)若{c n}存在最大值,结合k<0,的条件,则-1<k<0,∴c2的是最大项,c1是最小项.∴M=2k2-k,m=k,由Mm ∈(-2,2),得-2<2k2−kk<2,解得- 12<k<0,∴k的取值范围为(- 12,0)【点评】:本题考查的是数列问题,涉及到的知识点有等差数列的定义,等比数列的通项公式,累加法求数列的通项公式,数列的最大最小项,属于难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档