金属晶体结构中最常见的三种典型晶体结构
第一章金属的晶体结构 本章重点与难点: ①金属键; ②最常见

第一章金属的晶体结构本章重点与难点:①金属键;②最常见的晶体结构:面心立方结构(fcc)、体心立方结构(bcc)、密排六方结构(hcp);晶向指数和晶面指数;③晶体中存在的缺陷:点缺陷、面缺陷、线缺陷。
内容提要:固体物质的原子是由键结合在一起。
这些键提供了固体的强度和有关电和热的性质。
由于原子间的结合键不同,我们经常将材料分为金属、聚合物和陶瓷三类。
金属的原子之间时依靠金属键结合在一起的。
在结晶固体中,材料的许多性能都与其内部原子排列有关,可将晶体分为7种晶系,14种布拉菲点阵。
金属中最常见的晶体结构有面心立方结构(fcc)、体心立方结构(bcc)、密排六方结构(hcp)结构。
本章还介绍了晶向、晶面的概念及其表示方法(指数),因为这些指数被用来建立晶体结构和材料性质及行为间的关系。
实际的晶体结构中存在着一些缺陷,根据几何形态特征,分为点缺陷、面缺陷、线缺陷。
基本要求:1.建立原子结构的特征,了解影响原子大小的各种因素。
3.建立单位晶胞的概念,以便用来想像原子的排列;在不同晶向和镜面上所存在的长程规则性;在一维、二维和三维空间的堆积密度。
4.熟悉常见晶体中原子的规则排列形式,特别是bcc,fcc以及hcp。
我们看到的面心立方结构,除fcc金属结构外,还有NaCl结构和金刚石立方体结构。
5. 掌握晶向、晶面指数的标定方法。
一般由原点至离原点最近一个结点(u,v,w)的连线来定其指数。
如此放像机定为[u,v,w]。
u,v,w之值必须使互质。
晶面指数微晶面和三轴相交的3个截距系数的倒数,约掉分数和公因数之后所得到的最小整数值。
若给出具体的晶向、镜面时会标注“指数”时,会在三维空间图上画出其位置。
6.认识晶体缺陷的基本类型、基本特征、基本性质。
注意位错线与柏氏矢量,位错线移动方向、晶体滑移方向与外加切应力方向之间的关系。
7 了解位错的应力场和应变能,位错的增殖、塞积与交割。
第一节金属1 金属原子的结构特点金属原子的结构特点是外层电子少,容易失去。
1、固体结构2

r=a 3 4
配位数: 配位数:CN 8 致密度: 致密度:
4 3 2 × πr 3 η= = 0.68 3 a
具有bcc结构的金属:a-Fe,W,Mo,V等. 具有bcc结构的金属: Fe, bcc结构的金属 Mo,
3,密排六方金属(A3或hcp): 密排六方金属(A3或hcp):
结构模型.晶胞中的原子数: 结构模型.晶胞中的原子数:12×1/6 +3+2×1/2=6 晶格常数: 晶格常数:a c 原子半径: 原子半径: . 理想紧密堆垛: 理想紧密堆垛:轴比 c a = 8 3 = 1633 r=a/2;
r四面 = 0.2247r
四,金属的多型性
同素异构转变: 同素异构转变:当外界条件 温度,压力)改变时, (温度,压力)改变时,金 属由一种晶体结构转变为另 一种晶体结构. 一种晶体结构. 例如: 例如:纯铁 1394° 在1394°C以上体心立方结构 Fe)稳定存在; (δ-Fe)稳定存在; 1394~912° 在1394~912°C范围面心立方 结构( Fe)稳定存在 稳定存在; 结构(γ-Fe)稳定存在; 912° 在912°C以下又回到体心立方 结构( Fe). 结构(α-Fe).
r四面 5 4 r r = 0.291r = 4 3
a=
4r 3
体心立方四面体间隙包含在八面体间隙中.为什 体心立方四面体间隙包含在八面体间隙中. 么不把四面体间隙简单地看成为八面体间隙的一 部分? 部分? 理由是: 理由是:若在四面体间隙内嵌入一个最大尺寸的 球,它就会陷在那里而不能自由地移到八面体间 隙,所以虽然四面体间隙的位置处于八面体间隙 之中,但并不失其四面体间隙的特点. 之中,但并不失其四面体间隙的特点.
八面体间隙的半径: 八面体间隙的半径: 根据〈100〉方向计算: 根据〈100〉方向计算:
工程材料习题2-1

工程材料第一章一、名词解释晶体晶格晶胞晶面晶向晶体结构各向异性各向同性合金组元二元合金相固溶体金属化合物组织工艺性能使用性能单体晶体:原子(分子或者离子)在三维空间有规则地周期性重复排列的物体晶格:通过金属原子(原子)的中心画出的许多直线构成的空间格架晶胞:能反应该晶格特征的最小组成单元晶面:通过晶体中原子中心的平面晶向:通过原子中心的直线所代表的方向晶体结构:晶体中原子(离子或分子)规则排列的方式各向异性:金属晶体不同方向的性能不同各项同性:金属晶体各个方向的性能一样合金:一种金属元素和另一种或几种金属元素,通过熔化或其他方式结合在一起所形成的具有金属特征的物质组元:组成合金的独立的、最基本的单元二元合金:由两个组元组成的合金相:在金属或合金中,具有一定化学成分和一定金属结构的均匀组成部分固溶体:合金组元通过溶解形成一种成分和性能均匀、且结构与组元之一相同的固相金属化合物:合金组元相互作用形成晶格类型和特征完全不同于任一组元的新相组织:材料内部所有的微观组成工艺性能:制造工艺过程中材料适应加工的性能使用性能:金属材料在使用条件下所表现出来的性能单体:构成高分子化合物的低分子化合物二、填空题1、三种常见金属的晶体结构为体心立方、面心立方和密排六方。
2、体心立方晶胞中原子个数为2;面心立方晶胞中原子个数为4;密排六方晶体胞中原子个数为 6 。
3、同非金属相比,金属的主要特性是具有确定的熔点、各向异性。
4、晶体与非晶体结构上的最根本的区别是原子在三维空间的排列是否规则。
5、一般可把材料的结合键分为离子键、分子键、共价键和金属键四种。
6、一般将工程材料分为金属材料、高分子材料、陶瓷材料和复合材料等四大类。
7、高分子材料种类很多,工程上通常根据机械性能和使用状态将其分为四大类工程塑料、合成纤维、合成橡胶和胶黏剂。
8、固态物质按其原子(离子或分子)的聚集状态可分为两大类:晶体和非晶体;固态金属一般情况下均是晶体。
金属常见的三种晶体结构

金属常见的三种晶体结构
金属是由原子键紧密排列在一起而形成的固态,它们的结构可以分为三种:非晶态,单斜晶格和立方晶格。
非晶态是一种金属的结构,它和晶态有很大的不同,因为它没有安排成典型排列。
它是由大量低秩排列的原子构成的,没有晶面,且具有较低的密度。
这种结构经常出现在薄膜中,但也有一些金属在处于高温状态时以非晶态存在的特点。
单斜晶格是金属中最普遍的晶体结构。
它的特点是原子被排列在能量最低的八位置中,将空间划分为六个同心圆,将其围绕中心共轭,形成金属化合物中最常见的晶格结构。
该晶体结构非常稳定,在Big Bang中释放出来的原子大多就以单斜晶格结构存在。
另一种金属常见晶体结构是立方晶格结构。
立方晶格由很多个单元格组成,每个小单元中心都有一个原子,形成一个正交的立方晶格,原子的排列形成一个空mid的和的画面,可以把金属想象为一个巨大的正方体,巨大的正方体是由正方体组成的,原子是此晶体结构的组成单位。
总之,金属通常以非晶格、单斜晶格和立方晶格三种晶体结构存在,它们的生成和行为直接关系到金属的特性。
金属的宏观特性及其在特定情况下的表现受它们的晶体结构紧密相关。
理解金属的晶体结构对科学家们的研究和应用非常重要。
金属中常见的三种晶体结构

金属中常见的三种晶体结构
金属是人类理解和感知宇宙规律的基础,我们日常生活中实用性最好的材料就是金属。
而
金属的晶体结构是深入研究金属的重要方面,也是决定金属特性的基础之一。
因此,今天
我们就来讨论金属中常见的三种晶体结构:六方晶格、面心立方晶格和菱形晶格。
六方晶格是最常见的金属晶体结构形式,是对称分布最均匀、最节约空间的结构。
它内部
是由晶胞堆积构成,每个晶胞由六颗原子构成,其条形运动立方体形状形成六个晶面。
这
种晶体结构可以满足大多数金属原子的包裹,也是大多数金属表面及体内的晶体结构形式。
面心立方晶格结构是一种复杂的晶体结构,在它的晶胞内部分布着八颗原子,分布方式是
四个原子均匀的放置于晶胞的八个顶点,另外四颗原子均匀的放置于晶胞的六个棱面中间,这种特别的原子分布使晶粒有了更高的密度。
它是一种特殊的光学结构,通常在失去平衡的金属表面形成,并影响金属的光学性质。
菱形晶格结构是四颗原子布置而成的基本晶胞,菱形晶格的核心由四个六面体构成,每一
个六面体都可以由四个原子组成,因此在晶胞中有四颗原子存在。
这种晶体结构的优点是
比较均匀的原子分布,原子离聚力也更大,可以定义更长的晶格参数,可以表示物理和化
学性质。
总而言之,金属中常见的三种晶体结构就是六方晶格、面心立方晶格和菱形晶格,他们各有自身的特点,这些特点直接体现在金属的结构和性能上,研究它们可以揭示金属的秘密,从而使我们更好地应用金属。
1-3-1 金属的晶体结构

2
一、典型金属的晶体结构
最常见的金属晶体结构有三种:面心立方结 构、体心立方结构和密排六方结构。 本节主要讨论原子的排列方式、晶胞内原子 数、点阵常数、原子半径、原子配位数、致密度 和原子间隙大小。 下面分别加以讨论:
3
1、原子排列方式
1) 球体的紧密堆积
① 单一质点的等大球体最紧密堆积,如纯金属晶体。 ② 几种质点的不等大球体的紧密堆积,如离子晶体。
16
2) 密排六方结构
属于六方紧密堆积,以ABABAB…的方式堆积, 从结构中可分析出六方晶胞。 具有这种结构的金属:Be、Mg、Zn、Cd、 -Ti和-Co。
3) 体心立方结构
属于体心立方紧密堆积,原子是以体心立方空间 点阵的形式排列,可分析出体心立方晶胞。
具有这种结构的金属:V、-Fe、Nb、Mo、 Cr和W。
3、晶胞中的原子数
1) 简单立方结构 (SC / Simple cubic)
1 8 1 8
20
2) 体心立方结构
(bcc / Body-centered cubic)
3) 面心立方结构
(fcc / Face-centered cubic)
1 8 1 2 8
1 1 8 6 4 8 2
第三层堆积的特征: 有两种完全不同的堆积方式。 a. 堆积在单层空隙位置 从垂直图面的方向观察,第三层球的位置正好与 第一层相重复。如果继续堆第四层,其又与第二 层重复,第五层与第三层重复,如此继续下去, 这种紧密堆积方式用ABABAB……的记号表示。
六方紧密堆积hcp (ABAB…)
对应ABAB……紧密堆积方式,其球体
r(Ag)=0.288nm, r(Al)=0.286nm,但都不能形成连续 (无限)固溶体,为什么? 3、(1)叙述形成固溶体的影响因素; (2)形成连续固溶体的充分必要条件是什么?
ch2-2 金属的晶体结构

(4)致密度
0.74 (74%)
(5)空隙半径 ●四面体空隙半径: r四=0.225r原子 ●八面体空隙半径: r八=0.414r原子
(6)配位数 12
3. 密排六方晶格(胞) ( HCP 晶格) 12个金属原子分布在六方体的12个角 上, 在上下底面的中心各分布1个原子, 上下底面之间均匀分布3个原子。 具有这种晶格的金属有镁(Mg)、镉 (Cd)、锌(Zn)、铍(Be)等。
1.晶胞中的原子数 立方结构
Nc N=Ni 2 8
Nf
面心立方结构:n=8×1/8+6×1/2=4 体心立方结构:n=8×1/8+1=2 密排六方结构:n=12×1/6+2×1/2+3=6
2.2 金属的晶体结构
2.点阵常数与原子半径 若把原子看成等径的刚性小球, 其半径r称为原子半径。
对于1g碳,当它为金刚石结构时的体积
(cm3)
当它为石墨结构时的体积
(cm3) 故由金刚石转变为石墨结构时其体积膨胀
E.g. Mn的同素异构体有一为立方结构,其晶格常 数为0.6326nm,ρ为7.26g/cm3,r为0.112nm,问 Mn晶胞中有几个原子,其致密度为多少? Solution:
每单位晶胞内20个原子
单胞原子数 摩尔质量 单胞体积 阿佛伽德罗常数
例题:计算晶格常数为0.2866nm的BCC铁的密度.
对于BCC铁单胞, 单胞原子数= 2
a0 = 0.2866nm = 2.866×10-8cm 摩尔质量 = 55.847g/mol 单胞体积 = a03 = 23.54×10 -24cm3/cell 密度:
plane indices
BCC
FCC
第四章 材料科学基础3

刚球模型
质点模型
晶胞原子数
a.晶胞中的原子数
b.晶胞常数与原子半径的关系
c.配位数与致密度
3) 密排六方结构 (hexagonal closed-packed, “hcp”) α-Ti、Be、Zn、Cd、Mg等金属是密排六方结 构。
刚球模型
质点模型
晶胞原子数
a.晶胞中的原子数
b.晶胞常数与原子半径的关系
1,3,5 位。 ( 或对准 2,4,6 位,其情形是一样的 )
1
3 6 5
2
3 4
6 5 4
A
,
1
2
B
关键是第三层,对第一、二层来说,第三层可以有两种最紧 密的堆积方式。
第一种是将球对准第一层的球。
下图是此种六方紧密堆积 的前视图
1 6 5
2
3 4
A
B
HCP
于是每两层形成一个周期, 即 AB AB 堆积方式,形成六 方紧密堆积。 配位数 12 。 ( 同层 6,上下层各 3 )
(2)fcc和hcp金属中的八面体间隙大于四面体间隙,故这些 金属中的间隙原子往往位于八面体间隙中。 (3)fcc和hcp中的八面体间隙远大于bcc中的八面体或四面 体间隙,因而间隙原子在fcc和hcp中的固溶度往往比在 bcc中大得多。
3)金属晶体的密度计算
若已知某种金属晶体的晶体结构,则可根据下 式算出晶体的理论密度
7c/8
合计:3×2+2+6×2/3=12个
间隙半径r 四面体间隙
rR R c 2 3a 2 ( )2 [ ( )] , 8 3 2 8 r 6 , 1 0.225 3 R 2
1 c a, 2 a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属晶体结构中最常见的三种典型晶体结构金属晶体结构是金属内部原子排列的有序结构,它决定了金属的
物理和化学性质。
在金属的晶体结构中,最常见的三种典型晶体结构
分别是面心立方晶体结构、体心立方晶体结构和简单立方晶体结构。
面心立方晶体结构是金属晶体结构中最常见的一种类型。
它的基
本单元是原子在每个面心上都存在一个原子,同时每个边上也存在一
个原子。
这种结构具有高度的对称性,晶胞内的原子排列非常紧密。
由于原子之间的距离相对较短,面心立方晶体结构的金属通常具有良
好的塑性和导电性能。
例如,铜、铝、银等金属都采用面心立方晶体
结构。
体心立方晶体结构是另一种常见的金属晶体结构。
它的基本单元中,一个原子位于晶胞的中心,而其他八个原子将组成一个正八面体
排列在体心的位置上。
这种结构相对于面心立方结构而言,原子之间
的距离较远,因此体心立方晶体结构的金属通常具有较高的密度和较
高的熔点。
例如,钨、铁、钴等金属都采用体心立方晶体结构。
简单立方晶体结构是最简单的一种金属晶体结构。
它的基本单元
中只有一个原子位于晶胞的每个角上,形成一个立方体。
因为排列不
紧密,简单立方晶体结构的金属通常具有较低的密度和较低的熔点。
例如,铋、钠、铀等金属都采用简单立方晶体结构。
在实际应用中,金属的晶体结构对其性能和用途有着重要的影响。
利用不同的晶体结构可以使金属具有不同的性质。
例如,面心立方结
构的金属通常具有良好的延展性和韧性,适用于制造细丝、薄片等产品。
而体心立方结构的金属则更适用于制造强度较高的材料,如建筑
材料、汽车零部件等。
简单立方结构的金属则较少应用于工业生产中,但在一些特殊的情况下,也具有一定的应用价值。
总之,金属晶体结构中最常见的三种典型晶体结构是面心立方晶
体结构、体心立方晶体结构和简单立方晶体结构。
它们在金属的性质
和应用中都发挥着重要的作用。
了解和研究这些晶体结构对于深入理
解金属的特性以及开发新材料具有重要的指导意义。