简述动作电位的特点。

合集下载

《生理学》名词解释、简答题(部分)与参考答案

《生理学》名词解释、简答题(部分)与参考答案

《生理学》名词解释、简答题(部分)及参考答案第1章绪名词解释:1、兴奋性:机体感受刺激产生反应的特性或能力称为兴奋性。

2、阈值:刚能引起组织产生反应的最小刺激强度,称为该组织的阈强度,简称阈值。

3、反射:反射指在中枢神经系统参与下,机体对刺激所发生的规律性反应。

第2章细胞的基本功能名词解释:1、静息电位:是细胞末受刺激时存在于细胞膜两侧的电位差。

2、动作电位:动作电位是细胞接受适当的刺激后在静息电位的基础上产生的快速而可逆的电位倒转或波动。

3、兴奋-收缩-偶联:肌细胞膜上的电变化和肌细胞机械收缩衔接的中介过程,++是偶联因子。

称为兴奋-收缩偶联,Ca第3章血液名词解释:1、血细胞比容:红细胞占全血的容积百分比。

2、等渗溶液:渗透压与血浆渗透压相等的称为等渗溶液。

例如,0.9%NaCI溶液和5%葡萄糖溶液。

简答题:3、什么叫血浆晶体渗透压和胶体渗透压?其生理意义如何?答:渗透压指溶液中溶质分子通过半透膜的吸水能力。

晶体渗透压:概念:由晶体等小分子物质所形成的渗透压。

生理意义:对维持红细胞内外水的分布以及红细胞的正常形态和功能起重要作用。

胶体渗透压:概念:由蛋白质等大分子物质所形成的渗透压。

生理意义:可吸引组织液中的水分进入血管,以调节血管内外的水平衡和维持血容量。

4、正常人血管内血液为什么会保持着流体状态?答:因为抗凝系统和纤溶系统的共同作用,使凝血过程形成的纤维蛋白不断的溶解从而维持血液的流体状态。

5、ABO血型分类的依据是什么?答:ABO血型的分型,是根据红细胞膜上是否存在A抗原和B抗原分为A型、B 型、AB型和O型4种血型。

6、简述输血原则和交叉配血试验方法。

(增加的题)答:在准备输血时,首先必须鉴定血型。

一般供血者与受血者的ABO血型相合才能输血。

对于在生育年龄的妇女和需要反复输血的病人,还必须使供血者与受血者的Rh血型相合,以避免受血者在被致敏后产生抗Rh抗体而出现输血反应。

即使在ABO系统血型相同的人之间进行ABO输血,在输血前必须进行交叉配血试验。

生理考研之第二章——“细胞的电活动”之动作电位

生理考研之第二章——“细胞的电活动”之动作电位

生理考研之第二章——“细胞的电活动”之动作电位(一)细胞的动作电位1、在静息电位的基础上,给细胞一个适当的刺激,可触发其产生可传播的膜电位波动,称为动作电位(AP);2、锋电位:动作电位的标志;3、AP特点:1、“全或无”现象;2、不衰减传播;因为其产生的主要是“局部电流”(其幅度和波形在传播过程中始终保持不变);3、脉冲式发放。

(细胞在静息状态下→静息电位。

离子跨膜流动→膜内、外表层电荷的改变→发生膜电位波动物理学上:是以正离子的移动方向来表示电流的方向。

细胞受刺激时引起离子流动→正电荷流入膜内→内向电流→使膜内电位的负值减小→膜去极化。

反之,如果离子流动造成正电荷由胞内流出胞外,则称为外向电流。

外向电流使膜→复极化或超极化。

通常K+由胞内流出,或C1-由胞外流入胞内,都属于外向电流。

综上→动作电位的去极相是内向电流形成的,而复极相则是外向电流形成的。

离子跨膜流动的产生需要两个必不可少的因素:一是膜两侧对离子的电化学驱动力;二是膜对离子的通透性。

)4、离子的电化学驱动力=膜电位(Em)与该离子的平衡电位(Ex) 之差,即(Em-Ex);电化学驱动力是推动离子跨膜流动的力。

5、在动作电位期间,Na+平衡电位及K+平衡电位基本不变,因为每次动作电位进入胞内的Na+和流出的K+均只占胞质内离子总量的几万分之一,因此,不会显著影响膜两侧的离子浓度差。

电化学驱动力是由该离子在膜两侧溶液中的浓度和膜电位共同决定;膜两侧溶液中的浓度决定该离子的平衡电位。

驱动力的改变主要由膜电位变化而引起。

整个动作电位期间,膜电位将发生大幅度的改变,因此,膜对离子的每个瞬间的电化学驱动力也将随着膜电位的变化而发生相应变化。

6、能引发动作电位的最小刺激强度,称为阈强度(又叫阈值)。

>或=阈强度,即可触发动作电位,叫阈刺激或阈上刺激,为有效刺激;7、阈电位:能触发动作电位的膜电位临界值称为:阈电位;8、阈刺激就是:其强度刚好能使细胞的静息电位发生去极化达到阈电位水平的刺激。

简述心室肌细胞动作电位的特点及分期

简述心室肌细胞动作电位的特点及分期
2、复极过程:当心室肌细胞去极化达到顶峰后,立即开始复极,但复极过程比较缓慢,可分为4期:
1)快速复极初期(1期):心肌细胞膜电位在除极达到顶峰后,有+30mV迅速下降至0mV,形成复极1期,历时约10ms,并与0期除极构成了锋电位。
形成机制:钠离子的通透性迅速下降,钠离子内流停止。同时膜外钾离子快速外流,形成瞬时性钾离子外向电流,膜内电位迅速降低,与0期构成锋电位。
4)静息期(4期):此期是膜复极化完毕后和膜电位恢复并稳定在-90mV的时期。
形成机制:由于此期膜内、外各种正离子浓度的相对比例尚未恢复,细胞膜的离子转运机制加强,通过钠-钾泵的活动和钙离子--钠离子交换作用,将内流的钠离子和钙离子排出膜外,将外流的钾离子转运入膜内,使细胞内外离子分布恢复到静息状态水平,从而保持心肌细胞正常的兴奋性。
压门控式慢钙通道,当膜去极化到-40mV时被激活,要到0期后才表现为持续开放。钙离子顺其浓度梯度向膜内缓慢内流使膜倾向于去极化,在平台期早期,钙离子的内流和钾离子的外流所负载的跨膜正电荷量等,膜电位稳定于1期复极所达到的0mV水平。随后,钙离子通道逐渐失活,钾离子外流逐渐增加,出膜的正电荷量逐渐增加,膜内电位于是逐渐下降,形成平台晚期。
3)快速复极末期(3期):继平台期之后,膜内电位由0mV逐渐下降到-90mV,完成复极化过程。历时约100~150ms。
形成机制:在2期之后,钙离子通道完全失活,内向电流(钙离子内流)终止,而膜对钾离子的通透性又恢复并增高,钾离子外向电流迅速增强,膜电位迅速回到静息电位水平,完成复极化过程。3期复极化的钾离子外流,使膜内电位向负的方向转化过程也有类似于0期钠离子通道再生性除极过程。即随着钾离子外流膜内电位向负的方向转化,钾离子的外流也愈快,知道复极化完成。另外,在此过程中,由于心室各细胞复极化过程不一样,造成复极化区和未复极化区之间的电位差,也促进了未复极化区的复极化过程,所以3期复极化发展十分期、2期、3期和4期。各期特征:0期为去极化过程,膜内电位由-90 mV迅速上升到+30 mV 左右。主要是Na+内流所致.1期为快速复极初期,膜内电位由+30 mV快速降至0 mV左右,主要是K+外流所致.2期为平台期,膜内电位下降极为缓慢,基本停滞在0 mV 左右,形成平台状.此期是心室肌动作电位的主要特征,主要是Ca2+缓慢内流与少量K+外流所致.3期为快速复极末期,膜内电位由0 mV快速下降到原来的-90 mV,由K+外流所致.4期为静息期,膜电位维持在静息电位水平.此期离子泵活动增强,将动作电位期间进入细胞内的Na+、Ca2+泵出,外流的K+摄回.使细胞内、外离子分布恢复到兴奋前的状态.

动作电位特点

动作电位特点

动作电位特点动作电位(ActionPotentials)是神经内环节及神经细胞传导过程中发生的瞬时电位变化,也称脉冲,是神经信息传导的重要方式。

动作电位具有以下特点:一、快速发放动作电位发放过程很快,一般可在1毫秒内完成。

这一特点主要由神经内环节及神经细胞结构上的特殊因素决定。

神经内环节负责神经传递,每个神经元可以向周围神经元发出脉冲,在发送的刹那,就可以完成动作电位的发放。

二、向心、对称动作电位总是以脉冲中心为原点,向周围扩散,表现为向心发放的特点。

在细胞的传导过程中,脉冲以均匀一致的速度从脉冲源向四周扩散,扩散过程中脉冲信号振幅及速度均可保持均匀。

三、传播有范围动作电位传播范围取决于神经内环节及神经细胞结构,一般而言,1mm2的神经细胞拥有较强的脉冲传播能力,传播范围可以达到数厘米至毫米级。

四、容量无穷动作电位传递过程不会损失信息,大多数信息传播到接受端就可以保持完整,这一点使得动作电位可以被用于无线信息传播,有效地提高了信息传播效率。

五、对环境及药物有选择性动作电位受到外界环境及药物的影响,其中缺氧、过度酸碱变化、药物干扰·等都可以影响动作电位的传播及振幅,但大部分只对部分类型的药物及环境敏感,所以动作电位也有选择性的特点。

六、有高效的再发放功能动作电位拥有高效的再发放功能,即一个动作电位发送到接受端后,在规定的时间内可以反复发放,发放的脉冲振幅和传播速度都能保持不变。

这种特性使得动作电位在信息传递中能起到开关作用,这对于控制机械运动、认知加工及识别特征等都有重要作用。

以上就是动作电位的一些基本特点,它们具有很强的可靠性,是神经传导及信息传播的重要方式。

动作电位的发放速度快、传播范围宽、传输效率高,且受到外界环境及药物的影响有选择性,有着良好的应用前景。

动作电位和局部电位

动作电位和局部电位
ห้องสมุดไป่ตู้

1内向电流使膜内电位负值减小引起膜的去极 化。 2离子在膜两侧的浓度决定该离子的——,只 要膜电位偏离平衡电位,就会对该离子自产生
• 相应驱动力。负值是内向动力,正值是外 向动力。 • 膜的内外表面各有一层负、正——,随着 去极化的增加,对——的内向驱动力减小, 对——的外向驱动力增加。 • 刺激大,达到阈电位,引起钠电导增大和 钠电流,从而抗衡鉀外流,内向净电流引 起进一步去极化,从而——与——的正反 馈。即——循环。
动作电位和局部电位静息电位和动作电位动作电位双相动作电位神经干动作电位动作电位产生机制动作电位时程动作电位形成机制动作电位的特点动作电位传导示意图
动作电位和局部电位

1峰电位是动作电位的主要部分后来出现低幅, 缓慢的波动,是后电位。 2 动作电位全或无:刺激达到_后,即可触发 动作电位,而且幅度立刻达到最大值,也不会 因刺激强度的增大而增大。 3动作电位不局限于——,而是延_向周围传播, 直至——都产生一次动作电位。

简述心室肌细胞动作电位的特点及分期解读

简述心室肌细胞动作电位的特点及分期解读

心室肌细胞的动作电位分5期,即0期、1期、2期、3期和4期。

各期特征:0期为去极化过程,膜内电位由-90 mV迅速上升到+30 mV 左右。

主要是Na+内流所致.1期为快速复极初期,膜内电位由+30 mV快速降至0 mV左右,主要是K+外流所致.2期为平台期,膜内电位下降极为缓慢,基本停滞在0 mV 左右,形成平台状.此期是心室肌动作电位的主要特征,主要是Ca2+缓慢内流与少量K+外流所致.3期为快速复极末期,膜内电位由0 mV快速下降到原来的-90 mV,由K+外流所致.4期为静息期,膜电位维持在静息电位水平.此期离子泵活动增强,将动作电位期间进入细胞内的Na+、Ca2+泵出,外流的K+摄回.使细胞内、外离子分布恢复到兴奋前的状态. 1、除极过程(0期):膜内电位由静息状态时的-90mV上升到-20mV~+30mV,膜两侧由原来的极化状态转变为反极化状态,构成了动作电位的上升支,此期又称为0期。

历时仅1~2ms。

其正电位部分成为超射。

形成机制:当心室肌细胞受到刺激产生兴奋时,首先引起钠离子通道的部分开放和少量钠离子内流,造成膜部分计划,当去极化到阈电位水平(-70mV)时,膜上钠离子通道被激活而开放,出现再生性钠离子内流。

于是钠离子顺电-化学梯度由膜外快速进入膜内,进一步使膜去极化、反极化,膜内电位由静息时的-90mV急剧上升到+30mV。

决定0期除极化的钠离子通道是一种快通道,激活迅速、开放速度快,失活也迅速。

当膜去极化到0mV左右时,钠离子通道就开始失活而关闭,最后终止钠离子的继续内流。

2、复极过程:当心室肌细胞去极化达到顶峰后,立即开始复极,但复极过程比较缓慢,可分为4期: 1)快速复极初期(1期):心肌细胞膜电位在除极达到顶峰后,有+30mV迅速下降至0mV,形成复极1期,历时约10ms,并与0期除极构成了锋电位。

形成机制:钠离子的通透性迅速下降,钠离子内流停止。

同时膜外钾离子快速外流,形成瞬时性钾离子外向电流,膜内电位迅速降低,与0期构成锋电位。

动作电位的四个特点

动作电位的四个特点

动作电位的四个特点
动作电位是神经元在传递信息时产生的一种电信号,它的特点包括以下四个方面:
1. 快速性:动作电位的传递速度很快。

在哺乳动物中,通常是每秒几米到几十米。

这种快速的传递速度对于神经元之间的高效沟通和身体的迅速反应至关重要。

2. 电位上升和下降阶段:动作电位分为上升阶段和下降阶段。

上升阶段是指电位从负值迅速上升到正值的过程,而下降阶段则是指电位从正值缓慢下降到负值的过程。

这两个阶段的时间和振幅差异很大,上升阶段通常只有几毫秒,而下降阶段则需要几十毫秒。

3. 阈值刺激:动作电位的产生需要足够的刺激,也就是达到一定的阈值。

一旦达到了阈值,就会触发动作电位的产生和传递。

这个阈值是由神经元的特性决定的,而不同的神经元有不同的阈值。

4. 传导方向:动作电位的传导方向通常是由树突到轴索末梢,沿着轴突传递到突触。

传导的方向与突触的种类有关,有些神经细胞的突触是只传递单向的,而有些则是双向传递的。

这种传导方向的差异是造成神经元间信息传递效率差异的原因之一。

总体而言,动作电位的快速、上升和下降阶段、阈值刺激和传导方向
是它的四个主要特点。

了解动作电位的特点对于理解神经元传递信息
的过程,以及一些与神经系统有关的疾病的发生机制具有重要的意义。

心室肌细胞动作电位的主要特点

心室肌细胞动作电位的主要特点

心室肌细胞动作电位的主要特点首先,心室肌细胞动作电位由去极化和复极化两个过程五个时期组成:0 期(快速去极化期)、1 期(快速复极化初期)、2 期(平台期)、3 期(快速复极化末期)以及4 期(完全复极化期,或静息期)。

0 期去极化主要由钠内向电流(INa) 引起。

瞬时外向电流(Ito ) 是引起心室肌细胞1 期快速复极的主要跨膜电流,其主要离子成分是K+。

在2 期早期,L型钙通道介导的Ca2+的内流和IK(延迟整流钾通道)介导的K+的外流处于平衡状态,膜电位保持于零电位上下。

随着时间的推移,钙通道逐渐失活,K+外流逐渐增加,缓慢地复极,形成2 期晚期。

3 期的离子流主要是外向电流。

IK的逐渐加强是促进复极的重要因素, IK1对3 期复极也起明显作用,它在复极化至-60mV 左右时开始加强,加速了3 期的终末复极化。

4 期膜电位虽已恢复到静息水平,但并不意味着各种离子流的停息。

由于在动作电位期间发生了各种离子流,只有将动作电位期间进入细胞内的Na+和Ca2+排出细胞,而使流出细胞的K+回到胞内后才能恢复细胞内外离子的正常水平,保持心肌细胞的正常兴奋性。

其次,窦房结细胞的动作电位属慢反应电位,其动作电位形状与心室肌等快反应电位很不相同。

其特征为:动作电位去极化速度和幅度较小,很少有超射,没有明显的1 期和平台期,只有0 、3 、4 期,而4期电位不稳定,最大复极电位绝对值小。

在3 期复极完毕后就自动地产生去极化,使膜电位逐渐减小,即发生4 期自动去极化。

当去极达阈电位水平时即可爆发动作电位。

由于窦房结P 细胞膜缺乏钠内向电流(INa)通道,其动作电位0 期的产生则主要依赖ICa-L。

窦房结P 细胞缺乏Ito通道,因此其动作电位无明显的1 期和2 期,0 期去极化后直接进入3 期复极化过程,其复极化主要依赖IK来完成,IK 的激活不仅使动作电位复极,并且使之达到最大复极电位水平。

IK 的进行性衰减是窦房结细胞4 期自动去极化的重要离子基础之一,除此之外,If的进行性增强以及ICa-T也在4期自动去极过程中发挥一定作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简述动作电位的特点。

动作电位是神经元细胞膜上的一种电信号,在神经元通过化学或物理刺激后产生。

它具有以下特点:
1. 具有阈值:只有当神经元细胞膜上的电荷达到一定的阈值时,才能产生动作电位。

2. 具有全或无性:如果神经元细胞膜电荷超过阈值,就会产生完整的动作电位。

否则,不会产生任何电位。

3. 快速和瞬时性:动作电位的持续时间通常很短,只有几毫秒。

然而,它的频率可以很高,每秒数百次甚至更多。

4. 不受刺激强度的影响:只要刺激引发了电荷变化超过了阈值,动作电位就会发生。

因此,刺激强度的大小并不影响动作电位的幅度和持续时间。

5. 可通过传导传递:动作电位可以沿着神经元轴突传播,因此可以快速地将信号传递到其他神经元或肌肉。

总的来说,动作电位是神经元通讯的基础,是神经传递中的一种关键信号,具有快速、短暂、有效等特点。

相关文档
最新文档