同步电动机及励磁分解
同步发电机励磁控制系统及特性分析

第二节 同步发电机的励磁控制系统
三、静止励磁系统(发电机自并励系统)
300MW及以上机组励磁系统一般采用
发电机
无刷励磁和自并励方式。
TA
IEF
G ~
静止励磁系统(发电机自并励系统)中
一、直流励磁机系统
采用同轴的直流发电机作为励磁机,通过励磁调节器改变直流励磁机电 流,从而改变供给发电机转子的励磁电流,达到调节发电机电压和无功 的目的。
主要问题: (1)直流励磁机受换向器所限,其制造容量不大。 (2)整流子、电刷及滑环磨损,降低绝缘水平,运行维护麻烦。 (3)励磁调节速度慢,可靠性低。 按照励磁机励磁绕组的供电方式不同,可分为自励式和他励式两种。
负荷的无功电流是造成 E 与U 数值差的主要原因,
q
G
发电机的无功电流越大 ,差值越大。
第一节 概述
同步发电机的外特性必然是下降的,当励磁电流一定时,发电机端电压随无 功负荷增大而下降,必须通过不断的调节励磁电流来维持机端电压维持在给 定水平。
第一节 概述
(二)控制无功功率的分配
1.同步发电机与无穷大系统母线并联运行问题
第二节 同步发电机的励磁控制系统
同步发电机励磁控制系统的分类:
(1)直流励磁机系统:自励式直流励磁机系统、他励式直 流励磁机系统。 (2)交流励磁机系统:他励可控整流式交流励磁机系统、 自励式交流励磁机系统、具有副励磁机交流励磁机系统、 无刷励磁系统; (3)静止励磁系统
第二节 同步发电机的励磁控制系统
第四章 同步发电机励磁控制系统及特性分析
第一节:概 述:励磁控制系统的作用(重点) 第二节:同步发电机的励磁控制系统 第三节:励磁调节器 第四节:同步发电转子磁场的强励与灭磁
(完整)调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析1 引言与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。
随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速永磁同步电动机也应运而生。
变频调速永磁同步电动机可分为两类,一类是反电动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另一类是两种波形都是正弦波的一般意义上的永磁同步电动机。
这类电机通常由变频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。
本文使用Ansoft Maxwell 软件中的RMxprt 模块进行了一种调速永磁同步电动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D 中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行了瞬态特性分析。
2 调速永磁同步电动机的电磁设计2.1 额定数据和技术要求调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子冲片设计、定子绕组的设计、永磁体的设计等.通过改变电机的各个参数来提高永磁同步电动机的效率η、功率因数cos ϕ、起动转矩st T 和最大转矩max T .本例所设计永磁同步电动机的额定数据及其性能指标如下:计算额定数据:(1) 额定相电压:N 220V U U ==(2) 额定相电流:3N N N N N1050.9A cos P I mU ηϕ⨯== (3) 同步转速:160=1000r /min f n p= (4) 额定转矩:3N N 19.5510286.5N m P T n ⨯== 2.2 主要尺寸和气隙长度的确定永磁电机的主要尺寸包括定子内径和定子铁心有效长度,它们可由如下公式估算得到:2i11P D L C n '= N N N cos E K P P ηϕ'=, 6.1p Nm dp C K K AB δα=' 式中,i1D 为定子内径,L 为定子铁心长度,P '为计算功率,C 为电机常数。
同步电动机启动原理与励磁系统分析

同步电动机启动原理与励磁系统分析摘要:对于同步电动机而言,它的起动方法有好几种,例如:辅助电动机起动法、变频起动法和异步起动法。
而异步起动法就是同步电动机在转子上装有类似感应电动机笼型绕组的起动绕组(即阻尼绕组),电动机转子由磁极冲片叠片而成的磁极、圆筒磁轭等组成,磁极设有横、纵阻尼绕组。
当电动机接通电源后,便能产生异步转矩起动电动机到接近同步转速,然后设法将电动机牵入同步。
大多数同步电动机都是采用此方法起动的。
本文对同步电动机启动原理与励磁系统进行分析,以供参考。
关键词:同步机;启运原理;励磁分析引言压缩空气储能(Compressed-Air-Energy-Storage,CAES)是一种具有储能容量大、使用周期长、响应速度快等优点的大规模储能技术方案,同时较电池储能更加安全可靠,较抽水蓄能不那么依赖于地理环境,近年来引起国内外大型企业及研究机构的高度关注,国内也相继建成多个集成示范项目。
其中压缩空气储能环节,因为压缩机空气流量及出口压力一般都比常规压缩机要大很多,及在项目装机容量和建设规模的要求,所以一般选择大型同步电动机作为压缩机的驱动。
同时,同步电动机也以其优异的功角特性及良好的性能在动力拖动中有着广泛的应用。
1永磁同步电动机控制方法简述永磁同步电动机控制方法主要采用变频调速方法。
交流电动机的变频调速系统主要控制形式分为开环控制和闭环控制。
比较2种控制方式,因永磁同步电动机在开环控制方式下无法将电机转子位置信号和电机运行的实际速度信号作为实时反馈信号,易出现电机运行失步和突然停车等问题,从而造成永磁同步电动机退磁故障,所以开环控制的变频调速系统并不适用于永磁同步电动机。
为精确得到电机的转子位置信息和电机运行速度信息,实现永磁同步电动机的闭环控制,目前主要采用的方法是在电机的转轴上安装高精度的传感器。
其中,电梯行业常见的传感器主要为光电编码器来检测电机的转子位置信息和电机转速。
FOC控制是一种使用变频器来控制三相交流电机的技术。
同步电动机

假设在合闸瞬间,转子 已经加励磁 处于图18.5a所示的位置,此时,电磁转矩 倾 已经加励磁)处于 的位置, 假设在合闸瞬间,转子(已经加励磁 处于 的位置 此时,电磁转矩T 向于使转子逆时钟转动;在另一个瞬间(图18.5b所示),定子磁场已转过 逆时钟转动 向于使转子逆时钟转动;在另一个瞬间 ,定子磁场已转过180度,而转 度 电磁转矩 倾向于使转子顺时钟转动。 子由于机械惯性尚未启动,电磁转矩T倾向于使转子顺时钟转动。由于定子磁场以 子由于机械惯性尚未启 倾向于使转子顺时钟转动 同步速旋转,作用于转子上的力矩随时间以f 作交变, 同步速旋转,作用于转子上的力矩随时间以 = 50Hz作交变,那么转子上受到的平均 作交变 转矩为0。因此同步电动机是不能自行起动的。概括一下同步电动机没有启动转矩的 转矩为 。因此同步电动机是不能自行起动的。概括一下同步电动机没有启动转矩的 原因是: 原因是:(1)定、转子磁场之间相对运动速度很快;(2)转子本身转动惯量的存 在。
同步电机励磁原理PPT课件

序
同步电机的损坏主要表现 言
1.定子绕组端部绑线蹦断,线圈外表绝缘蹭坏, 连接处开焊;导线在槽口处断裂,进而引 起短路;运行中噪音增大;定子铁芯松动 等故障 。〔见下一页图〕
2.转子励磁起动绕组笼条断裂;绕组接头处产 生裂纹,开焊,局部过热烤焦绝缘;转子 磁级的燕尾锲松动,退出;转子线圈绝缘 损伤;电刷滑环松动;风叶断裂等故障。
序
同步电机补偿意义
言
这样既提高同步电动机运行的稳
定性,又给企业带来可观的经济效益。
序
目前同步电机的使用现状 言
随着现代化大生产的开展,机电设备越来越趋 向大型化、自动化、复杂化、生产过程连续化, 由机电设备群体组成的系统一旦失效,就会对 企业的平安生产及产品质量造成极大的威胁。 同步电机由于其具有一系列优点,特别是转速 稳定、单机容量大、能向电网发送无功功率, 支持电网电压,在我国各行业已得到广泛应用, 特别是在特大型企业,大型同步电动机担负着 生产的重任,其一旦停机或故障,将严重影响 连续生产,特别严重的电机设备事故将导致停 产时间的延长,造成企业经济效益的严重损失, 而长期以来发生同步电动机及其励磁装置损坏 事故却屡见不鲜。
序
同步、异步电动机比较表
言
同步电动机
异步电动机
转速 功率因数 效率 稳定性
不随负载的大小而 随着负载的改变
改变
而改变
可调,可工作在超 不可调,滞后 前、平激、滞后
高
低
稳定性高,转矩与 稳定性差,转矩 端电压成正比: 与端电压平方成
正比:
T emE s iU M n S d Te m m sU2R'r s s d
主
〔1〕采用全控桥式电路,停机时或失步时,其励磁控制系统的灭
电机学 第四篇 同步电机

S U2 Fa
直轴去磁电枢反应 V轴
W2 V1
W轴
三、 时90的0 电枢反应
空载电动势 枢电流 I
E 0滞后电
900
Ff 与Fa之 间 夹
角 为 900
q轴 U轴
V2 W1
记Fa为Fad
d轴
Fa N
电枢反应性质:
Ff
U1
直轴助磁电枢反应 V轴
W2
S U2
V1
W轴
四、一般情况下的电枢反应
空 枢载电电流动势I角 E,超0 前电
六、 同步电机的额定值
同步电机的额定值有: 1)额定电压:是指在正常运行时,按照制造厂的规定,
定子三相绕组上的线电压。电压的单位用V或kV表示。 2)额定电流:流过定子绕组的线电流 。 3)额定功率:是指在正常运行时,电机的输出功率 。
A:对于发电机而言:输出的是电功率。
PN 3UN IN cosN
(二)静止的交流整流励磁系统
同一轴上有三台交流发电机,即主发电机、交流主励磁机和交流副励磁机。副 励磁机的励磁电流开始时由外部直流电源提供,待电压建立起来后再转为自励(有 时采用永磁发电机)。副励磁机的输出电流经过静止晶闸管整流器整流后供给主励 磁机,而主励磁机的交流输出电流经过静止的三相桥式硅整流器整流后供给主发 电机的励磁绕组。
1
c c'
当E0=UN 时:
F
Ff0
Ks
Ff0 F
ac ab
dn dc
(K
s
1.1
~
1.25)
0
gd
电机运行于曲线刚好弯曲处: 1、充分利用材料; 2、不会过分饱ห้องสมุดไป่ตู้;
E00 n
同步发电机励磁调节及励磁系统实验

同步发电机励磁调节及励磁系统实验一、实验目的1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;4.了解微机励磁调节器的基本控制方式;5.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响;6.了解几种常用励磁限制器的作用;7.掌握励磁调节器的基本使用方法。
二、原理与说明同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。
励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。
图1 励磁控制系统示意图实验用的励磁控制系统示意图如图1所示。
可供选择的励磁方式有两种:自并励和它励。
当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。
而当交流励磁电源取自380V市电时,构成它励励磁系统。
两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。
微机励磁调节器的控制方式有四种:恒U F(保持机端电压稳定)、恒I L(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。
其中,恒α方式是一种开环控制方式,只限于它励方式下使用。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。
发电机正常运行时,三相全控桥处于整流状态,控制角α小于90°;当正常停机或事故停机时,调节器使控制角α大于90°,实现逆变灭磁。
电力系统稳定器――PSS是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁系统安全可靠运行的重要环节,常见的励磁限制器有过励限制器、欠励限制器等。
第二章 同步发电机励磁控制系统

①励磁对静态稳定的影响
PG
E qU X
sin
X
—系统总电抗,一般为发电机、变压器、输电线路电抗之和;
—发电机空载电动势 E q 和受端电压 U 间的相角,或叫功角。
Pm
E qU X
解决方案1:无自动励磁调节时,IEF 恒定, q为常数,此时的功角特性称 E 为“内功角特性”,功率极限出现在 δ=90°的条件下。 解决方案2:按电压偏差进行比例 调节的励磁控制系统,则近似为按 E q' 为常数求得的功角特性曲线 C如图1.2-8所示,δ’’> 90°。(外功角特性曲线1) 解决方案3:有灵敏和快速的励磁调节器,可视为能保持UG恒定。
§2.4 励磁调节器原理
一、励磁调节器的功能和基本框图
励磁调节器是一个闭环比例调节器。 输入量:发电机电压UG 输出量:励磁机的励磁电流或是转子电流,通称为IAVR 功能:一是保持发电机的端电压不变;其次是保持并联机组间无功 电流的合理分配。
二、励磁调节器原理
构成励磁调节器的形式很多,但自动控制系统的核心部分却 很相似。基本的控制由测量比较、综合放大、移相触发单元组成 。 1、测量比较单元 作用:测量发电机电压并变换为直流电压,与给定的基准电压相 比较,得出电压的偏差信号。 ①电压测量 电压测量是将机 端三相合成电压降压 、整流、滤波后转换 成一正比于发电机电 压UG的直流电压Use。
3、移相触发单元 移相触发单元是励磁调节器的输出单元,它根据综合放大单 元送来的综合控制信USM的变化,产生触发脉冲,用以触发功率整 流单元的晶闸管,从而改变可控整流柜的输出,达到调节发电机 励磁的目的。
余弦波移相触发单元(具体电路从略)的输入电压USM与控制 角α具有下述关系:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶闸管的主要参数
2) 维持电流 IH ——使晶闸管维持导通所必需的最小电流 一般为几十到几百毫安,与结温有关,结温越高, 则IH越小 3) 擎住电流 IL —— 晶闸管刚从断态转入通态并移除触发信 号后, 能维持导通所需的最小电流 对同一晶闸管来说,通常IL约为IH的2~4倍
4) 浪涌电流ITSM ——指由于电路异常情况引起的并使结温超过 额定结温的不重复性最大正向过载电流
直流电从哪里来?
在我们o站电源使用的是交流电。而励磁需要 的是直流电。那直流电是怎么来的呢?这 就需要整流。 整流电路是一种将交流电能转变为直流电能 的转换电路。 整流二极管可以实现这种转换,但它的输出 量仅与电路形式及输入交流电压有关,输 出量不可变。无法满足我们的要求。 但由晶闸管组成的可控整流电路却可以实现。
晶闸管简介
• 晶闸管又叫可控硅。它是由四层半导体材 料组成的,有三个PN结,对外有三个电极 〔图2(a)〕:第一层P型半导体引出的电极 叫阳极A,第三层P型半导体引出的电极叫 控制极G,第四层N型半导体引出的电极叫 阴极K。从晶闸管的电路符号〔图2(b)〕可 以看到,它和二极管一样是一种单方向导 电的器件,关键是多了一个控制极G,这就 使它具有与二极管完全不同的工作特性。 • 图2
G
J1 J2 J3
G
A
图1-6 晶闸管的外形、结构和电气图形符号 a) 外形 b) 结构 c) 电气图形符号
螺栓式可控硅
平板式可控硅
晶闸管的主要参数
1. 电压定额 1) 断态重复峰值电压UDRM——在门极断路而结温 为额定值时,允许重复加在器件上的 正向峰值电 压。 2) 反向重复峰值电压URRM—— 在门极断路而结温 为额定值时,允许重复加在器件上的反向峰值电 压。 3) 通态(峰值)电压UTM——晶闸管通以某一规定 倍 数的额定通态平均电流时的瞬态峰值电压。 通常取晶闸管的 UDRM 和 URRM 中较小的标值作为该器 件的额定电压。选用时,额定电压要留有一定裕量 , 一般取额定电压为正常工作时晶闸管所承受峰值电压 2~3倍
晶闸管的结构与工作原理
外形有螺栓型和平板型两种封装 引出阳极A、阴极K和门极(控制端)G三个联接端 对于螺栓型封装,通常螺栓是其阳极,能与散热器紧 密联接且安装方便 平板型封装的晶闸管可由两个散热器将其夹在中间
A K K G A A G a) P1 N1 P2 N2 K b) c) K
2功率因数可调。同步电动机可以通过 调节其励磁电流,在超前的功率因数下 运行,因而,有利于改善电网的功率因 数。 3效率高。异步电动机功率因数较低, 因此,效率也低。而相应同步电动机的 效率则较高。尤其在低速同步电动机这 一点更明显。
同步电机的特点
4运行稳定性高。 • 在超前功率因数下运行的同步电动机 其过载能力相应异步电动机的大, • 异步电动机的转矩与端电压的二次方 成正比而同步电动机如果它的励磁电流 不受电网电压影响,其转矩只是随端电 压的一次方成正比。
微机励磁技术
什么叫励磁:
• 励磁——同步电机运行时,在励磁绕组(电机转 子绕组)中通入直流电流建立磁场的过程,称为 励磁。这个直流电流称为励磁电流。而供给电流 的整个系统称为励磁系统。 • 目前,励磁采用wwww生产的型微机全控励磁 装置。该装置是以电力电子技术、现代控制理论 与微机技术相结合的新一代励磁调节控制装置。 • 我们本次学习就以该装置进行讲述
同步电机的特点
• 当电网电压降低或电动机果负载时,同 步电动机的励磁一般能自动调节,实行 强励来保证运行的稳定性。
同步电动机的启动
• 同步电动机的启动就是同步电动机自接 入电网直至转子达到同步转速的过程。 • 为完成这个过程通常采用一下方法: 异步启动法 调频启动法 用辅助电动机启动法 但大部分同步电动机采用异步启动法。
晶闸管的主要参数
3. 动态参数
除开通时间tgt和关断时间tq外,还有:
(1) 断态电压临界上升率du/dt 指在额定结温和门极开路的情况下,不导致晶闸 管从断态到通态转换的外加电压最大上升率 在阻断的晶闸管两端施加的电压具有正向的上升 率时,相当于一个电容的J2结会有充电电流流过, 被称为位移电流。此电流流经J3结时,起到类似门 极触发电流的作用。如果电压上升率过大,使充 电电流足够大,就会使晶闸管误导通
发电机励磁相关培训资料
学习思路
• 旋转电机-三相异步电机原理-三相同 步电机-异步起动法-如何牵入同步- -需要直流-励磁-整流电路-装置原 理,,维护,,调试。
同步电动机
• 同步电动机是交流电机(同步电机)的 一种类型,它的转速与电源频率之间有 着恒定的同步关系。n=60f/p • 以同步电动机为例: • 额定转速200r/min 额定频率50Hz • P=60×50÷200=15 • 说明:P为磁极对数。
晶闸பைடு நூலகம்的主要参数
2. 电流定额 1) 通态平均电流 IT(AV) 额定电流----晶闸管在环境温度为 40 C 和规定的冷却状态 下,稳定结温不超过额定结温时所允许流过 的最大工频正弦半波电流的平均值。 使用时应按实际电流与通态平均电流有 效值相等的原则来选取晶闸管 应留一定的裕量,一般取1.5~2倍
异步启动法
• 主要依靠在定子投入电网后磁极极靴上的启 动绕组(阻尼绕组)中的感应电流与定子磁 场间的产生的异步转矩来进行启动的。此时 为避免励磁绕组开路感应的高电压将绝缘击 穿,必须将励磁绕组分段开路或短接起来。 在短接时,短接的励磁绕组中会流入较大的 感应电流,这个电流与定子三相旋转磁场相 互作用而产生的转矩,使得电动机的合成转 矩在一半同步转速附近变小,出现最小转矩, 即单轴力矩效应。所以,启动时励磁绕组中 应串联一个电阻值约是5-10倍励磁绕组电阻值 的启动电阻器。以限制感应电流,提高最小 转矩,且能提高牵入转矩。 • 异步启动时,定子电流可达到额定值的6~7倍。
三相同步电动机的结构
• 转极(旋转磁极)式同步电机 • 转枢式同步电机
同步电机的特点
1转速恒定。 在运行过程中,只要电源频率一定,同 步电动机的转速不随负载大小而改变, 负载的变动只是使其功角发生变化。负 载增加时功角变大,负载转矩或阻转矩 大到使电动机功角超过极限时,电动机 失步。
同步电机的特点