简述心室肌动作电位的特点和产生原理
《生理学》名词解释、简答题(部分)及参考答案复习过程

1、血细胞比容:红细胞占全血的容积百分比。 2、等渗溶液:渗透压与血浆渗透压相等的称为等渗溶液。例如,
0.9%NaCI溶液
和 5%葡萄糖溶液。 简答题:
3、什么叫血浆晶体渗透压和胶体渗透压 ?其生理意义如何 ? 答:渗透压指溶液中溶质分子通过半透膜的吸水能力。晶体渗透压:概念:由晶
体等小分子物质所形成的渗透压。
特性,称为自动节律性,简称自律性。
3、房室延搁:兴奋在房室交界区的传导速度很慢,兴奋通过房室交界区,约为
0.1s ,称为 房- 室延搁 。
4、正常起搏点:窦房结是正常心脏兴奋的发源地,心的节律性活动是受自律性
最高的窦房结所控制,故把 窦房结称作心脏的正常起搏点 。
5、有效不应期:由动作电位 0 期去极化开始到复极化 3 期膜内电位为 -60mV这
段不能再次产生动作电位的时期称为有效不应期。
简答题:
1、试述心室肌细胞动作电位的特点及形成机制。
答: ①特点:心室肌细胞兴奋时,膜内电位由静息状态时的 -90mV 迅速去极
到 +30mV左右,即膜两侧原有的极化状态消失并出现反极化,构成动作电位的上
升支。历时 1-2ms,此期电位变化幅度约 120mV。
②机制: 0 期的形成原理:在外来刺激作用下,心室肌细胞膜部分
Na+
通道开放引起少量 Na+内流,造成膜轻度去极化。 当去极化达到阈电位水平 (-70mV)
时,膜上 Na+通道开放速率和数量明显增加, 出现再生性 Na+内流, 导致细胞进一
步去极化,使膜内电位急剧升高。 1 期( 快速复极初期 ) :主要由 K" 快速外流形成。 2 期(平台期):Ca2+内流和 K+外流同时存在, 缓慢持久的 Ca2+内流抵消了 K+外流,
心室肌细胞动作电位的主要特点

心室肌细胞动作电位的主要特点
心室肌细胞动作电位是一种体现心肌细胞兴奋和传导活动的重要现象,主要起着心脏收缩和舒张的作用。
这些电位具有一些独特的特点和阶段,下面我们就来分步骤阐述。
第一步,静息状态下的心室肌细胞动作电位。
此时,心室肌细胞的膜
电位比较稳定,在-85 mV到-90 mV之间。
在这个阶段,细胞内外的离
子浓度分布是相对平衡的,心肌细胞在此时是不激动的,处于待补偿
状态。
第二步,快速初始化阶段。
心室肌细胞膜电位正快速上升,通常在1
毫秒以内趋近于+30mV,这是因为细胞内钠离子(Na+)大量进入细胞内,而钾离子(K+)则在细胞内不断流失,产生了一个快速的电位变化,也
称为快速的钠离子通道。
第三步,平台期。
在这一阶段,细胞膜电位保持在+20mV到+30mV之间,延续约200毫秒。
这是因为钾离子的流失和钙离子的流入相互平衡,
导致膜电位保持不变。
在这个阶段,心室肌细胞可以产生收缩力,并
将血液从心脏输送到血管系统中。
第四步,重新极化阶段。
在这一阶段中,细胞膜电位开始迅速下降,
钾离子快速流出,钙离子也同样快速流出。
这个阶段通常是100毫秒
左右,使心室肌细胞的电位又回到正常的负值区间。
通过以上几个步骤的变化,我们可以大致了解到心室肌细胞动作电位
的主要特点。
它的快速初始化和平台期是心肌细胞最为兴奋的阶段,
也是心脏收缩的重要过程,而后的重新极化阶段则是细胞膜强制调回
待补偿状态的过程。
这些特点可以为心脏病学研究和临床治疗提供宝
贵的参考价值。
《生理学》名词解释、简答题(部分)与参考答案

《生理学》名词解释、简答题(部分)及参考答案第1章绪名词解释:1、兴奋性:机体感受刺激产生反应的特性或能力称为兴奋性。
2、阈值:刚能引起组织产生反应的最小刺激强度,称为该组织的阈强度,简称阈值。
3、反射:反射指在中枢神经系统参与下,机体对刺激所发生的规律性反应。
第2章细胞的基本功能名词解释:1、静息电位:是细胞末受刺激时存在于细胞膜两侧的电位差。
2、动作电位:动作电位是细胞接受适当的刺激后在静息电位的基础上产生的快速而可逆的电位倒转或波动。
3、兴奋-收缩-偶联:肌细胞膜上的电变化和肌细胞机械收缩衔接的中介过程,++是偶联因子。
称为兴奋-收缩偶联,Ca第3章血液名词解释:1、血细胞比容:红细胞占全血的容积百分比。
2、等渗溶液:渗透压与血浆渗透压相等的称为等渗溶液。
例如,0.9%NaCI溶液和5%葡萄糖溶液。
简答题:3、什么叫血浆晶体渗透压和胶体渗透压?其生理意义如何?答:渗透压指溶液中溶质分子通过半透膜的吸水能力。
晶体渗透压:概念:由晶体等小分子物质所形成的渗透压。
生理意义:对维持红细胞内外水的分布以及红细胞的正常形态和功能起重要作用。
胶体渗透压:概念:由蛋白质等大分子物质所形成的渗透压。
生理意义:可吸引组织液中的水分进入血管,以调节血管内外的水平衡和维持血容量。
4、正常人血管内血液为什么会保持着流体状态?答:因为抗凝系统和纤溶系统的共同作用,使凝血过程形成的纤维蛋白不断的溶解从而维持血液的流体状态。
5、ABO血型分类的依据是什么?答:ABO血型的分型,是根据红细胞膜上是否存在A抗原和B抗原分为A型、B 型、AB型和O型4种血型。
6、简述输血原则和交叉配血试验方法。
(增加的题)答:在准备输血时,首先必须鉴定血型。
一般供血者与受血者的ABO血型相合才能输血。
对于在生育年龄的妇女和需要反复输血的病人,还必须使供血者与受血者的Rh血型相合,以避免受血者在被致敏后产生抗Rh抗体而出现输血反应。
即使在ABO系统血型相同的人之间进行ABO输血,在输血前必须进行交叉配血试验。
生理大题

1、单纯扩散跨膜转运的物质有哪些?这些物质扩散方向和速度与什么因素有关?答:能以单纯扩散跨膜转运的物质都是脂溶性的和少数分子很小的水溶性物质。
如:氧气、二氧化碳、氮气、水、乙醇、尿素、甘油等。
这些物质扩散方向和速度与下列因素有关:(1)该物质在膜两侧的浓度差;(2)膜对该浓度的通透性2、经载体介导的易化扩散有哪些特点?答:经载体介导的易化跨膜的特点有:(1)转运的速度比离子通道转运慢;(2)具有高度结构特异性;(3)有饱和现象;(4)有竞争性抑制作用3、何谓原发性主动转运?有何特点?答:原发性主动转运是指离子泵利用分解ATP产生的能量将物质逆浓度梯度和电位梯度进行跨膜转运的过程。
特点是:(1)消耗能量;(2)逆浓度梯度和电位梯度进行跨膜转运;(3)需要离子泵,如钠泵、钙泵和质子泵4、何为神经细胞静息电位?简述其产生的离子机制。
答:静息时,质膜两侧存在着外正内负的电位差。
称为静息电位。
其形成离子机制是:(1)钠泵活动形成的细胞内的高钾离子浓度;(2)因为神经细胞膜上存在非门控性钾漏通道,所以静息时膜对钾离子有较高的通透能力;(3)钠泵的生电作用何为神经细胞动作电位?画图并简述动作电位的产生机制。
动作电位是指在静息电位基础上,给细胞一个适当的刺激,可触发其产生可传播的膜电位波动。
动作电位的产生机制:去极化(上升支):当膜受到一个较弱的刺激时,膜上部分钠离子通道开放,少量钠离子内流,膜出现部分去极化。
随着刺激的加强,当去极化达到阈电位后,钠离子通道大量开放钠离子大量内流,膜进一步去极化,直接接近钠平衡电位,形成动作电位的升支。
复极化(下降支):钠离子通道关闭,钠离子内流停止,膜对钾离子通透性开始增加,钾离子通道开放,钾离子外流增加,使膜迅速去极化形成动作电位的降支。
并与升之共同构成尖峰状的峰电位。
静息时:钠—钾泵活动,泵出钠离子,泵入钾离子。
5、动作电位的“全或无”特性有何意义?答:动作电位的“全或无”特性包括两方面的意义:(1)刺激强度未达到阈值,动作电位不会发生;(2)一旦刺激强度达到阈值后,即可触发动作电位,而且其幅度立即达到该细胞动作电位的最大值,也不会因刺激强度的继续增强而随之增大6讲述神经—肌肉接头传递过程和原理。
心室肌细胞动作电位的主要特点

心室肌细胞动作电位的主要特点1.静息状态:在静息状态时,心室肌细胞的细胞膜电位维持在负值。
这是由Na+/K+泵在膜上维持Na+和K+的浓度梯度所引起的。
此时,细胞内Na+浓度较低,而K+浓度较高。
同时,细胞膜表面上具有新生的K+通道,称为K1通道。
2.快速上升:快速上升阶段是心室肌细胞动作电位的特征性特点。
它是由于透过细胞膜特定的Na+通道的迅速开启。
这些Na+通道导致Na+离子的内流,使得细胞膜电位从负值快速升高到正值。
在这个阶段,离子的内外流通过Na+通道决定,而K+通道以及其他离子通道关闭。
3.平台期:在平台期,细胞膜电位保持在一个相对平稳的水平。
这是由于细胞膜上的离子通道发生了变化,主要包括L型钙通道的开启以及K+通道的关闭。
这些变化导致细胞膜上的Ca2+离子内流,同时减少了K+离子的外流。
这种Ca2+离子内流的作用使得心室肌细胞能够在收缩期间保持长时间的稳定收缩,从而为心脏提供充足的收缩力。
4.快速下降:快速下降阶段是心室肌细胞动作电位由平台期到复极化的过渡。
在这个阶段,L型钙通道关闭,K+通道迅速开启,导致K+离子的外流增加,使得细胞膜电位快速降低到静息状态以下。
5.恢复至静息状态:最后一个阶段是恢复至静息状态。
在这个阶段,细胞膜电位逐渐从快速下降的状态回到静息状态。
这是由于Na+/K+泵再次开始工作,恢复了Na+和K+的浓度梯度。
细胞内Na+浓度下降,K+浓度上升,使得细胞膜电位回到负值状态,并准备好下一个动作电位的发生。
总结起来,心室肌细胞动作电位的主要特点包括:静息状态的负电位、快速上升阶段的迅速升高、平台期的稳定、快速下降阶段的迅速降低以及恢复至静息状态。
这些特点的变化主要受到细胞膜上的离子通道的调控,包括Na+通道、L型钙通道和K+通道等。
这些通道的打开和关闭,导致了Na+、K+和Ca2+离子在细胞膜上的内流和外流变化,从而形成了心室肌细胞动作电位的特征性变化。
简述心室肌细胞动作电位的特点及分期

1)快速复极初期(1期):心肌细胞膜电位在除极达到顶峰后,有+30mV迅速下降至0mV,形成复极1期,历时约10ms,并与0期除极构成了锋电位。
形成机制:钠离子的通透性迅速下降,钠离子内流停止。同时膜外钾离子快速外流,形成瞬时性钾离子外向电流,膜内电位迅速降低,与0期构成锋电位。
4)静息期(4期):此期是膜复极化完毕后和膜电位恢复并稳定在-90mV的时期。
形成机制:由于此期膜内、外各种正离子浓度的相对比例尚未恢复,细胞膜的离子转运机制加强,通过钠-钾泵的活动和钙离子--钠离子交换作用,将内流的钠离子和钙离子排出膜外,将外流的钾离子转运入膜内,使细胞内外离子分布恢复到静息状态水平,从而保持心肌细胞正常的兴奋性。
压门控式慢钙通道,当膜去极化到-40mV时被激活,要到0期后才表现为持续开放。钙离子顺其浓度梯度向膜内缓慢内流使膜倾向于去极化,在平台期早期,钙离子的内流和钾离子的外流所负载的跨膜正电荷量等,膜电位稳定于1期复极所达到的0mV水平。随后,钙离子通道逐渐失活,钾离子外流逐渐增加,出膜的正电荷量逐渐增加,膜内电位于是逐渐下降,形成平台晚期。
3)快速复极末期(3期):继平台期之后,膜内电位由0mV逐渐下降到-90mV,完成复极化过程。历时约100~150ms。
形成机制:在2期之后,钙离子通道完全失活,内向电流(钙离子内流)终止,而膜对钾离子的通透性又恢复并增高,钾离子外向电流迅速增强,膜电位迅速回到静息电位水平,完成复极化过程。3期复极化的钾离子外流,使膜内电位向负的方向转化过程也有类似于0期钠离子通道再生性除极过程。即随着钾离子外流膜内电位向负的方向转化,钾离子的外流也愈快,知道复极化完成。另外,在此过程中,由于心室各细胞复极化过程不一样,造成复极化区和未复极化区之间的电位差,也促进了未复极化区的复极化过程,所以3期复极化发展十分期、2期、3期和4期。各期特征:0期为去极化过程,膜内电位由-90 mV迅速上升到+30 mV 左右。主要是Na+内流所致.1期为快速复极初期,膜内电位由+30 mV快速降至0 mV左右,主要是K+外流所致.2期为平台期,膜内电位下降极为缓慢,基本停滞在0 mV 左右,形成平台状.此期是心室肌动作电位的主要特征,主要是Ca2+缓慢内流与少量K+外流所致.3期为快速复极末期,膜内电位由0 mV快速下降到原来的-90 mV,由K+外流所致.4期为静息期,膜电位维持在静息电位水平.此期离子泵活动增强,将动作电位期间进入细胞内的Na+、Ca2+泵出,外流的K+摄回.使细胞内、外离子分布恢复到兴奋前的状态.
生理学大题

⑴心房收缩期:房内压>室内压,室内压>主动脉压,房室瓣打开,半月瓣关闭。血液由
心房流入心室,心室容积增加。
⑵心室收缩期: ①等容收缩期:房内压<室内压,室内压<主动脉压,房室瓣,半月瓣关闭。无血液流动,心室容积不变。②快速射血期:房内压<室内压,室内压>主动脉压,房室瓣关闭,半月瓣打开。血液由心室流入主动脉,心室容积减小 ③慢速射血期:房内压<室内压,室内压>主动压,房室瓣关闭,半月瓣打开。血液由心室流入主动脉,心室容积减小到最小。
3简述生理止血过程
① 血管收缩:为受损血管局部及附近的小血管收缩,使局部血流减少。
② 血小板血栓形成:血管收缩同时,被激活的血小板迅速黏附、聚集在血管破损处,形成一个松软的止血栓阻塞伤口、封闭出血,实现初步止血。
③ 血液凝固:血管受损启动凝血系统,在局部迅速发生血液凝固,使血浆中可溶性纤维蛋白变成不溶性,并交织成网,以加固止血栓。最后,局部纤维组织增生,并长入血凝块,达到永久性止血。
2胸膜腔负压如何形成?有什么生理意义?
形成:①胸壁:坚强的胸壁维持胸廓的自然容积大于肺的自然容积。
②胸膜腔:胸膜腔的密闭性是胸膜腔负压形成的前提。
③肺:肺被动扩张,产生回缩力,使胸膜腔内的压力低于大气压(负压)
生理意义:①保持肺的扩张状态,维持呼吸运动的正常进行;②促进静脉血和淋巴的回流。
⑵影响因素:①毛细血管血压:毛细血管血压升高,组织生成增多。②血浆胶体渗透压:由于血浆蛋白减少,使血浆胶体渗透压降低,有效滤过压增大,组织液生成增多。③淋巴回流:它受阻时,组织间隙中组织液聚积。④毛细血管通透性:它越高,组织液生成越多。
9牵拉家兔颈子动动脉残端,血压的变化及其原因。
血压会下降。动脉管壁被牵张的程度增大,压力感受器发出传入冲动的频率增大,到达中枢后,使心迷走神经中枢的紧张性活动增强,心交感中枢和缩血管中枢的紧张性活动减弱。通过心迷走神经、心交感神经和交感缩血管纤维传出,到达心脏和血管,使心率减慢,心肌收缩力减弱,心输出量减少;血管舒张,外周阻力下降;静脉血管舒张,回心量减少。所以血压下降。
心室肌细胞动作电位的主要特点

心室肌细胞动作电位的主要特点心室肌细胞的动作电位去极化和复极化过程可分为5个时期,即去极化的0期和复极化的1、2、3、4期。
其特点是复极化持续时间较长,有2期平台。
1.去极化0期:主要由Na+迅速内流,使膜内电位迅速上升,膜电位由内负外正转为内正外负的状态,构成动作电位的上升支。
2.复极化过程共分4个期:(1)1期(快速复极初期)主要是Na+通道关闭,Na+停止内流;而膜对K+的通透性增加,K+外流,造成膜内电位迅速下降。
(2)2期(平台期)此期复极缓慢,膜电位接近于零电位水平,形成平台状,主要:是Ca2+内流和K+外流形成。
2期平台是心室肌细胞动作电位的主要特征,是与神经纤维及骨骼肌细胞动作电位的主要区别。
(3)3期(快速复极化末期)此期与神经纤维的复极化过程相似,是由于Ca2+内流停止,K+快速外流,造成膜电位较快下降,直到降至静息时的-90mV水平。
(4)4期(静息期)3期复极化完毕后,心室肌细胞膜电位虽然恢复,但在动作电位发生过程中,由于Na+、Ca2+的内流和K+的外流,使原细胞内、外离子浓度有所改变。
此时离子泵加速运转,将Na+、Ca2+迅速泵出,K+迅速摄入,恢复膜内外静息状态时的离子浓度。
心室肌细胞动作电位的特征是复极化时间长,可分为五期,其形成原理为:①0期是心室肌细胞受刺激后细胞膜上少量Na+内流,当除极达到阈电位时,膜上Na+通道大量开放,大量Na+内流使细胞内电位迅速上升形成动作电位的上升支;②1期主要是由K+外流造成膜电位迅速下降;③2期主要是Ca2+和Ca2+缓慢内流,抵消了K+外流引起的电位下降,使电位变化缓慢,基本停滞于OmV形成平台;④3期是由K+快速外流形成的;⑤4期是通过离子泵的主动转运,从细胞内排出Na+和Ca2+,同时摄回K+,细胞内外逐步恢复到兴奋前静息时的离子分布.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简述心室肌动作电位的特点和产生原理
心室肌动作电位(P wave)是心电图上能够反映心室肌的收缩过程的特殊电位,它位于QRS电位前面,它的特点是低幅、短持续,可以看作是一个半正波,其最大的值通常没有超过2mm。
P wave的产生原理是:在室管的出口处,室管会收缩,室门膜以及左心房内的血液也会逃离室管,从而改变室旁的电荷。
这会引起室旁电位的变化,并引起P wave的产生,从而反映出心室肌的收缩过程。
P wave的特点主要有以下几点:
1)P wave的幅值通常控制在2mm以内,其形状为半正波;
2)P wave的持续时间一般在0.1-0.2s 之间;
3)P wave的间期可以根据心脏自发节律的快慢而改变,正常值一般位于0.12-0.2s 之间;
4)P wave的波形有三种不同的变化:单峰波、双峰波、钝振动波。