2015_2016学年八年级数学下册专题19.2.2一次函数(第1课时)(测)(提升版,含解析)新人教版

合集下载

人教版八年级数学下册19.2.2一次函数(第1课时)课件(2)

人教版八年级数学下册19.2.2一次函数(第1课时)课件(2)

y=-6x 12 6 0
y=-6x+5 17 11 5
12 -6 -12 -1 -7
y
12 10 8 6 4 2
-2 -1 O 1 2 3 x
2.观察与比较
.
比较上面两个函数图象的相同点与不同点.填
出你的观察结果并与同伴交流.
y
12
这两个函数的图象形状都是
10
,并一且条倾直斜线程度
.函数y=-
8
6x的相图同象经过原点,函数y=-6x+5
1
-1 -O1 1
x y=-x+1
k的正、负对函数图象有 什么影响?
当k>0时,y随x的
增大而增大;当k<0时
,y随x的增大而减小.
y=-2x+1
五、回顾与反思
在本节课中,我们经历了怎样的过程?有怎 样的收获?
1.一次函数的图象与性质,常数k,b的意义 和作用.
2.数形结合的思想与方法. 3.进一步体验研究函数的一般思路与方法.
2.反思: (1)正比例函数是特殊的一次函数,正比例函 数的图象是直线,那么一次函数的图象也会是一条 直线吗?
(2)从解析式上看,一次函数y=kx+b与正比 例函数y=kx只差一个常数b,体现在图象上,又会 有怎样的关系呢?
二、探究新知
1.画出函数y=-6x与y=-6x+5的图象.
x
-2 -1 0
6 4
的图象与y轴交于点

2
即它可以(看0,作5)由直线y=-6x向
-2 -1O 1 2 3 x
平移
个单上位长度得到5 .
3.探究. 比较两个函数的解析式与图象,你能解释这是 为什么吗?

八年级数学下册第十九章一次函数19-2一次函数19-2-2一次函数第1课时一次函数新人教版

八年级数学下册第十九章一次函数19-2一次函数19-2-2一次函数第1课时一次函数新人教版
(1)放入一个小球后水桶中水面升高________ cm; (2)求放入小球后水桶中水面的高度 y(cm)与小球的个数 x(个) 之间的一次函数关系式;(不要求写出自变量的取值范围) (3)水桶中至少放入几个小球时有水溢出?
解:(1)2; (2)因为每放入一个小球后,水面升高 2 cm,所以 y=30+2x; (3)由 2x+30>49,得 x>9.5,即至少放入 10 个小球时有水溢 出.
3.若一次函数 y=kx+b,当 x=-2 时,y=7;当 x=1 时,y
=-11.则 k,b 的值为( C )
A.k=6,b=5
B.k=-1,b=-5
C.k=-6,b=-5
D.k=1,b=5
4.据调查,某地铁自行车存放处某星期天的存车量为 4000 辆 次,其中变速车存车费是每辆一次 0.30 元,普通自行车存车费 是每辆一次 0.20 元,若普通自行车存车数为 x 辆,存车费总收 入为 y 元,则 y 关于 x 的函数关系式为( D ) A.y=0.10x+800(0≤x≤4000) B.y=0.10x+1200(0≤x≤4000) C.y=-0.10x+800(0≤x≤4000) D.y=-0.10x+1200(0≤x≤4000)
(3)某车站规定旅客可以免费携带不超过 20 千克的行李,超过 部分每千克收取 1.5 元的行李费,则旅客需交的行李费 y(元) 与携带行李质量 x(千克)(x>20)的关系.
解:(1)y=0.53x,是; (2)y=10+5x,是; (3)y=1.5x-30,是.
10.某油箱容量为 60 L 的汽车,加满汽油后行驶了 100 km 时,油箱中的汽油大约消耗了15 ,如果加满汽油后汽车行驶 的路程为 x(km),油箱中剩油量为 y(L),则 y 与 x 之间的函数 解析式和自变量取值范围分别是( D ) A.y=0.12x,x>0 B.y=60-0.12x,x>0 C.y=0.12x,0≤x≤500 D.y=60-0.12x,0≤x≤500

八年级数学下册19.2.2一次函数第1课时导学案新版新人教版2

八年级数学下册19.2.2一次函数第1课时导学案新版新人教版2

19.2.2一次函数 (第一课时)学习目标:1、我会理解一次函数的概念。

2、我会搞清楚正比例函数与一次函数之间的关系。

学习重难点:一次函数函数的概念和解析式的特点以及与正比例函数之间的关系。

学习过程:一、创设问题情境:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.二、自主学习:1、自学课本89—90页,回答下列问题:(1)、一颗树现在高60 cm,每个月长高2 cm,x月之后这棵树的高度为h cm,则h关于x的函数解析式为 .(2)、有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(℃)有关,即C•的值约是t的7倍与35的差.(3)、某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.1分收取).(4)、把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化. 上面这些函数的形式都是自变量x的k(常数)倍与一个常数的和.如果我们用b来表示这个常数的话.•这些函数形式就可以写成:2、上面这些函数的形式都是常数K与自变量的积与常数b的和的形式。

这些函数的形式可以写成: .3.一次函数的概念一般地,形如的函数,•叫做一次函数.当b=0时,y=kx+b即y=kx.所以说正比例函数是一种特殊的一次函数.4、对一次函数概念内涵和外延的把握:(1)自变量系数(常数)k≠0;(2)自变量x的次数为1;(3)当b=0时,y=kx+b即y=kx.故正比例函数是一次函数.三、合作交流与展示:1、下列函数中,是一次函数的有,是正比例函数的有(1)x y 8-= (2)x y 8-= (3)652+=x y (4)15.0--=x y (5)x y = (6))3(2+=x y (7)x y 34-=2、下列说法不正确的是( )(A)一次函数不一定是正比例函数 (B)不是一次函数就一定不是正比例函数(C)正比例函数是特定的一次函数 (D)不是正比例函数就不是一次函数3、已知函数y=(2-m)x+2m-3.求当m 为何值时,(1)此函数为正比例函数? (2)此函数为一次函数?4、函数,b kx y +=当 1=x 时1-=y ,当4=x 时5=y ,求K 与b 的值。

人教版数学八年级下册19.2一次函数(1)试题试卷含答案

人教版数学八年级下册19.2一次函数(1)试题试卷含答案

19.2 一次函数(1)19.2.1 正比例函数的定义1.下列说法中不正确的是( )A .在31y x =-中,1y +与x 成正比例B .在2xy =-中,y 与x 成正比例C .在()21y x =+中,y 与1x +成正比例D .在3y x =+中,y 与x 成正比例2.下列关系中,是正比例函数关系的是( )A .矩形的面积一定,长和宽之间的关系B .正方形的面积和边长之间的关系C .三角形的面积一定,一边长和该边上的高之间的关系D .匀速运动中,速度一定时,路程和时间之间的关系3.若y 关于x 的函数()2y a x b =-+是正比例函数,则a ,b 应满足的条件是()A .2a ≠B .0b =C .2a =且0b =D .2a ≠且0b =19.2 一次函数(1)19.2.1 正比例函数的定义1.【答案】D【解析】A ,∵31y x =-,∴13y x +=,∴1y +与x 成正比例,故本选项正确;B ,∵2xy =-∴y 与x 成正比例,故本选项正确;C ,∵()21y x =+,∴y 与1x +成正比例,故本选项正确;D ,3y x =+,y 与x 不符合正比例函数的定义,故本选项错误.故选D .2.【答案】D【解析】A ,∵S ab =,∴当矩形的面积一定时,矩形的长和宽不是正比例关系,故本选项错误;B ,∵2S a =,∴正方形面积和边长不是正比例关系,故本选项错误;C ,∵12S ah =,∴当三角形的面积一定时,一边长和一边上的高不是正比例关系,故本选项错误;D ,∵S vt =,∴当速度固定时,路程和时间是正比例关系,故本选项正确.故选D .3.【答案】D【解析】∵()2y a x b =-+是y 关于x 的正比例函数,∴0b =且20a -≠,解得0b =且2a ≠.故选D .参考答案及解析19.2.2 正比例函数的图象1.当0x >时,y 与x 之间的函数解析式为2y x =,当0x ≤时,y 与x 之间的函数解析式为2y x =-,则在同一直角坐标系中y 与x 之间的函数关系图象大致为图中的( )A .B .C .D .2.正比例函数3y x =的大致图象是( )A .B .C .D .3.已知正比例函数y =kx (k ≠0)的图象如图所示,则k 的值可能是( )A .1B .2C .3D .4________________________________________________________________________纠错笔记19.2.2 正比例函数的图象1.【答案】C【解析】当0x >时,y 与x 的函数解析式为2y x =,此时图象在第一象限,当0x ≤时,y 与x 的函数解析式为2y x =-,此时图象在第二象限,故选C .2.【答案】B【解析】正比例函数的图象是一条经过原点的直线,且当0k >时,经过第一、三象限,故正比例函数3y x =的大致图象是B .故选B .3.【答案】B【解析】根据图象,得26k <,35k >,解得3k <,53k >,所以533k <<.只有2符合.故选B .参考答案及解析19.2.3 正比例函数的性质1.关于正比例函数2y x =-,下列结论正确的是( )A .图象是一条射线B .图象必经过点()12--,C .图象经过第一、三象限D .y 随x 的增大而减小2.如图,三个正比例函数的图象分别对应表达式:①y ax =,②y bx =,③y cx =.将a ,b ,c 从小到大排列为( )A .a b c<<B .a c b <<C .b a c <<D .c b a<<3.关于函数3y x =-,下列说法正确的是( )A .图象经过点(0,0)和点(13--,)B .图象经过第一、三象限C .y 随x 的增大而减小D .图象是一条射线4.已知正比例函数3y x =的图象经过点()12A y -,,()21B y -,,则1y __________2y (填“>”“<”或“=”).5.如图所示,在同一平面直角坐标系中,正比例函数1y k x =,2y k x =,3y k x =,4y k x =的图象分别为1l ,2l ,3l ,4l ,则1k ,2k ,3k ,4k 的大小关系是__________.________________________________________________________________________纠错笔记19.2.3 正比例函数的性质1.【答案】D【解析】A ,图象是一条直线,故本选项错误;B ,当1x =-时,(2)(1)2y =-⨯-=,故本选项错误;C ,根据0k <,得图象经过第二、四象限,故本选项错误;D ,y 随x 的增大而减小,正确.故选D .2.【答案】B【解析】根据三个函数图象所在象限可得0a <,0b >,0c >,再根据直线越陡,k 越大,则b c >,则a c b <<.故选B .3.【答案】C【解析】A ,将1x =-代入3y x =-,得()3133y =-⨯-=≠-,因此图象不经过点(13--,),故此选项错误;B ,因为30k =-<,所以图象经过二,四象限,故此选项错误;C ,因为30k =-<,所以y 随x 的增大而减小,故此选项正确;D ,因为正比例函数的图象是一条直线而不是射线,故此选项错误.故选C .4.【答案】<【解析】解法一:∵点()12A y -,,点()21B y -,是函数3y x =图象上的点,∴16y =-,23y =-,∵36->-,∴12y y <.故答案为:<.解法二:∵30k =>,∴y 随x 的增大而增大,∵21-<-,∴12y y <.故答案为:<.5.【答案】3412k k k k >>>【解析】∵正比例函数34y k x y k x ==,的图象在一、三象限,∴30k >,40k >,∵3y k x =参考答案及解析的图象比4y k x =的图象上升得快,∴34k k >,∵正比例函数12y k x y k x ==,的图象在二、四象限,∴10k <,20k <,∵2y k x =的图象比1y k x =的图象下降得快,∴12k k >,故答案为:3412k k k k >>>.。

人教版八年级下册数学课时练《19 一次函数》(1) 试题试卷 含答案解析

人教版八年级下册数学课时练《19 一次函数》(1) 试题试卷 含答案解析

人教版初中数学八年级下册《19.2.2一次函数》课时练学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列函数中,不是一次函数的是()A .7y x =B .25y x =C .132y x =-D .4y x =-+2.函数21y x =+的图象过点().A .()1,1-B .()1,2-C .()0,1D .()1,13.已知正比例函数(0)y kx k =¹的函数值y 随x 的增大而增大,则一次函数y kx k =-的图像大致是()A .B .C .D .4.已知直线y kx b =+不经过第二象限,也不经过原点,则下列结论正确的是()A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <5.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q (升)与行驶时间t (小时)之间的函数关系的图象是()A .B .C .D .6.下列一次函数中,y 随x 增大而增大的有()①87y x =-;②65y x =-;③8y =-+;④y x =;⑤9y x =.A .①②③B .①②⑤C .①③⑤D .①④⑤二、填空题7.若函数()32y m x m =-+-是关于x 的一次函数,则m ______.8.一根长为24cm 的蜡烛被点燃后,每分钟缩短1.2cm ,则其剩余长度y (cm )与燃烧时间x (min )的函数关系式为________________,自变量的取值范围是_________________.9.一次函数2y x =--的图像经过第_______象限,y 随x 的增大而_______.10.若一次函数(4)1y m x m =++-的图象与y 轴的交点在x 轴的下方,则m 的取值范围是_______.11.若函数y=kx+b (k ,b 为常数)的图象如下图所示,那么当y >0时,x 的取值范围是__.12.正方形OA 1B 1C 1、A 1A 2B 2C 2、A 2A 3B 3C 3,按如图放置,其中点A 1、A 2、A 3在x 轴的正半轴上,点B 1、B 2、B 3在直线2y x =-+上,则点A 3的坐标为_____________.三、解答题13.下列函数中哪些是一次函数,哪些又是正比例函数?(1)8y x =-;(2)8y x -=;(3)256y x =+;(4)0.51y x =--.14.(1)画出函数21y x =-的图象;(2)判断点()()()2.5,4,1,3, 2.5,4A B C --是否在函数21y x =-的图象上.15.已知一次函数()226y k x k =--+.(1)k 满足何条件时,y 随x 的增大而减小;(2)k 满足何条件时,图像经过第一、二、四象限;(3)k 满足何条件时,它的图像与y 轴的交点在x 轴的上方.16.如图,在平面直角坐标系中,直线l 1:y=12x 与直线l 2交点A 的横坐标为2,将直线l 1沿y 轴向下平移4个单位长度,得到直线l 3,直线l 3与y 轴交于点B ,与直线l 2交于点C ,点C 的纵坐标为﹣2.直线l 2与y 轴交于点D .(1)求直线l 2的解析式;(2)求△BDC 的面积.17.如图,在直角坐标系中,已知点A (6,0),又点B (x ,y )在第一象限内,且x +y =8,设△AOB 的面积是S .(1)写出S 与x 之间的函数解析式,并求出x 的取值范围;(2)画出(1)中所求函数的图象.18.如图(单位:cm),规格相同的某种盘子整齐地摞在一起.(1)设x个这种盘子摞在一起的高度为y cm,求y与x之间的关系式;(2)求10个这种盘子摞在一起的高度.参考答案1.A2.C3.B4.B5.B6.C7.3¹8.y =24-1.2x0≤x ≤209.二、三、四减小10.1m <且4m ¹-11.x <212.(74,0).13.解:(1)8y x =-是正比例函数,也是一次函数;(2)8y x -=自变量在分母中,不是一次函数,也不是正比例函数;(3)256y x =+自变量的次数是2,不是一次函数,也不是正比例函数;(4)0.51y x =--是一次函数,不是正比例函数.所以(1)(4)是一次函数,(1)是正比例函数.14.解:(1)∵当=0x 时,=1y -;当=0y 时,1=2x ,∴该直线经过点(0,−1),(12,0),其图象如图所示;(2)∵函数的解析式为21y x =-,∴当x =−2.5时,y =2×(−2.5)−1=−6,即A (−2.5,−4)不在该函数图象上.当x=1时,y=2×1−1=1,即点B(1,3)不在该函数图象上.当x=2.5时,y=2×2.5−1=4,即C(2.5,4)在该函数图象上.15.(1)k>2;(2)2<k<3;(3)k<3且k≠2.【解析】(1)∵一次函数y=(2−k)x−2k+6的图象y随x的增大而减小,∴2−k<0,解得k>2;(2)∵该函数的图象经过第一、二、四象限,∴2−k<0,且−2k+6>0,解得2<k<3;(3)∵y=(2−k)x−2k+6,∴当x=0时,y=−2k+6,由题意,得−2k+6>0且2−k≠0,∴k<3且k≠2.16.直线l2的解析式为y=﹣32x+4;(2)16.【解析】(1)把x=2代入y=12x,得y=1,∴A的坐标为(2,1).∵将直线l1沿y轴向下平移4个单位长度,得到直线l3,∴直线l3的解析式为y=12x-4,∴x=0时,y=-4,∴B(0,-4).将y=-2代入y=12x-4,得x=4,∴点C的坐标为(4,-2).设直线l2的解析式为y=kx+b,∵直线l2过A(2,1)、C(4,-2),∴2142k bk b+ìí+-î==,解得324kbì-ïíïî==,∴直线l2的解析式为y=-32x+4;(2)∵y=-32x+4,∴x=0时,y=4,∴D(0,4).∵B(0,-4),∴BD=8,∴△BDC的面积=12×8×4=16.17.(1)0<x<8.(2)详见解析.【解析】(1)∵点B在直线y=-x+8上,∴设B(x,-x+8),∴y=-x+8与x和y轴的交点分别为(8,0)和(0,8)∵点B在第一象限,∴其横坐标x 的范围是:0<x<8;∵A(6,0),点B(x,y),∴OA=6,BC=y(y>0),∴S=12OA•BC=12×6y=3y;又∵x+y=8,∴y=8-x,∴S=-3x+24.由3240 xxìí-+î>>,解得0<x<8.(2)∵由(1)知,S=-3x+24(0<x<8);令S=0,则x=8;令x=0,则S=24,∴一次函数S=-3x+24(x>0)经过点(8,0)、(0,24),∴其图象如图所示:18.(1)2y x=+;(2)12cm【解析】(1)解:设解析式为y=kx+b由题意得:6497k bk b=+ìí=+î解得:12 kb=ìí=î∴解析式为2y x =+(2)把x =10代入2y x =+得102y =+=12(cm)。

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数(第1课时)一课一练基础闯关(含解析)(新版)

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数(第1课时)一课一练基础闯关(含解析)(新版)

一次函数一课一练·基础闯关题组一次函数的概念1.(2017·浦东新区月考)下列函数的解析式中是一次函数的是( )A.y=-B.y=-x+6C.y=2x2+1D.y=2+1【解析】选B.A.y=-自变量x在分母上,不是一次函数,故本选项错误;B.y=-x+6是一次函数,故本选项正确;C.y=2x2+1自变量x的次数是2,不是一次函数,故本选项错误;D.y=2+1自变量x是被开方数,不是一次函数,故本选项错误.2.下列函数关系式:①y=-x;②y=2x+11;③y=x2;④y=.其中一次函数的个数是( )A.1B.2C.3D.4【解析】选B.①y=-x是正比例函数,是特殊的一次函数;②y=2x+11符合一次函数的定义;③y=x2中自变量的指数是2,不是一次函数;④y=分母中有自变量,不是一次函数.综上,一次函数的个数是2.3.下列函数中,是一次函数但不是正比例函数的是( )A.y=2xB.y=+2C.y=-xD.y=2x2-1【解析】选C.B的自变量的次数不是1,D的自变量次数是2,故它们都不是一次函数,A是正比例函数,C是一次函数.4.若函数y=(m+3)x|m|-2+1是一次函数,则m的值是( )A.±3B.±1C.3D.-3【解析】选C.由一次函数的定义可得解得m=3.【变式训练】若函数y=(m-1)x|m|+2是一次函数,则( )A.m=±1B.m=-1C.m=1D.m≠-1【解析】选B.根据题意得:m-1≠0,|m|=1,解得m=-1.5.已知+(b-2)2=0,则函数y=(b+3)x-a+1-2ab+b2是什么函数?当x=-时,函数值y是多少?【解题指南】先根据非负数的性质求出a,b的值,再把a,b的值代入函数解析式即可判断出函数的种类,再把x的值代入求解即可.【解析】因为+(b-2)2=0,所以a=-1,b=2.所以y=(2+3)x-(-1)+1-2×(-1)×2+22,即y=5x+9,所以函数y=(b+3)x-a+1-2ab+b2是一次函数,当x=-时,y=5×+9=.当m,n为何值时,y=(m-1)+n.(1)是一次函数?(2)是正比例函数?【解析】(1)当m2=1且m-1≠0时,y=(m-1)+n是一次函数,即m=-1.∴当m=-1时,y=(m-1)+n是一次函数.(2)当m2=1且m-1≠0,且n=0时,y=(m-1)+n是正比例函数,即m=-1且n=0时,y=(m-1)+n是正比例函数.题组一次函数的实际应用1.下列函数关系不是一次函数的是( )A.汽车以120km/h的速度匀速行驶,行驶路程y(km)与时间t(h)之间的关系B.等腰三角形顶角y与底角x间的关系C.高为4cm的圆锥体积y(cm3)与底面半径x(cm)的关系D.一棵树现在高50cm,每月长高3cm,x个月后这棵树的高度y(cm)与生长月数x(月)之间的关系【解析】选C.高为4cm的圆锥体积y(cm3)与底面半径x(cm)的关系是y=πx2,不是一次函数,故C错误.2.写出下列各题中y与x之间的解析式,并判断y是否是x的一次函数.(1)在时速为70千米的匀速运动中,路程y(千米)与时间x(小时)的关系.(2)居民用电标准是每千瓦时0.53元,则电费y(元)与用电量x(千瓦时)之间的关系.(3)汽车离开A站4千米,再以40千米/时的平均速度行驶了x小时,那么汽车离开A站的距离y(千米)与时间x(小时)之间的关系.(4)某车站规定旅客可以免费携带不超过20千克的行李,超过部分每千克收取1.5元的行李费用,则旅客需交的行李费y(元)与携带行李质量x(x>20)(千克)之间的关系.【解析】(1)根据题意可得:y=70x,是一次函数.(2)根据题意可得:y=0.53x,是一次函数.(3)根据题意可得:y=4+40x,是一次函数.(4)根据题意可得:y=1.5(x-20),是一次函数.为了增强居民的节约用水意识,某市制定了新的水费收费标准:每户用水量不超过5吨的部分,自来水公司按每吨2元收费;超过5吨的部分,按每吨2.6元收费.设某户用水量为x吨,自来水公司应收水费为y元.(1)试写出y(元)与x(吨)之间的函数解析式.(2)该户今年5月份的用水量为8吨,自来水公司应收水费多少元?【解题指南】解答本题的两个关键点(1)两个收费标准:当0≤x≤5时,y=2x;当x>5时,y=2×5+2.6(x-5)=2.6x-3.(2)当用户的用水量为8吨时,超过了5吨,所以要代入后一个函数解析式求解.【解析】(1)y=(2)当x=8时,y=2.6×8-3=17.8,即自来水公司应收水费17.8元.已知函数y=(m2-2m+3)x2|m|-1-5是一次函数,求其解析式.【解析】∵函数y=(m2-2m+3)x2|m|-1-5是一次函数,∴2|m|-1=1且m2-2m+3≠0,解得m=±1,则m2-2m+3=2或m2-2m+3=6.该函数解析式为y=2x-5或y=6x-5.【母题变式】[变式一]已知函数y=(k+1)x2+(k-3)x+k,当k取何值时,y是x的一次函数? 【解析】∵函数y=(k+1)x2+(k-3)x+k是一次函数,∴k+1=0,解得k=-1,∴k取-1时,y是x的一次函数.[变式二]你能找到一个数m,使函数y=(m+1)x|m|+m-1是一次函数(不是正比例函数)吗? 【解析】∵函数y=(m+1)x|m|+m-1是一次函数(不是正比例函数),∴|m|=1,m+1≠0,m-1≠0, ∴不能找到一个数m,使函数y=(m+1)x|m|+m-1是一次函数(不是正比例函数).。

19.2.2 一次函数(1) 人教版数学八年级下册同步练习(含解析)

第十九章 一次函数19.2.2 一次函数(1)基础过关全练知识点1 一次函数的定义1.下列函数关系式中,属于一次函数的是( )A.y =2x -1  B.y =x 2+1C.y =kx +b (k 、b 是常数)D.y =1-2x2.(2022黑龙江哈尔滨期末)当m 为何值时,函数y =(m -3)x 3-|m |+m +2是一次函数( )A.2B.-2C.-2或2D.3知识点2 一次函数的图象与性质3.【教材变式·P92例3变式】下列函数图象中,表示直线y =2x +1的是( )A B C D4.【教材变式·P91思考变式】将直线y =5x 向下平移2个单位长度,所得直线的表达式为( )A.y =5x -2B.y =5x +2C.y =5(x +2)D.y =5(x -2)5.(2020黑龙江牡丹江中考)已知一次函数y =(2m -3)x +3n +1的图象经过第一、二、三象限,则m 、n 的取值是( )A.m >3,n >3B.m >32,n >-13 C.m <32,n <13 D.m >32,n <136.【新独家原创】新定义:[a,b,c]为函数y=ax2+bx+c(a,b,c为实数)的“关联数”.若“关联数”为[m-2,m,-1]的函数为一次函数,对于该一次函数,下列说法正确的是( ) A.它的图象过点(1,0) B.y值随着x值的增大而减小C.它的图象经过第二象限D.当x>1时,y>07.(2022云南八中期末)在一次函数y=(5a2+8)x-3(a为常数)的图象上有A(x1,y1),B(x2,y2),C(x3,y3)三点.若x1<x2<x3,则y1,y2,y3的大小关系为( )A.y1<y2<y3B.y2<y1<y3C.y1<y3<y2D.y3<y2<y18.(2020辽宁丹东中考)已知一次函数y=-2x+b,且b>0,则它的图象不经过第 象限.9.(2021四川眉山中考)一次函数y=(2a+3)x+2的值随x值的增大而减小,则常数a的取值范围是 .10.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值;(2)若该函数的图象与直线y=3x-3平行,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围. 能力提升全练11.(2022湖南邵阳中考,8,★☆☆)在直角坐标系中,已知点,m,点,n是直线y=kx+b(k<0)上的两点,则m,n的大小关系是( )A.m<nB.m>nC.m≥nD.m≤n12.(2022河南信阳期末,8,★☆☆)已知点A(x1,y1),B(x2,y2)在直线y=kx+b(k≠0)上,y随x的增大而增大,且kb>0,则在平面直角坐标系内,它的图象大致是( )A B C D13.(2022浙江绍兴中考,9,★★☆)已知(x1,y1),(x2,y2),(x3,y3)为直线y=-2x+3上的三个点,且x1<x2<x3,则以下判断正确的是( ) A.若x1x2>0,则y1y3>0 B.若x1x3<0,则y1y2>0C.若x2x3>0,则y1y3>0D.若x2x3<0,则y1y2>014.(2020四川凉山州中考,7,★★☆)若一次函数y=(2m+1)x+m-3的图象不经过第二象限,则m的取值范围是( ) A.m>-12B.m<3C.-12<m<3 D.―12<m≤315.(2022安徽芜湖一中期末,12,★☆☆)已知点A(x1,y1),B(x2,y2)在一次函数y=(a-2)x+1的图象上,当x1>x2时,y1<y2,则a的取值范围是 .16.(2022重庆期末,12,★★☆)若关于x的分式方程6xx―1=3+axx―1的解为整数,且一次函数y=(7-a)x+a的图象不经过第四象限,则符合题意的整数a的个数为 .素养探究全练17.【几何直观】在平面直角坐标系xOy中,点P的坐标为(m+1,m-1).(1)试判断点P是否在一次函数y=x-2的图象上,并说明理由;(2)如图,一次函数y=-12x+3的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,求m的取值范围.18.【运算能力】一次函数y=(m-2)x+m2-1的图象经过点A(0,3).(1)求m的值,并写出函数解析式;(2)若函数图象与x轴交于点B,直线y=(n+2)x+n2-1也经过点A(0,3),且与x轴交于点C,求线段BC的长.答案全解全析基础过关全练1.D y =2x -1中,2x 不是整式,不是一次函数,y =x 2+1不是一次函数,y =kx +b (k 、b 是常数)中,当k =0时,不是一次函数,y =1-2x 是一次函数.故选D .2.C 由题意得3-|m |=1且m -3≠0,∴m =±2且m ≠3,∴m 的值为2或-2,故选C .3.B ∵k =2>0,b =1>0,∴直线经过第一、二、三象限.故选B .4.A 将直线y =5x 向下平移2个单位长度,所得直线的表达式为y =5x -2.故选A .5.B ∵一次函数y =(2m -3)x +3n +1的图象经过第一、二、三象限,∴2m ―3>0,3n +1>0,解得m >32,n >-13,故选B .6.D 根据题意可得m -2=0,且m ≠0,解得m =2,所以该一次函数表达式为y =2x -1,把x =1代入y =2x -1得到y =1,故该函数图象经过点(1,1),不经过点(1,0),故选项A 错误;函数y =2x -1中,k =2>0,则y 值随着x 值的增大而增大,故选项B 错误;函数y =2x -1中,k =2>0,b =-1<0,则该函数图象经过第一、三、四象限,故选项C 错误;当x >1时,2x -1>1,即y >1,故y >0正确,故选项D 正确.故选D .7.A 一次函数y =(5a 2+8)x -3(a 为常数)中,5a 2+8>0,∴y随x的增大而增大,∵x1<x2<x3,∴y1<y2<y3,故选A.8.答案 三解析 ∵一次函数y=-2x+b,且b>0,∴它的图象经过第一、二、四象限,不经过第三象限.9.答案 a<-32解析 ∵一次函数y=(2a+3)x+2的值随x值的增大而减小,∴2a+3<0,解得a<-32.10.解析 (1)∵函数y=(2m+1)x+m-3的图象经过原点,∴当x=0时,y=0,即m-3=0,解得m=3.(2)∵函数y=(2m+1)x+m-3的图象与直线y=3x-3平行,∴2m+1=3,且m-3≠-3,解得m=1.(3)∵这个函数是一次函数,且y随着x的增大而减小,∴2m+1<0,解得m<-12.能力提升全练11.A ∵点,m,点,n是直线y=kx+b上的两点,且k<0,∴y随x的增大而减小,∵32>72,∴m<n,故选A.12.A ∵点A(x1,y1),B(x2,y2)在直线y=kx+b(k≠0)上,y随x的增大而增大,且kb>0,∴k>0,b>0,∴直线y=kx+b经过第一、二、三象限,故选A.13.D ∵y=-2x+3中,-2<0,∴y随x的增大而减小,当y=0时,x=1.5,∵(x1,y1),(x2,y2),(x3,y3)为直线y=-2x+3上的三个点,且x1<x2<x3,∴若x1x2>0,则x1,x2同号,但不能确定y1y3的正负,故选项A不符合题意;若x1x3<0,则x1,x3异号,但不能确定y1y2的正负,故选项B不符合题意;若x2x3>0,则x2,x3同号,但不能确定y1y3的正负,故选项C不符合题意;若x2x3<0,则x2,x3异号,则x1,x2同时为负,故y1,y2同时为正,故y1y2>0,故选项D符合题意.故选D.14.D 根据题意得2m+1>0,m―3≤0,解得―12<m≤3.故选D.15.答案 a<2解析 ∵当x1>x2时,y1<y2,∴a-2<0,∴a<2,故答案为a<2.16.答案 3解析 ∵一次函数y=(7-a)x+a的图象不经过第四象限,∴7―a>0,a≥0,解得0≤a<7,由分式方程6xx―1=3+axx―1得x=3a―3,∵分式方程6xx―1=3+axx―1的解为整数,且x≠1,∴整数a=0,2,4,∴符合题意的整数a的个数为3.素养探究全练17.解析 (1)∵当x=m+1时,y=m+1-2=m-1,∴点P(m+1,m-1)在函数y=x-2的图象上.(2)∵函数y=-12x+3的图象与x轴、y轴分别相交于点A、B,∴A (6,0),B (0,3),∵点P 在△AOB 的内部,∴0<m +1<6,0<m -1<3,m -1<-12(m +1)+3,∴1<m <73.18.解析 (1)由题意得m 2-1=3,所以m =±2.又m -2≠0,所以m ≠2,所以m =-2,所以y =-4x +3.(2)由题意可得点B ,0.因为直线y =(n +2)x +n 2-1经过点A (0,3),所以n 2-1=3,所以n =±2.又n +2≠0,所以n ≠-2,所以n =2.所以y =4x +3,所以点C 的坐标为―34,0,所以线段BC 的长为34―=32.。

人教版八年级数学下册:一次函数19.2一次函数 优秀教案

19.2.一次函数(第1课时)【教学任务分析】【教学环节安排】19.2一次函数(第2课时)【教学任务分析】【教学环节安排】只差一个常数b,体现在图象上,又会有怎样的关系呢? 这正是我们这节课所要探索的内容.自主探究【问题3】画图:用描点法在同一平面直角坐标系中画出函数y=-6x,y=-6x+5的图象如图14.2.2-1(见教材第115页例2)【问题4】观察:比较上面两个函数图象的异同点,根据自己的观察结果完成下题:(1)两个函数的图象都是___,并且倾斜度___;(2)函数y=-6x的图象经过(0,0),y=-6x+5的图象与y轴交于点_____,即可以看作由直线y=-6x向_____平移___个单位长度得到的;(3)比较两个函数的解析式,解释两个函数的位置关系;【问题5】猜想:(1)所有一次函数的图象都是直线吗?(2)直线kxy=与)0(≠+=kbkxy有怎样的位置关系?(3)由直线kxy=怎样平移得到)0(≠+=kbkxy的图象?【问题6】例1画出21y x=-与0.51y x=-+的图象14.2.2-2(教材第116页例3)【问题7】认真观察前面画出的图象,分析并总结规律:当k>0时,直线bkxy+=由_________上升;当k<0时,直线bkxy+=由_________下降.归纳:一次函数bkxy+=(k,b是常数,k≠0)具有以下性质:当k>0时,y随x的增大而____;当<0时,y随x的增大而____教师多媒体(或学案)展示问题.学生画图.通过观察、比较两个函数图象完成问题4.结合问题4,独立完成问题5的猜想,并在小组内部进行讨论,形成统一意见. 归纳:(1)一次函数bkxy+=的图象也是一条直线,我们称呼它为直线bkxy+=;(2)直线bkxy+=与直线kxy=互相平行;(3)直线bkxy+=可以看作由直线kxy=平移b个单位得到的. (当b>0时,向_____平移;当b<0时,向_________平移)尝试应用例题 1 在同一平面直角坐标系中画出函数y=x+1,y=-x+1,y=2x+1,y=-2x+1的图象.【分析】画图可用两点或利用正比例函数图象进行平移.例题2 观察上面4个函数的图象,类比正比例函数学生画出图象,完成例题1,例题2.y=kx中的k的正负对图象的影响,探究)0(≠+=kbkxy中的k,b对图象有怎样的影响?【分析】可以从经过的象限,直线的变化趋势,增减性等方面进行分析.成果展示1.怎样快速画一次函数图象?2.一次函数有哪些性质?3.同桌各举出一个一次函数,相互说出各自的性质.4.说出各自举出的一次函数与坐标轴的交点坐标.教师出示问题.学生按照要求进行练习,并进行组内交流.补偿提高1.直线23y x=-与x轴交点坐标为_______;与y轴交点坐标为_______;图像经过______象限,y随x的增大而_________.2.如果一次函数y kx b=+的图象经过第一象限,且与y轴负半轴相交,那么()A.0k>,0b>B.0k>,0b<C.0k<,0b>D.0k<,0b<3.已知一次函数y=(2m-1)x+m+5,当m是什么数时,函数值y随x的增大而减小?教师投影所要展示的问题.学生独立思考后,合作交流,派代表展示.教师选择一个小组进行展示,其他小组若有不同意见,待其完成后进行补充.作业设计必做题:必做题让学生做完,教师要收起来进行批改或让学生进行互批.选做题只供学有余力的同学进行练习.19.2一次函数(第3课时)【教学任务分析】【教学环节安排】【总结】这种先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.【问题4】感悟利用简便方法画一次函数图象的过程以及利用待定系数法求一次函数解析式的过程,仔细体会数与形是怎样转化的?定义,完成问题4.探究完问题之后,结合画图的过程,感悟数与形的转化;并在小组内部讨论,理解课本118页转化过程的示意图.教师安排一个小组把自己的理解进行展示.尝试应用例1 (补充)求下图中直线的函数表达式:(见右图)【分析】从形上看,左图14.2.2-5是经过原点的一条直线,右图14.2.2-6是不经过原点的一条直线.可以判断左图是正比例函数,解析式为y kx=.右图是一次函数,解析式为y kx b=+.从数的角度看,左图经过(1,2)这个点;右图经过(2,0),(0,-3)两个点,分别代入到各自的解析式中,即可求出.例2(补充)函数当自变量x=-2时,函数值y=-1;当x=3时,y=-3.能否写出这个一次函数的解析式呢?【分析】x=-2时,y=-1;当x=3时,y=-3.即直线经过(-2,-1),(3,-3)两个点,代入解析式y kx b=+中,组成方程组求出即可.教师出示例题.学生尝试独立解决,完成后在小组里交流.教师安排两个小组进行板练.教师关注讲解时是否能够从“形”和“数”两个方面理解.成果展示【归纳】对以上各种情况进行汇总:1.确定正比例函数的表达式需要1个条件,2.确定一次函数的表达式需要2个条件.这些条件都是以什么形式出现的?学生先独立思考,然后小组内进行交流.教师安排一个小组展示,其他小组若有不同意见,待其完成后进行补充.补偿1.已知一次函数y kx b=+,当x=5时,y的值为4当x=6时,y的值为8,求k的值.教师投影(或利用学案)所要展示的问题.提高小明将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程,盒内钱数y(元)与存钱月数x(月)之间的关系如图所示,根据下图回答下列问题:①求出y关于x的函数解析式.②根据关系式计算,小明经过几个月才能存够200元?让学生独立思考后,小组内交流思路.教师选择四个小组同时进行板练.作业设计必做题让学生做完,教师要收起来进行批改或让学生进行互批.选做题只供学有余力的同学进行练习.19.2 一次函数(第4课时)【教学任务分析】教学目标知识技能利用一次函数知识解决相关实际问题.过程方法经历函数模型解决实际问题的过程,体会利用函数思想解决问题的方法.情感态度在数学建模的过程中,发展创新实践能力,培养学生的数学应用意识.重点灵活运用知识解决相关问题.难点分类讨论的分析方法.【教学环节安排】环节教学问题设计教学活动设计情境引入【问题1】今年某地区发生严重干旱,自来水公司为了鼓励市民节约用水,采取分段收费标准,若某户居民每月应交水费y(元)是用水量x(吨)的函数,当0≤x≤5时,y=0.72x,当x>5时,y=0.9x-0.9.(1)画出函数的图象;(2)观察图象,利用函数图象,回答自来水公司采取的收费标准.生自主探究,通过教师引领,鼓励合作交流、互帮互助.分析:本题y随x变化的规律分成两段:当0≤x≤5时,y =0.72x,当x>5时,y=0.9x-0.9. 画图象时也要分成两段来画,且要注意各自变量的取值范围.提醒:解决这类函数问题,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.教师选择两个同学进行板练,同时进行.其他在练习本上练习.(板练的小组采取合作的形式,一人画图,一人写步骤,一人负责组织语言准备讲解.自主探究【问题2】“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子的价格打8折.(1)填出下表:买种子的数量/千克121 322 523 724 …付款金额/元…(2)(2)写出购买种子数量与付款金额之间的函数解析式,并画出函数图象.总结:1.解决含有多个变量的问题时,可以分析这些变量间的关系,选取其中某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数.这样就可以利用函数知识来解决了2.分段函数的书写:当02x≤≤时,5y x=,当2x>时,4(2)1042y x x=-+=+也可以写成5(02)42(2)x xyx x≤≤⎧=⎨+>⎩【分析】付款金额与种子价格相关,种子价格是变化的,它与购买的种子数量有关.设购买x千克种子,当x取______________时,种子的价格为5元/千克;当x取___________时,种子的价格分两部分:2千克按5元/千克,其余的(即超出部分)___________按8折,即_________计价.因此,写函数解析式与画图时,应对______________和_________________分段讨论.问题2关注学生是否分段考虑,分段求解析式,这是解题的关键.尝试应用一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2)试求降价前y与x之间的关系式(3)由表达式你能求出降价前每千克的土豆价格是多少?。

八年级数学下册 19.2.2 一次函数的定义(第1课时)导学案 (新版)新人教版

19.2.2 一次函数第1课时一次函数的定义1.理解一次函数的概念及其与正比例函数的关系.2.根据实际问题列出简单的一次函数的表达式.自学指导:阅读教材89页至90页,独立完成下列问题:知识探究归纳:一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数,当b=0时,一次函数y=kx(k≠0)也叫正比例函数.自学反馈(1)下列函数中是一次函数的是①,④.①y=-8x ②y=8x③y=5x2+6 ④y=-0.5x-1(2)一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米.①求小球速度v随时间t变化的函数关系式,它是一次函数吗?②求第2.5秒时小球的速度.解:①v=2t,是一次函数;②5m/s.(3)汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(单位:升)随行驶时间x(单位:时)变化的函数解析式,并写出自变量x的取值范围,y是x的一次函数吗?解:y=-5x+50(0≤x≤10),y是x的一次函数.根据题意写出相应的关系式,再根据一次函数定义来判断它是否是一次函数.活动1 学生独立完成例1 已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值,若它是一次函数,求k的值.解:若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=-12.若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2.根据一次函数和正比例函数的定义,易求得k的值.例2 某电信公司的一种通话收费标准是:不管通话时间多长,每部手机每月必须缴月租费10元,另外,每通话1分缴费0.10元.(1)写出每月应缴费用y(元)与通话时间x(分)之间的关系式;(2)某用户本月通话120分钟,那么该用户本月的费用是多少元?(3)若某用户本月预交了200元,那么该用户本月可以通话多长时间?解:(1)y=0.1x+10(x≥0);(2)当x=120时,y=22(元);(3)当y=200时,x=1900(分钟).应缴话费=月租费+通话费,已知一次函数解析式和两个变量中的一个,可求出另一个变量.活动2 跟踪训练1.下列说法错误的是( D )A.正比例函数y=-2x也是一次函数B.函数y=3x-2是一次函数C.函数y=2x2-2不是一次函数D.函数y=kx+b一定是一次函数2.已知函数y=(m-1)x|m|+3m表示一次函数,则m的值是( B )A.1B.-1C.±1D.0或-13.若函数y=ax-(3a-3)的图象过原点,则a=1,此时函数是正比例函数.一次函数和正比例函数一样要满足两个条件,一是指数为1,二是系数不为0.4.为了节约用水,某市制定了以下用水收费标准,每户每月用水量不超过10m3时,每立方米收费1.5元,每户每月用水量超过10m3时,超过的部分按每立方米2.5元收取,设某户每月用水量为xm3,应缴消费为y元.(1)写出每月用水量未超过10m3和超过10m3时,y与x的函数关系式;(2)小明家十一月份的用水量为6m3,则该月应缴多少水费?(3)小刚家十一月份缴水费35元,则该月用水量是多少?解:(1)y=1.5x(0≤x≤10),y=2.5x-10(x>10);(2)9元;(3)18m3.此题实质是一个分段函数,解第2问时要根据用水量确定用哪一个函数解析式,而第3问首先要求出第一个正比例函数的最大值,从而根据所缴消费所在的范围确定所用的解析式.活动3 课堂小结1.注意正比例函数与一次函数的关系.2.某函数是一次函数应满足的条件是:自变量的指数是1,系数不为0.3.逐步认识利用方程思想建立函数关系式.教学至此,敬请使用学案当堂训练部分.。

八年级数学下册 19.2.2《一次函数》一次函数的图象与性质(第1课时)学案(新版)新人教版

请写出解答过程.
9.已Байду номын сангаас直线 分别与 轴和 轴交于A、B两点,设坐标原点为O,△COB与△AOB全等,求点C的坐标.(请画图探究)
教学反思:
-1
0
1
2
比较上面两个函数的图象的相同点和不同点:
(1)这两个函数的图象形状都是,并且倾斜程度,
即两条直线的位置关系是.
(2)函数 的图象经过原点,函数 的图象与 轴交于点,
即函数 的图象可以看作由直线 向平移个单位长度而得到.
思考:比较上面两个函数的解析式,你能说出两个函数的图象有上述关系的道理吗?
3.不画图象仅看解析式,直线 与 的位置关系是,因为它们的相同.
把直线 向向平移个单位可以得到直线 .
4.一次函数 的图象形状是,可由个点确定;
思考:画一次函数的图象时用哪几个特殊点合适呢?
教 师二次备课
备课教师:
【课堂探究】
5.分别画出下列一次函数的图象
0
0
1列表
2 描点
3连线
思考: 值的正负对一次函数 的图象有何影响?
(1) , , (2) , ,
8.画一次函数 的图象,并回答问题.列表:
(1)图象从左至右;
函数值 随 增大而 ;即当 时, ;画图:
(2)直线不经过第象限;
(3)图象 与 轴的交点坐标为,
与 轴的交点坐标为;
直线与两坐标轴围成的三角形面积为;
(4)点P在直线上,且点P到 轴的距离为2,求点P的坐标.
课后作业1908--一次函数的图象与性质(课时8)
1.(1)直线 过点(,0)、(0,)、(2,);(2)直线 过点(,0)、(0,)、(,1).
2.直线 与与 轴的交点坐标为,与 轴的交点坐标为;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数
19.2.2 一次函数(第1课时)
(时间:25分,满分60分)
班级姓名得分
1.(5分)下列函数中,y是x的一次函数的是()
①y=x﹣6;②y=;③y=;④y=7﹣x.
A.①②③B.①③④C.①②③④ D.②③④
【答案】B.
2. (5分)已知y=(m﹣3)x|m|﹣2+1是一次函数,则m的值是()
A.﹣3 B.3 C.±3D.±2
【答案】A.
【解析】解;由y=(m﹣3)x|m|﹣2+1是一次函数,得

解得m=﹣3,m=3(不符合题意的要舍去).
故选A.
3. (5分)已知y+2与x成正比例,则y是x的()
A.一次函数 B.正比例函数C.反比例函数D.无法判断
【答案】A
【解析】将y+2看做一个整体,根据正比例函数的定义列出解析式解析即可.y+2与x成正比例,
则y+2=kx,
即y=kx﹣2,
符合一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1,
则y是x的一次函数.
故选A.
4. (5分)下列不是一次函数关系的是()
A.矩形一条边固定,面积与另一条边的关系
B.矩形一条边固定,周长与另一条边的关系
C.圆的周长与直径的关系
D.圆的面积与直径的关系
【答案】D.
5. (5分)已知,函数y=(k﹣1)x+k2﹣1,当k 时,它是一次函数.
【答案】≠1.
【解析】根据一次函数定义得,k﹣1≠0,
解得k≠1.
故答案为:≠1.
6. (5分)根据图中的程序,当输入数值x为﹣2时,输出数值y为 6 .
【答案】6.
【解析】根据题意,
将x=﹣2代入y=﹣x+5,
得:y=6.
即输出的值为6.
7.(6分)若函数y=2mx﹣(4m﹣4)的图象过原点,则m= ,此时函数的解析式为,是函数,若函数y=2mx﹣(4m﹣4)的图象经过点(1,6)点,则m= ,此时的函数解析式为,是函数.
【答案】1,y=2x,正比例;﹣1,y=﹣2x+8,一次.
【解析】
函数y=2mx﹣(4m﹣4)的图象过原点,将原点代入,解得m=1,此时函数的解析式为y=2x,是正比例函数,若函数y=2mx﹣(4m﹣4)的图象经过点(1,6)点,将(1,6)代入函数解析式,解得m=﹣1,此时的函数解析式为 y=﹣2x+8,是一次函数,
8.(12分)写出下列各题中x与y之间的关系式,并判断y是否为x的一次函数?是否为正比列函数?(1)汽车以60千米/时的速度匀速行驶,行驶路程y(千米)与行驶时间x(时)之间的关系;
(2)圆的面积y(平方厘米)与它的半径x(厘米)之间的关系;
(3)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米).【答案】(1)根据路程=速度×时间可得相关函数关系式;
(2)根据圆的面积可得相关函数关系式;
(3)x月后这棵树的高度=现在高+每个月长的高×月数.
9.(12分)已知关于x的函数y=(m+1)x+(m2﹣1).
(1)当m取什么值时,y是x的一次函数?
(2)当m取什么值时,y是x的正比例函数?
(3)当m取什么值时,该函数与函数y=﹣x+3是同一个函数?
【答案】(1)根据一次函数的定义可知m+1≠0;
(2)根据正比例函数的定义可知m+1≠0且m2﹣1=0,从而可求得m的值;
(3)两个函数是同一个函数,从而得到m+1=﹣1且m2﹣1=3,从而可求得m的值.。

相关文档
最新文档