第17讲 指数函数及性质八大题型总结(解析版)
精选人教版高一数学必修1第17课时指数函数的基本内容(含解析)

答案:D
解析:A项中函数的底数是自变量x,指数是常数2,故不是指数函数;B项中函数的底数是常数3,指数是2x+1,而不是自变量x,故不是指数函数;对于C项,这个函数中4x的系数是3,不是1,故不是指数函数;D项中函数可以化为y=9x,符合指数函数的定义,而y=32x与y=9x的定义域与对应关系相同,所以它们是同一函数,即y=32x是指数函数.故选D.
4.函数y= 的定义域为()
A.[3,+∞) B.[4,+∞)
C.(3,+∞) D.(4,+∞)
答案:B
解析:要使函数有意义,需2x-1-8≥0,则2x-1≥8=23,∴x-1≥3.得x≥4.故选B.
5.当x>0时,函数f(x)=(a2-1)x的值总大于1,则实数a的取值范围是()
A.1<|a|<2 B.|a|<1
第17课时 指数函数的基本内容
课时目标
1.理解指数函数的概念和意义.
2.会求与指数函数有关的定义域和值域.
3.会画指数函数的图象,能用指数函数的图象解决一些简单的问题.
识记强化
1.指数函数的定义.
函数y=ax(a>0,且a≠1)叫做指数函数.
2.指数函数的图象与性质.
a>1
0<a<1
图象
性质
定义域
R
解:根据指数函数的定义,可设指数函数为y=f(x)=ax,利用待定系数法可求出a的值.因为它的图象经过点(π,2),所以2=aπ,a=2 ,于是f(x)=(2 )x=2 .所以f(0)=20=1,f(1)=2 ,f(-π)=2 ≠1)在[1,2]上的最大值比最小值大 ,求a的值.
A.A BB.A⊆B
C.A BD.A=B
答案:A
解析:A={y|y>0},B={y|y≥0},故AB.
指数函数及其性质(解析版)

微专题15 指数函数及其性质【方法技巧与总结】知识点一、指数函数的图象及性质:x y a =01a <<时图象 1a >时图象图象性质①定义域R ,值域(0,)+∞②01a =,即0x =时,1y =,图象都经过()0,1点 ③x a a =,即1x =时,y 等于底数a ④在定义域上是单调减函数 ④在定义域上是单调增函数 ⑤0x <时,1x a >0x >时,01x a <<⑤0x <时,01x a <<0x >时,1x a >⑥既不是奇函数,也不是偶函数(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论. (2)当01a <<时,x →+∞,0y →;当1a >时x →-∞,0y →. 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快. 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快. (3)指数函数xy a =与1xy a ⎛⎫= ⎪⎝⎭的图象关于y 轴对称.知识点二、指数函数底数变化与图像分布规律 (1)①x y a =,②x y b =,③x y c =,④x y d =,则:01b a d c <<<<<又即:,()0x ∈+∞时,x x x x b a d c <<<(底大幂大) ,0()x ∈∞-时,x x x x b a d c >>>(2)特殊函数2x y =,3x y =,1()2x y =,1()3x y =的图像:【题型归纳目录】题型一:指数函数的图象基本性质:定点、对称性、单调性 题型二:指数 (型) 函数的单调性应用(1): 复合函数的值域问题 题型三:指数 (型) 函数的单调性应用(2): 复合函数的单调问题 题型四:指数(型) 函数中的奇偶性及与单调性的综合 【典型例题】题型一:指数函数的图象基本性质:定点、对称性、单调性 例1.(2022·全国·高一课时练习)已知函数()2x af x -=的图象关于直线2x =对称,则a =( )A .1B .2C .0D .-2【答案】B【解析】函数2xy =的图象关于y 轴对称,将函数2x y =的图象向右平移2个单位长度可得函数22x y -=的图象,所以函数22x y -=的图象关于直线2x =对称,故2a =.故选:B例2.(2022·福建·莆田二中高一期中)已知函数()21,24,2xx f x x x ⎧-≤⎪=⎨-+>⎪⎩,若实数,,a b c 满足a b c <<,且()()()f a f b f c ==,则22a c b c +++的取值范围为( )A .()4,8B .()4,16C .()8,32D .()16,32【答案】D【解析】作出函数()f x 的图象,如图,当0x <时,()()21120,1x xf x =-=-∈,由图可知,()()()()0,1f a f b f c ==∈,即()40,1c -∈ 得34c <<,则8216c <<,由()()f a f b =,即2121a b-=-,得1221a b -=-,求得222a b +=,∴()()222222216,32a cb c c a b c +++=+=⨯∈,故选:D例3.(2022·全国·高一课时练习)若222log xx x >>,则x 的取值范围为( )A .()3,4B .()4,+∞C .()0,2D .()1,2【答案】D【解析】在同一平面直角坐标系中作出函数2y x =,2x y =,2log y x =的图象如下图所示,数形结合可知:当12x <<时,222log xx x >>,x 的取值范围为()1,2.故选:D.变式1.(多选题)(2022·全国·高一单元测试)已知()2102,0x x f x x x x ⎧->=⎨--≤⎩,,则方程()220()xf a a R --=∈的根个数可能是( ) A .3 B .4 C .5 D .6【答案】ABD【解析】令()221xt t -=≥-,在同一坐标系中作出函数()(1)y f t t =≥-和直线y a =的图象,分析()0f t a -=的根:①当1a >时,方程()0f t a -=有一个根1t ,且12t >,方程122xt -=,对应2个x ,故方程()220()xf a a R --=∈有2个根;②当a =1时,方程()0f t a -=有两个根11t =-,22t =,方程122xt -=,对应1个x ,方程222x t -=对应2个x ,故方程()220()xf a a R --=∈有3个根.③当0<a <1时,方程()0f t a -=有三个根110t -<<,201t <<,312t <<,方程122xt -=,对应2个x ,方程222x t -=对应2个x ,方程322x t -=对应2个x ,故方程()220()x f a a R --=∈有6个根.④当a =0时,方程()0f t a -=有两个根10t =,21t =,方程122xt -=,对应2个x ,方程222x t -=对应2个x ,故方程()220()xf a a R --=∈有4个根.故选:ABD.变式2.(多选题)(2022·全国·高一期末)(多选)已知函数()x f x a b =-的图象如图所示,则( )A .a >1B .0<a <1C .b >1D .0<b <1【答案】BD【解析】观察图象得,函数()x f x a b =-是单调递减的,因此,01a <<,图象与y 轴交点纵坐标0y 有:001y <<,而0x =时,1y b =-,于是得011b <-<,解得01b <<, 所以01a <<,01b <<.故选:BD变式3.(多选题)(2022·全国·高一课时练习)已知函数()21xf x =-,实数a ,b 满足()()f a f b =()a b <,则( )A .222a b +>B .a ∃,b ∈R ,使得01a b <+<C .222a b +=D .0a b +<【答案】CD【解析】画出函数()21xf x =-的图象,如图所示.由图知1221a b -=-,则222a b +=,故A 错,C 对.由基本不等式可得22222222a b a b a b +=+>⋅=21a b +<,则0a b +<,故B 错,D 对.故选:CD .变式4.(2022·全国·高一单元测试)函数11x y a -=+图象过定点A ,点A 在直线()31,0mx ny m n +=>>上,则121m n+-最小值为___________. 【答案】92【解析】当1x =时,012y a =+=,11x y a -∴=+过定点()1,2A ,又点A 在直线3mx ny +=上,23∴+=m n ,即()122m n -+=, 1m >,0n >,10m ∴->,()()()21121121212512121m n m n m n m n m n -⎛⎫⎛⎫∴+=+-+=++≥ ⎪ ⎪---⎝⎭⎝⎭()2112952212m n m n ⎛- +⋅= -⎝(当且仅当()2121m nm n -=-,即53m =,23n =时取等号),121m n ∴+-的最小值为92. 故答案为:92.变式5.(2022·江苏·高一专题练习)函数27x y a -=+(0a >,且1a ≠)的图象恒过定点P ,P 在幂函数()f x x α=的图象上,则(3)f =_______;【答案】27【解析】因为函数27x y a -=+(0a >,且1a ≠)的图象恒过定点P , 所以由指数型函数性质得()2,8P , 因为P 在幂函数()f x x α=的图象上 所以28α=,解得3α=,所以()3f x x =,()327f =.故答案为:27变式6.(2022·全国·高一课时练习)函数()120.58x y -=-的定义域为______.【答案】(),3-∞- 【解析】因为()120.580.58xxy -=-=-0.580x ->,则322x ->,即3x ->,解得3x <-,故函数()120.58x y -=-的定义域为(),3-∞-.故答案为:(),3-∞-.变式7.(2022·全国·高一单元测试)已知函数()2x f x a -[)2,+∞,则=a _________. 【答案】4【解析】由题意可知,不等式20x a -≥的解集为[)2,+∞,则220a -=,解得4a =, 当4a =时,由240x -≥,可得2242x ≥=,解得2x ≥,合乎题意. 故答案为:4.变式8.(2022·全国·高一专题练习)已知函数f (x )=ax +b (a >0,a ≠1).(1)若f (x )的图象如图①所示,求a ,b 的取值范围;(2)若f (x )的图象如图②所示,|f (x )|=m 有且仅有一个实数解,求出m 的范围. 【解析】(1)由f (x )为减函数可知a 的取值范围为(0,1),又f (0)=1+b <0,所以b 的取值范围为(-∞,-1); (2)()f x 的图象过点(2,0),(0,2)-,所以2002a b a b ⎧+=⎨+=-⎩,解得3,3a b ==-, 所以()(3)3x f x =-,在同一个坐标系中,画出函数|()|y f x =和y m =的图象, 观察图象可知,当0m =或3m ≥时,两图象有一个交点, 若|()|f x m =有且仅有一个实数解,m 的范围是:0m =或3m ≥.题型二:指数 (型) 函数的单调性应用(1): 复合函数的值域问题 例4.(2022·全国·高一专题练习)函数1423x x y +=++的值域为____. 【答案】()3,+∞ 【解析】令2(0)x t t =>,∴函数()1423x x y x R +=++∈化为()()222312(0)f t t t t t =++=++>,()3f t ∴>,即函数1423x x y +=++的值域为()3,+∞.故答案为:()3,+∞例5.(2022·全国·高一单元测试)函数221()2x xy -+=的值域为( )A .1[,)2+∞B .1(,]2-∞C .(,2]-∞D .(0,2]【答案】A【解析】函数221()2x x y -+=定义域为R ,222(1)11x x x -+=--+≤,又函数1()2x在R 上单调递减,则221(221)x x -+≥, 所以函数221()2x x y -+=的值域为1[,)2+∞.故选:A例6.(2022·黑龙江·佳木斯一中高一期末)已知()212221x x xf x a +=+-+(其中a R ∈且a 为常数)有两个零点,则实数a 的取值范围是___________. 【答案】()4,+∞【解析】设()20,xt =∈+∞,由()212221x x xf x a +=+-+有两个零点, 即方程()2210t a t +-+=有两个正解,所以()21212Δ2402010a t t a t t ⎧=-->⎪+=->⎨⎪=>⎩,解得4a >,即()4,a ∈+∞, 故答案为:()4,+∞.变式9.(2022·河南·登封市第一高级中学高一阶段练习)函数113()934x xf x --⎛⎫=++ ⎪⎝⎭在[1,)-+∞上的值域为___________. 【答案】375,44⎛⎤⎥⎝⎦【解析】2113113()9334334x x xx f x --⎛⎫⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+⎝⎭∵[1,)x ∈-+∞则令(],3130xt ⎛⎫⎪⎭∈= ⎝2334y t t =++在(]0,3递增∴375,44y ⎛⎤∈ ⎥⎝⎦故答案为:375,44⎛⎤⎥⎝⎦.变式10.(2022·陕西渭南·高一期末)方程23x x k +=的解在()1,2内,则k 的取值范围是___________. 【答案】()5,10【解析】令()23,1,2xy x x =+∈,显然该函数为增函数,122315,23210+⨯=+⨯=,值域为()5,10,故510k <<. 故答案为:()5,10.变式11.(2022·河南·洛宁县第一高级中学高一阶段练习)函数()()420x xf x x --=+>的值域是______.【答案】()0,2【解析】令()20,1xt -∈=,则2y t t =+,因为函数2y t t =+在0,1上单调递增,所以()20,2y t t =+∈,故()f x 的值域为()0,2.故答案为:()0,2.变式12.(2022·全国·高一课时练习)已知函数f (x )=ax +b (a >0,a ≠1),其中a ,b 均为实数. (1)若函数f (x )的图象经过点A (0,2),B (1,3),求函数()1y f x =的值域; (2)如果函数f (x )的定义域和值域都是[﹣1,0],求a +b 的值. 【解析】(1)函数f (x )=ax +b (a >0,a ≠1),其中a ,b 均为实数,函数f (x )的图象经过点A (0,2),B (1,3),∴123b a b +=⎧⎨+=⎩,∴21a b =⎧⎨=⎩,∴函数f (x )=2x +1>1,函数()1121xy f x ==+<1. 又()1121x f x =+>0,故函数()1y f x =的值域为(0,1). (2)如果函数f (x )的定义域和值域都是[﹣1,0],若a >1,函数f (x )=ax +b 为增函数,∴1110b a b ⎧+=-⎪⎨⎪+=⎩,求得a 、b 无解.若0<a <1,函数f (x )=ax +b 为减函数,∴1011b a b ⎧+=⎪⎨⎪+=-⎩,求得122a b ⎧=⎪⎨⎪=-⎩, ∴a +b 32=-.变式13.(2022·河南·洛宁县第一高级中学高一阶段练习)已知函数()2422ax x f x ++=.(1)当1a =时,求()f x 的值域; (2)若()f x 有最大值16,求a 的值. 【解析】(1)当1a =时,()2422xx f x ++=.因为2t y =在R 上单调递增,且()2242222y x x x =++=+-≥-, 可得24221224x x ++-≥=,所以()2124f x -≥=, 故()f x 的值域为1,4⎡⎫+∞⎪⎢⎣⎭.(2)令242t ax x =++,因为函数2t y =在其定义域内单调递增, 所以要使函数()f x 有最大值16,则242t ax x =++的最大值为4,故20,44424,22a a a a <⎧⎪⎨⎛⎫⎛⎫-+⨯-+=⎪ ⎪⎪⎝⎭⎝⎭⎩解得2a =-. 故a 的值为2-.变式14.(2022·全国·高一课时练习)已知函数()x f x a =(0a >且1a ≠)的图象经过点()2,16-. (1)求a ,并比较27()4f m +与1()4f m -的大小;(2)求函数224()xx g x a -+-=的值域.【解析】(1)由已知得:216a -=,解得14a =,所以()14xf x ⎛⎫= ⎪⎝⎭, 因为()14xf x ⎛⎫= ⎪⎝⎭在R 上单调递减,2227117()()2()04424m m m m m +--=-+=-+>,所以271()()44f m f m +<-;(2)因为2224(1)33x x x -+-=----≤,所以2243116444x x -+--⎛⎫⎛⎫≥= ⎪⎪⎝⎭⎝⎭,故()g x 的值域是[64,)+∞; 变式15.(2022·全国·高一专题练习)求下列函数的定义域、值域: (1)513x y -=(2)2231.2x x y --⎛⎫= ⎪⎝⎭【解析】(1)由函数解析式可知:15105x x -≥⇒≥,所以函数的定义域为:1|5x x ⎧⎫≥⎨⎬⎩⎭; 510x -≥,所以510331x -≥=,因此函数的值域为:[1,)+∞;(2)由函数的解析式可知:函数的定义域为R ,222323122x x xx y ---++⎛⎫== ⎪⎝⎭,因为2223(1)44x x x -++=--+≤,所以223402216xx -++<≤=,因此函数的值域为:(0,16]. 变式16.(2022·山东·嘉祥县第一中学高一期中)设函数()()()10,1x xf x a k a a a -=-->≠是定义域R 的奇函数. (1)求k 值;(2)若()10f >,试判断函数单调性并求使不等式()()2210f x tx f x +++>在定义域上恒成立的t 的取值范围;(3)若()813f =,且()()222x xg x a a mf x -=+-在[)1,+∞上最小值为2-,求m 的值.【解析】(1)()f x 是定义域为R 的奇函数,()00f ∴=,即()110k --=,解得2k =;经检验成立 (2)因为函数()x xf x a a -=-(0a >且1a ≠),又()10f >,10a a∴->,又0a >, 1a ∴>,由于x y a =单调递增,x y a -=单调递减,故()f x 在R 上单调递增,不等式化为()()221f x tx f x +>--.221x tx x ∴+>--,即()2210x t x +++>恒成立,()2240t ∴∆=+-<,解得40t -<<;(3)由已知()813f =,得183a a -=,即23830a a --=,解得3a =,或13a =-(舍去),()()()()22233333333222x x x x x x x x g x m m ----∴=+----=+-,令()33x xt f x -==-,是增函数,1x ≥,()813t f ∴≥=,则()22282223y t mt t m m t ⎛⎫=-+=-+-≥ ⎪⎝⎭,若83m ≥,当t m =时,2min 22y m =-=-,解得823m =<,不成立;若83m <,当83t =时,min 64162293y m =-+=-,解得258123m =<,成立; 所以2512m =. 题型三:指数 (型) 函数的单调性应用(2): 复合函数的单调问题例7.(2022·全国·高一单元测试)若函数241()3x axf x -+⎛⎫= ⎪⎝⎭在区间()1,2上单调递增,则a 的取值范围为_________.【答案】1,2⎛⎤-∞ ⎥⎝⎦【解析】因为函数13xy ⎛⎫= ⎪⎝⎭是实数集上的减函数,所以由复合函数的单调性可知,函数24y x ax =-+在区间()1,2上单调递减, 函数24y x ax =-+的对称轴为2x a =,且开口向下,所以有21a ≤, 解得a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦,故答案为:1,2⎛⎤-∞ ⎥⎝⎦.例8.(2022·北京·牛栏山一中高一阶段练习)写出一个满足函数()+1221,>=+2,x x ag x x x x a ≤⎧-⎨-⎩在(),-∞+∞上单调递增的a 值_____________. 【答案】1(答案不唯一)【解析】因为()+1221,>=+2,x x ag x x x x a ≤⎧-⎨-⎩,当>x a 时()+121x g x -=在定义域上单调递增,当x a ≤时()()22+211x x g x x --==+-, 画出+121x y -=,2+2y x x -=的图象如下所示:要使函数()g x 在(),-∞+∞上单调递增,由图可知当1a ≤时均可满足函数()g x 在(),-∞+∞上单调递增; 故答案为:1(答案不唯一)例9.(多选题)(2022·江苏·无锡市市北高级中学高一期中)函数2(65)1()()2x x f x -+-=在下列哪些区间内单调递减( ) A .(3),-∞ B .(3,5)C .(1,3)D .(2,3)【答案】ACD【解析】由题意,函数1()2xy =在R 上单调递减,又由函数265y x x =-+-在(3),-∞上单调递增,在(3,)+∞上单调递减, 由复合函数的单调性可知,函数()f x 在(3),-∞上单调递减, 结合选项,可得选项ACD 符合题意. 故选:ACD.变式17.(2022·全国·高一单元测试)已知()()321,1,1xa x x f x a x ⎧-+≤=⎨>⎩是定义域为R 上的减函数,则a 的取值范围是( ) A .20,3⎛⎫⎪⎝⎭B .12,23⎡⎫⎪⎢⎣⎭C .()1,+∞D .2,13⎛⎫ ⎪⎝⎭【答案】B【解析】由题意,132001321a a a a -<⎧⎪<<⎨⎪-+≥⎩,故230121a a a ⎧<⎪⎪<<⎨⎪≥⎪⎩,解得12,23a ⎡⎫∈⎪⎢⎣⎭故选:B变式18.(2022·全国·高一单元测试)若2233x y x y ---<-,则( ) A .x y < B .||||x y < C .x y > D .||||x y >【答案】A【解析】设函数()23x x f x -=-,因为函数2,3x x y y -==-都是实数集上的增函数, 所以函数()23x x f x -=-也是实数集上的增函数,由22332323()()x y x y x x y y f x y x y -----<-⇒-<-⇒<⇒<, 故选:A变式19.(2022·河南·登封市第一高级中学高一阶段练习)函数2435x x y -+-=的单调递减区间是( )A .[2,)+∞B .(,2]-∞C .(,1]-∞D .[1,)+∞【答案】A【解析】设243x x μ=-+-,在(,2]-∞单调递增,在[2,)+∞单调递减,5y μ=在(,)-∞+∞单调递增,根据“同增异减”可得,函数2435x x y -+-=的单调递减区间是[2,)+∞.故选:A.题型四:指数(型) 函数中的奇偶性及与单调性的综合例10.(2022·浙江温州·高一期中)已知函数()()21R 2x x f x x a-=∈+为奇函数;(1)求实数a 的值; (2)求()f x 的值域;(3)若关于x 的方程()()121001t f x b b ---=<<无实数解,求实数t 的取值范围.【解析】(1)由函数()212x xf x a -=+是定义域为R 的奇函数, 则()()f x f x -=-,即212122x x x x a a----=-++,即1221122x x x xa a --=-+⋅+, 所以122x x a a +⋅=+,即()()1210xa --=在R x ∈上恒成立,解得1a =;(2)由(1)得1a =,则()2121221212121x x x x x f x -+-===-+++,又函数2x y =单调递增,且20x >, 所以211x +>,20221x<<+, 所以()11f x -<<,即函数()f x 的值域为()1,1-; (3)由()()121001t f x b b ---=<<无实数解,即()121t f x b -=+无实数解,又()()22,2f x ∈-,所以112t b -+≤-或112t b -+≥, 即13t b -≤-(不成立),或11t b -≥, 又01b <<,所以10t -≤, 即1t ≤.例11.(2022·全国·高一课时练习)已知函数()()240,12x xa a f x a a a a-+=>≠+是定义在R 上的奇函数. (1)求a 的值;(2)求函数()f x 的值域;(3)当()1,2x ∈时,()220xmf x +->恒成立,求实数m 的取值范围.【解析】(1)因为()f x 是定义在R 上的奇函数,所以()002420022a a a f a a a -+-===++,解得2a =,当2a =时,()2121x x f x -=+,此时()()21122112x xx x f x f x -----===-++,所以2a =时,()2121x x f x -=+是奇函数.所以2a =;(2)由(1)可得()2121221212121x x x xxf x -+-===-+++, 因为20x >,可得211x +>,所以10121x <<+, 所以22021x-<-<+, 所以211121x -<-<+, 所以函数()f x 的值域为()1,1-; (3)由()220x mf x +->可得()22x mf x >-,即122221x x xm ->+-⋅,可得()()212122x xx m +->-对于()1,2x ∈恒成立, 令()211,3xt -=∈,则()()2121t t tt m t-=-++>,函数21y t t=-+在区间()1,3单调递增,所以221013133t t -+<-+=,所以103m ≥, 所以实数m 的取值范围为10,3⎡⎫+∞⎪⎢⎣⎭.例12.(2022·贵州·黔西南州金成实验学校高一期末)已知函数4()12xf x a a=-+(0a >且1a ≠)为定义在R 上的奇函数.(1)利用单调性的定义证明函数()f x 在R 上单调递增;(2)求不等式()22(4)0f x x f x ++->的解集.(3)若函数()()1g x kf x =-有零点,求实数k 的取值范围.【解析】(1)由题意得:()40102f a =-=+,解得:2a =,142()112221x x f x +=-=-++, 任取12,x x R ∈,且12x x <,则()()()()()1212122121211111122222222222()112121212121212121x x x x x x x x x x x x f x f x +++++----=--+=-==++++++++因为12,x x R ∈,且12x x <,所以1211220x x ++-<,12210,210x x +>+>,所以()()()1221111222()02121x x x x f x f x ++--=<++,故()12()f x f x < 所以函数()f x 在R 上单调递增; (2)()22(4)0f x x f x ++->,即()22(4)f x x f x +>--,因为2()121x f x =-+为定义在R 上的奇函数, 所以()22(4)(4)f x x f x f x +>--=-,因为2()121x f x =-+为定义在R 上单调递增, 所以224x x x +>-, 解得:1x >或4x <-, 所以解集为:()(),41,-∞-+∞;(3)()()211121x g x kf x k ⎛⎫=-=-- ⎪+⎝⎭有零点, 当0k =时,()()11g x kf x =-=-,没有零点,不合题意,舍去; 当0k ≠时,即21121x k-=+有根, 其中当0x >时,21x >,212x +>,20121x<<+, 故()2()10,121x f x =-∈+, 又因为2()121x f x =-+在R 上为奇函数, 所以当0x <时,()2()11,021x f x =-∈-+, 且()00f =,所以2()121x f x =-+在R 上的值域为()1,1-, 故()()11,00,1k∈-⋃, 解得:()(),11,k ∈-∞-+∞,所以实数k 的取值范围为()(),11,k ∈-∞-+∞.变式20.(2022·全国·高一课时练习)已知函数()f x ,()g x 分别是定义在R 上的偶函数与奇函数,且()()+22.x f x g x =(1)求()f x 与()g x 的解析式;(2)若对()1,2x ∀∈,不等式()()()2220f x m g x -++恒成立,求实数m 的最大值. 【解析】(1)由题意()()+22xf xg x = ①,所以()()22xf xg x --+-= ,函数()f x ,()g x 分别是定义在R 上的偶函数与奇函数, 所以()()()(),f x f x g x g x =--=-所以()()22xf xg x --= ②,由①②解得()222x xf x -+=,22()4x xg x --=;(2)对()1,2x ∀∈,不等式()()()2220f x mg x -++恒成立,即()22222222024x x x xm --+--++,令22x x t -=-,315,24t ⎛⎫∈ ⎪⎝⎭,则222222x x t -+=+,不等式等价于()2222024t tm +-++在315,24t ⎛⎫∈ ⎪⎝⎭上恒成立, 所以min 622m t t ⎛⎫++ ⎪⎝⎭,因为60,0t t>>,所以6626t t t t+⋅= 当且仅当6t t =即3156,24t ⎛⎫= ⎪⎝⎭时取等号, 所以246,462m m +-,即m 的最大值为46 2.变式21.(2022·辽宁·高一阶段练习)设函数()()212x xk f x k -=+-⋅(x ∈R ,k ∈Z ).(1)若()k f x 是偶函数,求实数k 的值;(2)若存在[]1,2x ∈,使得()()014f mf x x +≤成立,求实数m 的取值范围. 【解析】(1)(1)若()k f x 是偶函数,则()()k k f x f x -=,即()()212212x x x xk k --+-⋅=+-⋅,即()()()()221212122x x x x x xk k k ----=-⋅--⋅=--,则11k -=,即2k =.(2)(2)存在[]1,2x ∈,使得()()014f mf x x +≤成立, 即2422x x x m -⋅≤-+,则()242242212x x x x xm ----+≤=⋅+-,设2x t -=,因为12x ≤≤,所以1142t ≤≤, 所以()22422141x x t t --⋅+-=+-, 令()224125y t t t =+-=+-, 因为1142t ≤≤,所以当12t =时,函数取得最大值152144y =+-=,则54m ≤, 所以实数m 的取值范围为5,4⎛⎤-∞ ⎥⎝⎦.变式22.(2022·河北沧州·高一期末)已知函数()22xxf x a -=+⋅为偶函数()a ∈R . (1)判断()f x 在[0,2]上的单调性并证明;(2)求函数()2()44x x g x mf x a -=-++⋅在[1,2]-上的最小值. 【解析】(1)()f x 为偶函数,()()f x f x ∴=-, 即2222x x x x a a --+⋅=+⋅,()()1212x x a a --⋅=-⋅,则10,1a a -==.所以()22x xf x -=+.()f x 在[0,2]为增函数,证明如下:任取1x ,2x ,且1202x x ≤<≤,()()()1122122222x x x x f x f x ---=+-+211212121211222222222x x x x x x x x x x +-=-+-=-+()()1212121212121212221212222122222x x x x x x x x x x x x x x x x ++++--⎛⎫=--=--=-⋅ ⎪⎝⎭,1202x x ≤<≤,12220x x ∴-<,12210x x +->, ()121212212202x x x x x x ++-∴-⋅<.即()()12f x f x <,∴()f x 在[0,2]上单调递增.(2)()()22244x x x xg x m --=-+++,令1222([1,2])2x x xx t x -=+=+∈-,结合题意及(1)的结论可知172,4t ⎡⎤∈⎢⎥⎣⎦. ()22442222x x x x t --+=+-=-,22217()()22()22,4g x h t t mt t m m t ⎛⎫⎡⎤∴==--=---∈ ⎪⎢⎥⎣⎦⎝⎭.①当174m ≥时,min 1725717()4162h t h m ⎛⎫==- ⎪⎝⎭; ②当1724m <<时,2min ()()2h t h m m ==--; ③当2m ≤时,min ()(2)24h t h m ==-.综上,()2min24,2172,242571717,1624m m g x m m m m ⎧⎪-≤⎪⎪=--<<⎨⎪⎪-≥⎪⎩.变式23.(2022·全国·高一课时练习)已知函数()()2422ax x f x a ++=∈R .当1a =时,()f x 的值域为______;若()f x 的最大值为16,则a 的值为______. 【答案】 1,4⎡⎫+∞⎪⎢⎣⎭【解析】当1a =时,()2422xx f x ++=,设242t x x =++,则()2222t x =+-≥-,因为2x y =在R 上是增函数,所以24221224x x ++-≥=,即()14f x ≥,所以函数的值域是1,4⎡⎫+∞⎪⎢⎣⎭;要使函数()f x 的最大值为16,则242t ax x =++的最大值为4,故2042444a a a <⎧⎪⎨⨯-=⎪⎩,解得2a =-.故答案为:1,4⎡⎫+∞⎪⎢⎣⎭;2-【过关测试】 一、单选题1.(2022·河南南阳·高一期中)已知函数()32,1,12,1,x x f x x x -⎧<-=⎨-≥-⎩若()()20f f a -+=,则实数=a ( )A .2-B .2C .4D .6【答案】B【解析】由题知()()222422f --===-,()()20f f a -+=所以()4f a =-,因为1x <-时,()22xf x -=>,所以,1a ≥-, 所以()3124f a a =-=-,解得2a =.故选:B2.(2022·天津·高一期末)设x ∈R ,则“|2|<1x -”是“3<27x ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】由|2|<1x -可知,1<2<1x --,即1<<3x ,根据指数函数性质,3x y =是R 上递增的指数函数,3<27x 即33<3x ,故<3x ,显然1<<3x 可推出<3x ,但反之不成立,故“|2|<1x -”是“3<27x ”的充分不必要条件. 故选:A3.(2022·山东·嘉祥县第一中学高一期中)已知函数()f x 为R 上的奇函数,当0x <时,()133x f x =-,则()0f x ≥的解集为( )A .[)[)1,01,∞-⋃+B .[]1,1-C .[][)1,01,-⋃+∞D .[)(]1,00,1-【答案】C【解析】因为函数()f x 为R 上的奇函数, 所以()00f =,又当0x <时,()133xf x =-,当0x >时,0x -<,则()()133xf x f x --=-=-,所以0x >时,()1133xf x ⎛⎫=- ⎪⎝⎭,则由()0f x ≥可得,011033x x >⎧⎪⎨⎛⎫-≥ ⎪⎪⎝⎭⎩或01303x x <⎧⎪⎨-≥⎪⎩或0x =,解得1x ≥或10x -≤<或0x =,综上可得,不等式()0f x ≥的解集为[][)1,01,-⋃+∞. 故选:C .4.(2022·全国·高一课时练习) 若存在正数x ,使得关于x 的不等式()31xx a -<成立,则实数a 的取值范围是( ) A .[)3,+∞ B .[)1,-+∞C .()1,-+∞D .()0,+∞【答案】C【解析】由题意知13x x a ⎛⎫-< ⎪⎝⎭成立,即13xa x ⎛⎫>- ⎪⎝⎭成立.令()13xf x x ⎛-⎫⎪⎝⎭=,显然()f x 在()0,+∞上单调递增,所以0x ∀>,()()01f x f >=-, 所以实数a 的取值范围是()1,-+∞. 故选:C5.(2022·全国·高一课时练习)若实数x ,y 满足2022202320222023x y y x --+<+,则( ) A .1x y> B .1x y< C .0x y -< D .0x y ->【答案】C【解析】令()20222023x xf x -=-,由于2022x y =,2023x y -=-均为R 上的增函数,所以()20222023x x f x -=-是R 上的增函数.因为2022202320222023x y y x --+<+,所以2022202320222023x x y y ---<-,即()()f x f y <,所以x y <,所以0x y -<. 故选:C .6.(2022·全国·高一单元测试)在同一坐标系中,函数2y ax bx =+与函数xy b =的图象可能为( )A .B .C .D .【答案】B【解析】函数x y b =的是指数函数,0b >且1b ≠,排除选项C ,如果0a >,二次函数的开口方向向上,二次函数的图象经过原点,并且有另一个零点:b x a=-, 所以B 正确;对称轴在x 轴左侧,C 不正确; 如果0a <,二次函数有一个零点0bx a=->,所以D 不正确. 故选:B .7.(2022·全国·高一专题练习)若2525x x y y ---≤-,则有( ) A .0x y +≥ B .0x y +≤ C .0x y -≤ D .0x y -≥【答案】B【解析】构造函数()25x xf x -=-,易得函数()f x 单调递增,由2525x x y y ---≤-,可得()()f x f y ≤-,0x y x y ∴≤-⇒+≤, 故选:B.8.(2022·云南·昆明市官渡区第一中学高一阶段练习)已知函数()33,0,0x x f x x x -⎧≤=⎨->⎩若()()22f a f a -≥-,则实数a 的取值范围是( ) A .[2,1]- B .1,12⎡⎤⎢⎥⎣⎦C .(,1]-∞D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】A【解析】因为()33,0,0x x f x x x -⎧≤=⎨->⎩,当0x ≤时()3xf x -=单调递减,且()1f x ≥,当0x >时,3()f x x =-单调递减,且()0f x <,所以函数()33,0,0x x f x x x -⎧≤=⎨->⎩在定义域上单调递减,因为()22()f a f a -≥-,所以22a a -≤-,解得21a -≤≤,即实数a 的取值范围为:[2,1]-. 故选:A. 二、多选题9.(2022·山东·青岛二中高一期中)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x R ∈,用[]x 表示不超过的最大整数,则[]y x =称为高斯函数,例如[]3.54-=-,[]2.12=.已知函数()()1112x xa f x a a =->+,则关于函数()()g x f x =⎡⎤⎣⎦的叙述中正确的是( ) A .()f x 是奇函数 B .()g x 是偶函数 C .()f x 在R 上是增函数 D .()g x 的值域是{}1,0-【答案】ACD【解析】A 选项:()()()1211122121x x x x x x xa a a a f x a a a ---=-==+++,()()()112121x xxx a a f x a a -----==++,∴()()f x f x -=-, ∴()f x 为奇函数,故A 正确;B 选项:∵()()g x f x =⎡⎤⎣⎦∴()()11g f ⎡⎤=⎣⎦,()()11g f ⎡⎤-=-⎣⎦,∵()f x 为奇函数,∴()()f x f x =--,∴()()11f f =--,∴()()11g g ≠-,故B 错误;C 选项:()()11111111112121221x x x x x xa a f x a a a a +-=-=-=--=-++++, ∵1a >,∴x a 为增函数,∴11xa +为减函数, ∴()1121xf x a =-+为增函数,故C 正确; D 选项:∵0x a >,∴11x a +>,∴111xa <+,∴()1122f x -<<. 又∵()()g x f x =⎡⎤⎣⎦,∴()g x 的值域为{}1,0-,故D 正确. 故选:ACD .10.(2022·河南南阳·高一期中)不等式34270x x +-+≥成立的一个充分不必要条件是( ) A .{}3,4x ∈ B .0x ≤C .1x ≥D .02x ≤≤【答案】AB【解析】令20x t =>,所以,不等式()()3242787170x x t t t t +-+=-+=--≥,解得7t ≥或01t <≤所以,27x ≥或021x <≤,解得2log 7x ≥或0x ≤, 所以,不等式34270x x +-+≥的解集为(][)2,0log 7,-∞+∞,因为所求的是不等式34270x x +-+≥成立的一个充分不必要条件, 故只需满足是(][)2,0log 7,-∞+∞真子集即可,所以,只有AB 选项满足,CD 选项不满足. 故选:AB11.(2022·全国·高一课时练习)(多选)定义在[]1,1-上的函数()2943x xf x =-⋅+⋅,则下列结论中正确的是( )A .()f x 的单调递减区间是[]0,1B .()f x 的单调递增区间是[]1,1-C .()f x 的最大值是()02f =D .()f x 的最小值是()16f =-【答案】ACD【解析】设3x t =,[]1,1x ∈-,则3x t =是增函数,且1,33t ⎡⎤∈⎢⎥⎣⎦,又函数()2224212y t t t =-+=--+在1,13⎡⎤⎢⎥⎣⎦上单调递增,在[]1,3上单调递减,因此()f x 在[]1,0-上单调递增,在[]0,1上单调递减,故A 正确,B 错误;()()max 02f x f ==,故C 正确;()1019f -=,()16f =-,因此()f x 的最小值是6-,故D 正确. 故选:ACD . 三、填空题12.(2022·山东省青岛第十九中学高一期中)若函数(),142,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩ 对于R 上任意两个不相等实数12,x x ,不等式()()()12120x x f x f x -->⎡⎤⎣⎦恒成立,则实数a 的取值范围为______. 【答案】[)4,8【解析】若函数(),142,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩对于R 上任意两个不相等实数12,x x , 不等式()()()12120x x f x f x -->⎡⎤⎣⎦恒成立,则函数()f x 在R 上单调递增,则1402422a aa a ⎧⎪>⎪⎪->⎨⎪⎪≥-+⎪⎩,解得:48a ≤<,故实数a 的取值范围为[)4,8, 故答案为:[)4,8.13.(2022·内蒙古·北方重工集团第五中学高一阶段练习(文))已知函数()()10x f x a x -=≥的图象经过点1(2,),2其中0a >且1a ≠,则函数()(0)y f x x =≥的值域是________. 【答案】(]02,【解析】因为()()10x f x a x -=≥的图象经过点1(2,),2所以2112a -=,解得12a =,则()()1102x f x x -⎛⎫=≥ ⎪⎝⎭,因为0x ≥,所以11x -≥-,所以12102x -⎛⎫< ⎝⎭≤⎪,即函数()(0)y f x x =≥的值域是(]02,, 故答案为:(]02,14.(2022·四川·成都铁路中学高一阶段练习)已知函数()142f x x x =+-.若存在()2,x ∈+∞,使得()42a a f x ≤-成立,则实数a 的取值范围是______.【答案】[2,)+∞【解析】因为()2,x ∈+∞,所以20x ->, 所以()1144(2)822f x x x x x =+=-++-- 124(2)8122x x ≥-⋅=-, 当且仅当14(2)2x x -=-,即52x =时取等号,所以min ()12f x =,因为存在()2,x ∈+∞,使得()42a af x ≤-成立, 所以()min 42a af x ≤-,即1242a a ≤-,所以()222120a a --≥,即23a ≤-(舍去),或24a ≥,得2a ≥,所以a 的取值范围为[2,)+∞, 故答案为:[2,)+∞15.(2022·全国·高一课时练习)若函数()()22133xa x f x +-+=在(),1-∞上单调递减,则实数a 的取值范围是______.【答案】1,2⎛⎫-∞- ⎪⎝⎭【解析】因为3x y =是R 上的增函数,()2213y x a x =+-+在21,2a -⎛⎫-∞- ⎪⎝⎭上单调递减,所以,根据复合函数单调性,要使()f x 在(),1-∞上单调递减,需2112a --≥,解得12a ≤-,所以,实数a 的取值范围是1,2⎛⎫-∞- ⎪⎝⎭.故答案为:1,2⎛⎫-∞- ⎪⎝⎭16.(2022·全国·高一课时练习)若函数1()1x f x a -=-(0a >,且1a ≠)在区间()321,2a a -⎛⎫ ⎪⎝⎭上单调递减,则实数a 的取值范围是______. 【答案】35,46⎛⎤⎥⎝⎦【解析】函数11x y a -=-(0a >,且1a ≠)的图象是将函数x y a =(0a >,且1a ≠)的图象向右平移1个单位,再向下平移1个单位得到的,故函数1()1x f x a -=-(0a >,且1a ≠)的图象恒过点()1,0.当01a <<时,结合函数()f x 的图象:若函数()f x 在区间()321,2a a -⎛⎫ ⎪⎝⎭上单调递减,则()()01321232112a a a a ⎧⎪<<⎪-⎪<⎨⎪⎪-≤⎪⎩,解得3546a <≤.当1a >时,结合函数()f x 的图象:若()f x 在区间()321,2a a -⎛⎫ ⎪⎝⎭上单调递减,则()()1321232112a a a a ⎧⎪>⎪-⎪<⎨⎪⎪-≤⎪⎩,无实数解. 综上,实数a 的取值范围为35,46⎛⎤⎥⎝⎦.解法二: 若()32112a a x -<<<,则110x a -->,所以()11x f x a -=-在区间()321,2a a -⎛⎫ ⎪⎝⎭上单调递增,不符合题意;当01a <<时,函数1x y a -=在区间()321,2a a -⎛⎫ ⎪⎝⎭上单调递减,要使函数1()1x f x a -=-在区间()321,2a a -⎛⎫ ⎪⎝⎭上单调递减,则110x a -->在区间()321,2a a -⎛⎫⎪⎝⎭上恒成立,所以()()01321232112a a a a ⎧⎪<<⎪-⎪<⎨⎪⎪-≤⎪⎩,解得3546a <≤.故实数a 的取值范围是35,46⎛⎤ ⎥⎝⎦.故答案为:35,46⎛⎤⎥⎝⎦.四、解答题17.(2022·山东·青岛二中高一期中)已知函数()()2,R f x x bx c b c =++∈,且()0f x ≤的解集为[]1,2-.(1)求函数()f x 的解析式;(2)解关于x 的不等式()()21mf x x m >--(其中0m>);(3)设()()232xf xg x --=,若对任意的1x ,[]21,2x ∈,都有()()12g x g x t -≤,求t 的取值范围.【解析】(1)由()0f x ≤的解集为[1,2]-可得1,2-是方程20x bx c ++=的两个根,所以122b c -+=-⎧⎨-=⎩,解得1,2b c =-=-,所以2()2f x x x =--; (2)()()21mf x x m >--,化简有()222(1)m x x x m -->--即()2220mx m x -++>,可整理得()()()2100mx x m -->>, ①当2m =时,21m=,不等式的解集为()(),11-∞⋃+∞,; ②当02m <<时,21m>,不等式的解集为()2,1,m ⎛⎫-∞+∞ ⎪⎝⎭;③当2m >时,21m<,不等式的解集为()2,1,m ⎛⎫-∞+∞ ⎪⎝⎭;(3)由题意,()()21322xx f x g x ---==,对任意的[]12,1,2x x ∈,都有12|()()|g x g x t -≤, 则当[]1,2x ∈时,max min ()()g x g x t -≤,因为当[]1,2x ∈时,()g x 单调递增,所以()max 22()g x g ==,()0min 1()21g x g ===,所以max min 2)1(1()g x g x =--=, 所以1t ≥,即t 的取值范围为[)1,+∞18.(2022·广东·深圳外国语学校高一期中)已知函数()f x 对任意的实数,m n 都有()()()1f m n f m f n +=+-,且当0x >时,有()1f x >.(1)求证:()f x 在R 上为增函数;(2)若()()923292x x xf f k -⋅+⋅->对任意[)0,x ∈+∞恒成立,求实数k 的取值范围.【解析】(1)设12x x <,令2m n x +=,1n x =,()()()22111f x f x x f x ∴=-+-, 则()()()21211f x f x f x x -=--;210x x ->,()211f x x ∴->,()()210f x f x ∴->,()f x ∴在R 上为增函数.(2)由题意得:()()()92329392312x x x x x f f k f k -⋅+⋅-=⋅-⋅-+>,()39231x x f k ∴⋅-⋅->,令0m n ==,则()()0201f f =-,解得:()01f =,()f x 为R 上的增函数,39230x x k ∴⋅-⋅->,3923x x k ∴<⋅-⋅,令31x t =≥,设()()2321g t t t t =-≥,()()min 11g t g ∴==,1k ∴<,即实数k 的取值范围为(),1-∞.19.(2022·福建省福州高级中学高一期末)已知函数()421x x f x k =+⋅+,()421x x g x =++. (1)若对于任意的R x ∈,()0f x >恒成立,求实数k 的取值范围; (2)若()()()f x h xg x =,且()h x 的最小值为2-,求实数k 的值. 【解析】(1)由()0f x >,得4210x xk +⋅+>恒成立,所以22x x k ->--对于任意的R x ∈,恒成立,因为()22222222x x x x x x -----=-+≤-⋅-,当且仅当22x x -=,即=0x 时取等号, 所以2k >-,即实数k 的取值范围为(2,)-+∞(2)()421221()111()421421212x x x x x x x x x x f x k k k h x g x +⋅+⋅--===+=+++++++,令1121221322x xx xt =++≥⋅=,当且仅当122x x =,即=0x 时取等号,则11(3)k y t t-=+≥, 当1k 时,11(3)k y t t -=+≥为减函数,则21,3k y +⎛⎤∈ ⎥⎝⎦无最小值,舍去, 当=1k 时,=1y 最小值不是2-,舍去, 当1k <时,11(3)k y t t -=+≥为增函数,则2,13k y +⎡⎫∈⎪⎢⎣⎭,最小值为223k +=-,解得=8k -,综上,=8k -20.(2022·全国·高一课时练习)已知函数()xf x ba =(其中a ,b 为常数,且0a >,1a ≠)的图象经过点()1,1M ,()3,9N .(1)求a b +的值;(2)当3x ≤-时,函数11xy a b ⎛⎫=+ ⎪⎝⎭的图象恒在函数2y x t =+图象的上方,求实数t 的取值范围.【解析】(1)∵函数()xf x ba =(其中a ,b 为常数,且0a >,1a ≠)的图象经过点()1,1M ,()3,9N ,∴319ba ba =⎧⎨=⎩∴29a =,∴3a =-(舍)或3a =,13b =,∴103a b +=; (2)由(1)得当3x ≤-时,函数133xy ⎛⎫=+ ⎪⎝⎭的图象恒在函数2y x t =+图象的上方, 即当3x ≤-时,不等式13203xx t ⎛⎫+--> ⎪⎝⎭恒成立,亦即当3x ≤-时,min 1323x t x ⎡⎤⎛⎫<+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.设()()13233xg x x x ⎛⎫=+-≤- ⎪⎝⎭,∵13xy ⎛⎫= ⎪⎝⎭在(],3-∞-上单调递减,2y x =-在(],3-∞-上单调递减,∴()1323xg x x ⎛⎫=+- ⎪⎝⎭在(],3-∞-上单调递减,∴()()min 336g x g =-=, ∴36t <.。
指数函数知识点总结

指数函数知识点总结指数函数是数学中非常重要的一个概念,广泛应用于自然科学、工程技术和经济学等领域。
它具有许多独特的特性和性质,对于我们理解和应用数学具有重要的意义。
本文将对指数函数的定义、性质及其应用进行总结。
一、指数函数的定义和性质指数函数定义为以自然数e为底数的幂函数,即f(x)=a^x,其中a为底数,x为指数。
其中,底数a是正数且不等于1的任何实数。
指数函数的图像呈现出递增或递减的特点,取决于底数a的大小。
1. 当底数a大于1时,指数函数呈现递增的特性。
以a=2为例,f(x)=2^x的图像在坐标系中逐渐上升,呈现出指数增长的趋势。
指数函数在此情况下,也被称为增长函数。
2. 当底数a小于1且大于0时,指数函数呈现递减的特性。
以a=0.5为例,f(x)=0.5^x的图像在坐标系中逐渐下降,呈现出指数衰减的趋势。
指数函数在此情况下,也被称为衰减函数。
3. 当底数a等于1时,指数函数的值始终为1,即f(x)=1^x=1。
在此情况下,指数函数的图像为一条水平线,没有任何变化。
指数函数具有很多独特的性质,其中一些重要的性质如下:1. 指数函数的定义域为实数集。
任何实数都可以作为指数函数的自变量。
2. 指数函数的值域为正实数集。
由于底数a为正数,指数函数的幂结果始终大于0。
3. 当指数函数的底数a大于1时,映射为一对一。
即不同的指数x 对应不同的函数值f(x)。
4. 指数函数的图像都通过点(0,1)。
这是因为任何数的零次幂都等于1。
5. 指数函数具有对称轴的性质。
即f(x)=a^x的图像关于y轴对称。
二、指数函数的应用指数函数在自然科学、工程技术和经济学等领域应用广泛,主要体现在以下几个方面:1. 人口增长模型:指数函数可以用来描述人口的增长趋势。
如果一个国家的人口增长率呈现出指数增长,即人口每年以固定比例增加,那么可以使用指数函数来建立人口增长模型,预测未来的人口数量。
2. 金融利率计算:指数函数在金融学中有广泛的应用。
指数函数的性质及常考题型(含解析)

【变式 1-2】下列函数:① = 3 ;② = 6 ;③ = 6 ⋅ 2 ;④ = 8 + 1;⑤ = −6 .
其中一定为指数函数的有(
A.0 个
)
B.1 个
C.2 个
D.3 个
【解题思路】根据指数函数的定义判断即可;
【解答过程】解:形如 =
( > 0且 ≠ 1)为指数函数,其解析式需满足①底数为大于
数
函
数
︶
如图是指数函数(1)y=ax,
(2)y=bx,
(3)y=cx,(4)y=dx 的图象,底数 a,b,c,
d 与 1 之间的大小关系为 c>d>1>a>b.
由此我们可得到以下规律:在 y 轴右(左)侧图象越高(低),其底数越大.
3.比较指数幂的大小的方法
比较指数幂的大小的方法(分三种情况)
:
(1)底数相同,指数不同:利用指数函数的单调性来判断;
培
优
篇
高
【变式 5-2】已知函数() = ⋅ 的图像经过点(1,2),(2,4).
中
(1)求()的解析式;
数
(2)解不等式( + 3) > (4).
学
︵
指
数
函
数
︶
【变式 5-3】已知函数() = + (0 < < 1)的图象经过点(0, −1).
(1)求实数 b;
B.0 < < 1,0 < < 1
指
C.0 < < 1, > 1
D. > 1,0 < < 1
数
函
【变式 6-2】如图中,①②③④中不属于函数 = 3 , = 2 , =
指数函数及其性质题型及解析

指数函数及其性质题型及解析1.下列函数中,是指数函数的是()①y=(-2)x②y=()x③y=x2 ④y=x-1⑤y=5x+1⑥y=x4⑦y=3x⑧y=﹣2•3x ⑨y=πx⑩y=(-3)x分析:根据指数函数y=a x(a>0且a≠1)的定义进行判断即可.解:根据指数函数y=a x(a>0且a≠1)的定义,得;①中y=(﹣2)x底数﹣2<0,不是指数函数,②中y=是指数函数,③,④都是幂函数,不是指数函数;⑤y=5x+1不是指数函数;⑥y=x4是幂函数,不是指数函数;⑦y=3x是指数函数;⑧y=﹣2•3x不是指数函数.⑨满足指数函数的定义,故正确;⑩﹣3<0,不是指数函数,故错误.2.为了得到函数y=2x﹣3﹣1的图象,只需把函数y=2x上所有点()A.向右平移3个单位长度,再向下平移1个单位长度 B.向左平移3个单位长度,再向下平移1个单位长度C.向右平移3个单位长度,再向上平移1个单位长度 D.向左平移3个单位长度,再向上平移1个单位长度分析:函数图象的平移问题:在x上的变化符合“左加右减”,而在y上的变化符合“上加下减”.解:函数图象的平移问题:在x上的变化符合“左加右减”,而在y上的变化符合“上加下减”.把函数y=2x 的图象向右平移3个单位长度得到函数y=2x﹣3的图象,再将所得图象再向下平移1个单位长度,得到函数y=2x﹣3﹣1的图象,故选A3.若指数函数的图象经过点(2/3,4),求该函数的解析式及f(﹣1/2)的值分析:设出指数函数的解析式,利用函数图象经过点的坐标求出函数解析式,再计算f(﹣1/2)的值解:设指数函数y=f(x)=a x(a>0且a≠1),且函数的图象经过点(2/3,4),∴=4,解得a=8;∴该函数的解析式为y=f(x)=8x,∴f(﹣)===4.①若函数y=(3a﹣1)x为指数函数,求a的取值范围分析:由函数y=(3a﹣1)x为指数函数,知,由此能求出a的取值范围;根据指数函数的定义可得求解即可,解:∵函数y=(3a﹣1)x为指数函数,∴,解得a>,且a,∴a的取值范围为(,)∪(,+∞).②函数y=(2a2﹣3a+2)a x是指数函数,求a的取值解:若函数y=(2a2﹣3a+2)a x是指数函数,则解得:a=5.已知x>0,指数函数y=(a2﹣8)x的值恒大于1,求实数a的取值范围分析:利用指数函数的性质,可知其底数a2﹣8>1,解之即得实数a的取值范围解:因为x>0,指数函数y=(a2﹣8)x的值大于1恒成立,∴a2﹣8>1,即a2>9,解得a>3或a<﹣3.∴实数a的取值范围是(﹣∞,﹣3)∪(3,+∞)6.已知指数函数f(x)=(a﹣1)x.(1)若f(x)在R上是增函数,求a的取值范围(2)若f(x)是R上的减函数,求a的取值范围分析:根据指数函数的图象和性质,即可得到答案.欲使得指数函数f(x)=(a﹣1)x是R上的增函数,只须其底数大于1即可,从而求得a的取值范围.欲使得指数函数f(x)=(a﹣1)x是R上的减函数,只须其底数小于1即可,从而求得a的取值范围解:(1)指数函数f(x)=(a﹣1)x在R上是增函数,∴a﹣1>1,即a>2,故a的取值范围是(2,+∞)(2)指数函数f(x)=(a﹣1)x在R上是减函数,∴0<a﹣1<1,即1<a<2,故a的取值范围是(1,2)7.在同一坐标系作出下列函数的图象,并指出它们与指数函数y=2x的图象的关系(1)y=2x+1与y=2x+2;(2)y=2x﹣1与y=2x﹣2;(3)y=2x﹣1与y=2x+1.分析:(1)y=2x+1的图象由函数y=2x的图象向左平移1单位得到;y=2x+2的图象由函数y=2x的图象向左平移2单位得到;(2)y=2x﹣1的图象由函数y=2x的图象向右平移1个单位得到;y=2x﹣2的图象由函数y=2x的图象向右平移2个单位得到;(3)y=2x﹣1的图象由函数y=2x的图象向下平移1个单位得到;y=2x+1的图象由函数y=2x的图象向上平移1个单位得到.解:y=2x+1与y=2x+2的图象如图,y=2x﹣1与y=2x﹣2的图象如图,y=2x﹣1与y=2x+1的图象如图(1)y=2x+1的图象由函数y=2x的图象向左平移1单位得到;y=2x+2的图象由函数y=2x的图象向左平移2单位得到;(2)y=2x﹣1的图象由函数y=2x的图象向右平移1个单位得到;y=2x﹣2的图象由函数y=2x的图象向右平移2个单位得到;(3)y=2x﹣1的图象由函数y=2x的图象向下平移1个单位得到;y=2x+1的图象由函数y=2x的图象向上平移1个单位得到.8.指数函数y=a x y=b x y=c x y=d x在同一坐标系中图象如图,求a、b、c、d大小关系分析:比较指数函数的底数的大小,根据函数图象的单调性可知c>1,d>1,0<a<1,0<b<1,然后再比较c,d的大小,a,b的大小.解:由函数的图象可知,c>d>1>a>b>09.比较大小①0.70.8,0.80.7②30.8与30.7 ③0.70.1与0.7﹣0.1分析:先分析底数与1的关系,进而确定对应函数的单调性,再比较两个式子指数的大小,由指数函数y=0.7x 为单调递减函数可得,0.70.8<0.70.7,由幂函数y=x0.7为增函数可得,0.70.7<0.80.7,,从而可得解:①由指数函数y=0.7x为单调递减函数可得,0.70.8<0.70.7,由幂函数y=x0.7为增函数可得,0.70.7<0.80.7,所以,0,70.8<0.70.7<0.80.7②∵3>1,∴y=3x为增函数,又∵0.8>0.7,∴30.8>30.7③∵0<0.7<1,∴y=0.7x为减函数,又∵0.1>﹣0.1.∴0.70.1<0.7﹣0.1.10.解关于x的不等式(1)>34(2)a2x+1≥a x﹣5分析:(1)直接由指数函数的单调性化指数不等式为一元二次不等式求解;(2)对a分类讨论,然后由指数函数的单调性化指数不等式为一元一次不等式求解.解:(1)由>34,得x2﹣3x>4,解得:x<﹣1或x>4.∴不等式>34的解集为(﹣∞,﹣1)∪(4,+∞);(2)当0<a<1时,由a2x+1≥a x﹣5,得2x+1≤x﹣5,解得x≤﹣6;当a>1时,由a2x+1≥a x﹣5,得2x+1≥x﹣5,解得x≥﹣6.∴当0<a<1时,原不等式的解集为(﹣∞,﹣6];当a>1时,原不等式的解集为[6,+∞)11.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.按照上述材料中的1%的增长率,从2000年起,x年后我国的人口将达到2000年的多少?x年后的人口是2000年人口的多少倍?解:设经过x年我国人口将达到y亿人,则y=13(1+1%)x(亿人),y÷13=(1+1%)x(倍)。
根据指数函数知识点及题型归纳总结

根据指数函数知识点及题型归纳总结指数函数是数学中的重要概念之一,它在各个领域中都有广泛的应用。
本文将对指数函数的知识点和常见题型进行归纳总结,帮助读者更好地理解和掌握这一概念。
一、知识点总结1. 定义:指数函数是以底数为常数,指数为变量的函数,一般形式为 f(x) = a^x,其中 a 是底数,x 是指数。
2. 指数的性质:- 正指数:a^x 是递增函数,即 x1 < x2,则 a^x1 < a^x2。
- 负指数:a^x 是递减函数,即 x1 < x2,则 a^x1 > a^x2。
- 零指数:a^0 = 1,任意数的零次方等于 1。
3. 底数的性质:- a > 1 时,指数函数呈现增长态势;- 0 < a < 1 时,指数函数呈现衰减态势;- a = 1 时,指数函数为常数函数。
4. 指数函数的图像:根据底数的不同,指数函数的图像可以是上升的曲线、下降的曲线或是一条直线。
5. 指数函数的特殊情况:- 当底数为 e(自然对数的底数)时,指数函数被称为自然指数函数,常用记作 f(x) = e^x。
- 当底数为 10 时,指数函数被称为常用对数函数,常用记作f(x) = log10(x)。
二、题型归纳1. 指数函数的图像绘制:- 根据给定的底数和定义域绘制指数函数的图像。
2. 指数函数的性质应用:- 判断给定的函数是指数函数还是其他类型的函数。
- 比较多个指数函数的增长趋势。
- 求解包含指数函数的方程或不等式。
3. 指数函数的变形与组合:- 利用指数函数的特性进行函数的变形与组合,如 f(x) = a^(2x)、f(x) = a^(x+1) 等。
4. 自然指数函数与常用对数函数的特性:- 探究自然指数函数和常用对数函数的特点及应用。
总结:指数函数是数学中重要的函数类型之一,掌握其基本概念及性质对于理解和应用数学知识具有重要意义。
通过练不同类型的题目,读者可以更好地熟悉指数函数的特点和应用,提高解题能力。
指数函数性质总结

指数函数性质总结指数函数是数学中一种重要的函数类型,它的表达形式是$y=a^x$,其中$a$为底数,$x$为指数。
指数函数具有以下几个重要的性质,下面将对这些性质进行详细总结。
性质一:幂乘法则指数函数的幂乘法则是指,当底数相同时,指数相加的结果等于对应幂相乘的结果。
即对于任意实数$a$和指数$x_1$、$x_2$,有$a^{x_1} \cdot a^{x_2} = a^{x_1 + x_2}$。
这个性质可以通过指数函数的定义和乘法法则推导得出。
性质二:指数为0和1的特殊情况当指数等于0时,指数函数的结果总是等于1。
即$a^0 = 1$,其中$a$为任意非零实数。
这是因为任何非零实数的0次方都是1。
当指数等于1时,指数函数的结果总是等于底数本身。
即$a^1 = a$,其中$a$为任意实数。
这是因为任何实数的1次方都等于它本身。
性质三:指数为负数的情况当指数为负数时,指数函数的结果等于底数的倒数的绝对值。
即当$x<0$时,$a^x=\frac{1}{|a^x|}$。
这是因为指数函数的值随着指数的增减而变化,当指数为负数时,结果是正数的倒数。
性质四:指数为分数的情况当指数为分数时,指数函数的结果等于底数的对应幂的开方。
即当$x=\frac{m}{n}$时,$a^x = \sqrt[n]{a^m}$,其中$a$为任意正实数,$m$和$n$为正整数。
这是因为指数为分数等于一个数的多次方根。
性质五:指数函数的图像特点指数函数的图像是一种特殊的曲线,其特点如下:1. 当底数$a>1$时,指数函数随着$x$的增大而迅速增大,曲线趋近于正无穷大。
当$a<1$时,指数函数随着$x$的增大而逐渐趋近于0,曲线接近于$x$轴。
这种特点称为“爆炸增长”和“衰减到零”。
2. 指数函数在$x=0$处取得函数值为1的极值点,称为“基准点”。
当底数$a>1$时,函数在基准点的右侧逐渐增大;当$a<1$时,函数在基准点的右侧逐渐减小。
指数函数知识点总结

指数函数知识点总结指数函数是高中数学中的重要内容,它在数学和科学领域中都有着广泛的应用。
指数函数的概念和性质对于学生来说是一个比较抽象和难以理解的内容,但只要我们掌握了其中的一些关键知识点,就能够很好地理解和运用指数函数。
本文将对指数函数的知识点进行总结,希望能够帮助学生更好地掌握这一部分内容。
一、指数函数的定义。
指数函数是以指数为自变量的函数,一般写作y=a^x,其中a是底数,x是指数,y是函数值。
当底数a大于1时,函数呈现增长趋势;当底数a在0和1之间时,函数呈现下降趋势。
指数函数的图像一般为一条曲线,随着指数的增大或减小而逐渐增长或减小。
二、指数函数的性质。
1. 指数函数的定义域是实数集,值域是正实数集。
2. 当底数a大于1时,函数呈现增长趋势;当底数a在0和1之间时,函数呈现下降趋势。
3. 指数函数的图像一般为一条曲线,随着指数的增大或减小而逐渐增长或减小。
4. 指数函数的图像经过点(0,1),并且不过x轴。
三、指数函数的运算。
1. 指数函数的乘法,a^m a^n = a^(m+n)。
2. 指数函数的除法,a^m / a^n = a^(m-n)。
3. 指数函数的幂运算,(a^m)^n = a^(mn)。
四、指数函数的应用。
1. 指数函数在经济学中的应用,例如复利计算、指数增长模型等。
2. 指数函数在生物学中的应用,例如细菌繁殖、人口增长等。
3. 指数函数在物理学中的应用,例如放射性衰变、电路中的电流变化等。
五、指数函数的解析式和图像。
1. 当底数a大于1时,指数函数的解析式为y=a^x,图像为逐渐增长的曲线。
2. 当底数a在0和1之间时,指数函数的解析式为y=a^x,图像为逐渐减小的曲线。
六、指数函数与对数函数的关系。
指数函数和对数函数是互为反函数的函数关系,它们之间有着密切的联系。
指数函数的解析式为y=a^x,对数函数的解析式为y=loga(x),它们之间的关系可以通过换底公式进行转换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】当 时, 为增函数,所以 ,当 时, 为增函数,所以 ,解得 ,因为 在 上为增函数,所以 ,解得 ,综上可知 。
【例7】已知函数 ,如果对任意 , 恒成立,则满足条件的 的取值范围是.
【答案】
【详解】因 所以 在 上为奇函数,并且为减函数,所以 ,所以 ,所以 在 上恒成立,所以 ,当 时, ,所以 ,解得 。
【详解】∵ ,又 ,
∴根据指数函数图像即可判断选项C符合.
故选:C.
题型三: 指数函数的定点
【例1】当 且 时,函数 必过定点.
【答案】
【详解】法一: 必过定点 ,将 向右平移2个单位得到 ,所以 必过定点 ,将 向下平移3个单位得到 ,所以函数 必过定点
法二:令 ,得到 ,所以 ,所以函数 必过定点
2.函数 在R上是减函数,则 的取值范围是()
A、 B、 C、 D、
【答案】D
【详解】因函数 在R上是减函数,所以 ,所以 ,所以
3.(2023·全国·高三专题练习)已知定义域为R的函数 则关于t的不等式 的解集为________.
【答案】 .
【分析】先判断出 是奇函数且在R上为减函数,利用单调性解不等式.
(2)当 时, , ; 的值越小,图象越靠近 轴,递减的速度越快.
当 时 , ; 的值越大,图象越靠近 轴,递增速度越快.
(3)指数函数 与 的图象关于 轴对称.
函数① ;② ;③ ;④ 的图象如图2-3-1所示,则 ;
即 , (底大幂大); 时, .
图2-3-1图2-3-2
(4)特殊函数:函数 , , , 的图象如图2-3-2所示.
【例8】已知函数 ,则不等式 的解集是.
【答案】
【详解】因 所以 在 上为奇函数,并且为减函数,因
,设 ,则 在 上为奇函数,并且为减函数,所以 ,所以, ,即 ,解得 。
【题型专练】
1.(2021新高考1卷)已知函数 是偶函数,则 __________.
【答案】
【详解】因为 为偶函数,所以 为奇函数,所以 ,解得
【详解】解:根据图象可知,函数关于 对称,且当 时, ,故排除B、D两项;
当 时,函数图象单调递增,无限接近于0,对于C项,当 时, 单调递减,故排除C项.
故选:A.
5.(2022·江西·南城县第二中学高二阶段练习(文))函数 的图象的大致形状是()
A. B. C. D.
【答案】C
【分析】分 和 去掉绝对值化简函数解析式,即可判断函数图像.
故选:C
【例4】(2022·全国·高一专题练习)如图所示,函数 的图像是()
A. B.
C. D.
【答案】B
【分析】将原函数变形为分段函数,根据 及 时的函数值即可得解.
【详解】 ,
时, 时, .
故选:B.
【例5】如图的曲线C1、C2、C3、C4是指数函数 的图象,而 ,则图象C1、C2、C3、C4对应的函数的底数依次是________、________、________、________.
1)若 ;若 ;若 ;
2)当两个式子均为正值的情况下,可用作商法,判断 ,或 即可.
【题型目录】
题型一:指数函数的概念
题型二:指数函数的图像
题型三:指数函数的定点
题型四:指数函数的奇偶性、单调性
题型五:利用指数函数性质比较大小
题型六:解指数函数不等式
题型七:指数函数的值域问题
题型八:指数函数的解答题
【详解】函数 的定义域为R.
因为 ,所以 ,所以 ,
即 是奇函数.
因为 为增函数,所以 为减函数,所以 在R上为减函数.
所以 可化为 .
所以 ,解得: 或 .
故答案为: .
4.函数 的单调递减区间是.
【答案】
【详解】设 ,此函数为增函数, ,对称轴为 ,所以 在 为增函数,在 为减函数,所以原函数在 为减函数(符合函数单调性:同增异减)
故选:BC.
2.(2022·全国·高一专题练习)下列函数中是指数函数的是__________(填序号).
① ;② ;③ ;④ ;⑤ ;⑥ .
【答案】③
【分析】利用指数函数的定义逐个分析判断即可
【详解】① 的系数不是 ,不是指数函数;
② 的指数不是自变量 ,不是指数函数;
③ 是指数函数;
④ 的底数是 不是常数,不是指数函数;
故选:B
【例3】(2022·山东青岛·高二期末)函数 与函数 的图象()
A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线 对称
【答案】C
【分析】在同一坐标系中,作出两个函数的图象判断.
【详解】解:在同一坐标系中,作出函数 与函数 的图象,如图所示:
由图象知:函数 与函数 的图象关于原点对称,
A. B.
C. D.
【答案】D
【详解】令 ,则 ,因 与 分别是定义域上的奇函数与偶函数,所以 ①,又因 ②,由①②解得 ,所以 为增函数,所以
【例4】已知 ,则下列正确的是()
A.奇函数,在R上为增函数B.偶函数,在R上为增函数
C.奇函数,在R上为减函数D.偶函数,在R上为减函数
【答案】A
【详解】因 ,所以 为奇函数,因 为增函数, 为减函数,所以 为增函数,所以 在R上为增函数
所以 为奇函数,函数图象关于原点对称,故排除B;
当 时 , , ,所以 ,所以 ,故排除D;
当 时 ,因为 ,所以 ,即 ,故排除C;
故选:A
4.(2023·全国·高三专题练习)下图中的函数图象所对应的解析式可能是()
A. B.
C. D.
【答案】A
【分析】根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.
⑤ 的指数不是自变量 ,不是指数函数;
⑥ 是幂函数.
故答案为:③
3.(2023·全国·高三专题练习)若函数 是指数函数,则 等于()
A. 或 B.
C. D.
【答案】C
【分析】根据题意可得出关于实数 的等式与不等式,即可解得实数 的值.
【详解】由题意可得 ,解得 .
故选:C.
4.(2021·全国高一专题练习)若函数 ( ,且 )是指数函数,则 ______, ______.
A. B.
C. D.
【答案】B
【分析】讨论 时和 时,函数 的图象增减即可判断出可能的图象,即得答案.
【详解】当 时, 为指数函数,且递减,
为幂函数,且在 时递增,递增的幅度随x的增大而增加的更快,故A错误,B正确;
当 时, 为指数函数,且递增,
为幂函数,且在 时递增,递增的幅度越往后越平缓,故C,D错误,
【典型例题】
题型一:指数函数的概念
【例1】函数 是指数函数,求 的值.
【答案】
【解析】因为函数 是指数函数,所以 ,解得
【例2】指出下列函数哪些是指数函数?
(1) ;(2) ;(3) ;(4) ;
(5) ;(6) .
【答案】(1)(5)(6)
【解析】由指数函数的定义可知
【例3】下列函数式中,满足 的是( )
【详解】解析 ,
函数 为偶函数,且过 , ,
函数在 上递增,在 上递减,故C符合.
故选:C.
3.(2022·浙江衢州·高二阶段练习)函数 的部分图象大致为()
A. B.
C. D.
【答案】A
【分析】首先判断函数的奇偶性,再对 和 时函数值的情况讨论,利用排除法即可判断;
【详解】解:因为 ,故B错,D对.
故选:CD.
【题型专练】
1.(2021·上海交大附中高一期中)在同一坐标系中,函数 与函数 的图象可能为()
A. B.
C. D.
【答案】B
【分析】判断b的范围,结合二次函数的开口方向,判断函数的图象即可.
【详解】解:函数 的是指数函数, 且 ,排除选项C,
【详解】对于A中,由 ,可得函数 为奇函数,函数 的图象关于原点对称,故选项A正确,选项B错误;
对于C中,设 ,可得 ,所以 ,即 ,解得 ,
即函数 的值域为 ,所以C正确;
第17讲 指数函数及性质八大题型总结
【知识点梳理】
1.指数函数的定义及图像
图象
性质
①定义域 ,值域
② ,即时 , ,图象都经过 点
③ ,即 时, 等于底数
④在定义域上是单调减函数
在定义域上是单调增函数
⑤ 时, ; 时,
时, ; 时,
⑥既不是奇函数,也不是偶函数
(1)当底数大小不定时,必须分“ ”和“ ”两种情形讨论.
【答案】
【详解】 ,令 ,得 , ,
函数 的图象恒过定点 ,
故答案为: .
2.(2022·江西省铜鼓中学高一期末)函数 ,( 且 )的图象必经过一个定点,则这个定点的坐标是()
A. B. C. D.
【答案】B
【分析】令指数为 ,求出 ,再代入计算可得;
【详解】解:令 ,解得 ,
所以当 时, ,
所以函数 过定点 .
故选:B.
6.(2023·全国·高三专题练习)已知函数 ,下面说法正确的有( )
A. 的图象关于原点对称
B. 的图象关于y轴对称
C. 的值域为
D. ,且 ,
【答案】AC
【分析】根据函数奇偶性的定义和判定方法,可判定A正确,B不正确;化简函数为 ,结合 ,求得 的取值范围,可判定C正确;结合函数 的单调性,可判定D错误.
A、 B、 C、 D、
【答案】D
【解析】因为 ,所以
【题型专练】
1.(2023·全国·高三专题练习)下列函数是指数函数的有()
A. B. C. D.
【答案】BC
【分析】根据指数函数的定义逐一判断即可.