(完整版)化工原理课后习题答案上下册(钟理版)
化工原理课后习题解答

化工原理课后习题解答1. 习题一:物质平衡问题问题描述:一个化工过程中,有两个进料流A和B,分别进料流A中含有20%的物质X,进料流B中含有30%的物质X。
流出的产物中,物质X的浓度为50%。
求进料流A和B的流量比。
解答:首先,我们可以用公式表示物质的平衡关系:(物质X进料流A的质量流量 × 物质X进料流A的浓度) + (物质X进料流B的质量流量 × 物质X进料流B的浓度) = (物质X产物流的质量流量 × 物质X产物流的浓度)根据题目中的数据,我们可以得到以下等式:(20% × Qa) + (30% × Qb) = (50% × (Qa + Qb))其中,Qa和Qb分别表示进料流A和B的质量流量。
我们要求的是进料流A和B的流量比,可以假设进料流A的流量为1,即Qa = 1。
然后将上述等式进行变换得到:0.2 + 0.3Qb = 0.5(1 + Qb)通过解这个一元一次方程,可以得到 Qb = 1。
进料流A和B的流量比为1:1。
2. 习题二:能量平衡问题问题描述:一个化工过程中,进料流的温度为100℃,流出的产物温度为50℃。
进料流的流量为10 kg/min,产物的流量为8 kg/min。
进料流的焓为2000 kJ/kg,产物的焓为2400 kJ/kg/m。
求该过程的热效率。
解答:首先,我们可以用公式表示能量的平衡关系:(进料流的质量流量 × 进料流的焓) = (产物流的质量流量 × 产物流的焓)根据题目中的数据,我们可以得到以下等式:(10 kg/min × 2000 kJ/kg) = (8 kg/min × 2400 kJ/kg)通过解这个一元一次方程,可以得到8000 kJ/min = 19200 kJ/min。
我们可以计算出能量平衡的结果为:进料流的质量流量 × 进料流的焓 = 8000 kJ/min 产物流的质量流量 × 产物流的焓 = 19200 kJ/min根据热效率的定义,热效率 = (产物流的质量流量 × 产物流的焓) / (进料流的质量流量 × 进料流的焓)。
化工原理课后习题答案

第一章流体流动1.某设备上真空表的读数为 13.3×103 Pa,试计算设备内的绝对压强与表压强。
已知该地区大气压强为 98.7×103 Pa。
解:由绝对压强 = 大气压强–真空度得到:设备内的绝对压强P绝= 98.7×103 Pa -13.3×103 Pa=8.54×103 Pa设备内的表压强 P表 = -真空度 = - 13.3×103 Pa2.在本题附图所示的储油罐中盛有密度为 960 ㎏/㎥的油品,油面高于罐底 6.9 m,油面上方为常压。
在罐侧壁的下部有一直径为 760 mm 的圆孔,其中心距罐底 800 mm,孔盖用14mm的钢制螺钉紧固。
若螺钉材料的工作应力取为39.23×106 Pa ,问至少需要几个螺钉?分析:罐底产生的压力不能超过螺钉的工作应力即P油≤σ螺解:P螺 = ρgh×A = 960×9.81×(9.6-0.8) ×3.14×0.762150.307×103 Nσ螺 = 39.03×103×3.14×0.0142×nP油≤σ螺得 n ≥ 6.23取 n min= 7至少需要7个螺钉4. 本题附图为远距离测量控制装置,用以测定分相槽内煤油和水的两相界面位置。
已知两吹气管出口的距离H = 1m,U管压差计的指示液为水银,煤油的密度为820Kg/㎥。
试求当压差计读数R=68mm时,相界面与油层的吹气管出口距离h。
分析:解此题应选取的合适的截面如图所示:忽略空气产生的压强,本题中1-1´和4-4´为等压面,2-2´和3-3´为等压面,且1-1´和2-2´的压强相等。
根据静力学基本方程列出一个方程组求解解:设插入油层气管的管口距油面高Δh在1-1´与2-2´截面之间P1 = P2 + ρ水银gR∵P1 = P4,P2 = P3且P3 = ρ煤油gΔh , P4 = ρ水g(H-h)+ ρ煤油g(Δh + h)联立这几个方程得到ρ水银gR = ρ水g(H-h)+ ρ煤油g(Δh + h)-ρ煤油gΔh 即ρ水银gR =ρ水gH + ρ煤油gh -ρ水gh 带入数据1.0³×10³×1 - 13.6×10³×0.068 = h(1.0×10³-0.82×10³)h= 0.418m6. 根据本题附图所示的微差压差计的读数,计算管路中气体的表压强p。
《化工原理》课后习题答案

第一章绪论习题1.热空气与冷水间的总传热系数K值约为42.99k c a l/(m2・h・℃),试从基本单位换算开始,将K值的单位改为W/(m2・℃)。
[答案:K=50M(m2・C)]。
解:从附录查出:1k c a l=1.1622×10-3K W·h=1.1622W·h所以:K=42.99K c a l/(m2·h·℃)=42.99K c a l/(m2·h·℃)×(1.1622W·h/1k c a l)=50w/(m2·℃)。
2.密度ρ是单位体积物质具有的质量。
在以下两种单位制中,物质密度的单位分别为:S I k g/m2;米制重力单位为:k g f.s2/m4;常温下水的密度为1000k g/m3,试从基本单位换算开始,将该值换算为米制重力单位的数值。
〔答案:p=101.9k g f/s2/m4〕解:从附录查出:1k g f=9.80665k g·m/s2,所以1000k g/m3=1000k g/m3×[1k g f/(9.80665k g·m/s2)]=101.9k g f·s2/m4.3.甲烷的饱和蒸气压与温度的关系符合下列经验公式:今需将式中p的单位改为P a,温度单位改为K,试对该式加以变换。
〔答案:〕从附录查出:1m m H g=133.32P a,1℃=K-273.3。
则新旧单位的关系为:P=P’/133.32;t=T-273.3。
代入原式得:l g(P’/133.32)=6.421-352/(T-273.3+261);化简得l g P=8.546-3.52/(T-12.3).4.将A、B、C、D四种组分各为0.25(摩尔分数,下同)的某混合溶液,以1000m o l/h 的流量送入精馏塔内分离,得到塔顶与塔釜两股产品,进料中全部A组分、96%B组分及4%C组分存于塔顶产品中,全部D组分存于塔釜产品中。
(完整版)化工原理课后答案

3.在大气压力为101.3kPa 的地区,一操作中的吸收塔内表压为130 kPa 。
若在大气压力为75 kPa 的高原地区操作吸收塔,仍使该塔塔顶在相同的绝压下操作,则此时表压的读数应为多少?解:KPa.1563753.231KPa 3.2311303.101=-=-==+=+=a a p p p p p p 绝表表绝1-6 为测得某容器内的压力,采用如图所示的U 形压差计,指示液为水银。
已知该液体密度为900kg/m 3,h=0.8m,R=0.45m 。
试计算容器中液面上方的表压。
解:kPaPa gmρgR ρp ghρgh ρp 53529742.70632.600378.081.990045.081.9106.13300==-=⨯⨯-⨯⨯⨯=-==+1-10.硫酸流经由大小管组成的串联管路,其尺寸分别为φ76×4mm 和φ57×3.5mm 。
已知硫酸的密度为1831 kg/m 3,体积流量为9m 3/h ,试分别计算硫酸在大管和小管中的(1)质量流量;(2)平均流速;(3)质量流速。
解: (1) 大管: mm 476⨯φh kg ρq m V s /1647918319=⨯=⋅= s m d q u V /69.0068.0785.03600/9785.0221=⨯==s m kg u G ⋅=⨯==211/4.1263183169.0ρ (2) 小管: mm 5.357⨯φ质量流量不变 h kg m s /164792=s m d q u V /27.105.0785.03600/9785.02222=⨯==或: s m d d u u /27.1)5068(69.0)(222112=== s m kg u G ⋅=⨯=⋅=222/4.2325183127.1ρ1-11. 如附图所示,用虹吸管从高位槽向反应器加料,高位槽与反应器均与大气相通,且高位槽中液面恒定。
现要求料液以1m/s 的流速在管内流动,设料液在管内流动时的能量损失为20J/kg (不包括出口),试确定高位槽中的液面应比虹吸管的出口高出的距离。
《化工原理》课本习题答案

《化工原理》课本习题答案第一章流体流动1 PA(绝)= 1.28×105 N/m2PA(表)= 2.66×104N/m22 W = 6.15吨3 F = 1.42×104NP = 7.77×104Pa4 H = 0.39m5 △P = 2041×105N/m26 P = 1.028×105Pa△h = 0.157m7 P(绝)= 18kPa H = 8.36m8 H = R PA> PB9 略10 P = Paexp[-Mgh/RT]11 u = 11.0m/s ; G = 266.7kg/m2sqm = 2.28kg/s12 R = 340mm13 qv = 2284m3/h14 τ= 1463s15 Hf = 0.26J/N16 会汽化1718 F = 4.02×103N19 略20 u2 = 3.62m/s ; R = 0.41m21 F = 151N22 v = 5.5×10-6m2/s23 =0.817 a = 1.0624 略25 P(真)= 95kPa ; P(真)变大26 Z = 12.4m27 P(表)= 3.00×105N/m228 qv = 3.39m3/h P1变小 P2变大29 qv = 1.81m3/h30 H = 43.8m31 τ= 2104s32 He = 38.1J/N33 qv =0.052m3/s=186m3/h34 qv1 = 9.7m3/h ; qv2 = 4.31m3/hqv3 = 5.39m3/h ; q,v3 = 5.39m3/h35 qvB/qvC = 1.31 ; qvB/qvC =1.05 ;能量损失36 P1(绝)=5.35×105Pa37 = 13.0m/s38 qv = 7.9m3/h39 qVCO2(上限)=3248l/h40 = 500 l/s ; τ=3×104PaF = 3×102N P = 150w41 he = 60.3J/kg42 τy = 18.84Pa μ∞ = 4.55Pa·s43 τy = 39.7Pa44 略第二章流体输送机械1 He = 15+4.5×105qV2He = 45.6J/N Pe = 4.5KW2 P = ρω2r2/2 ; Φ/ρg = u2/2g = 22.4J/N3 He = 34.6J/N ; η = 64%4 略5 qV = 0.035m3/s ; Pe = 11.5KW6 串联7 qV = 0.178m3/min ; qV, = 0.222m3/min8 会汽蚀9 安装不适宜,泵下移或设备上移10 IS80-65-160 或 IS100-65-31511 ηV = 96.6%12 不适用13 P = 33.6KW ; T2 = 101.0℃14 qV = 87.5m3/h ; 选W2第三章流体的搅拌1 略2 P = 38.7w ; P’ = 36.8w3 d/d1 = 4.64 ; n/n1 = 0.359 ; N/N1 = 100 第四章流体通过颗粒层的流动1 △φ = 222.7N/m22 △φ/L = 1084Pa/m3 V = 2.42m34 K = 5.26×10-4m2/s ; qe = 0.05m3/m25 A = 15.3m2 ; n = 2台6 略7 △V0 = 1.5L8 △V = 13L9 q = 58.4l/m2 ; τw = 6.4min10 τ = 166s ; τw = 124s11 K = 3.05×10-5m2/sVe = 5.06×10-2m3 ; V = 0.25m312 n’ = 4.5rpm ; L’/L = 2/3第五章颗粒的沉降和流态化1 ut = 7.86×10-4m/s ; ut’ = 0.07m/s2 dP = 88.8μm3 τ = 8.43×10-3s ; s = 6.75×10-5m4 dpmax = 3.6μm5 dpmin = 64.7μm ; ηP = 60%6 可完全分开7 ζRe2<488 η0 = 0.925 ; x出1 = 0.53x出2 = 0.27 ; x出3 = 0.20x出4 = 0 ; W出 = 59.9kg/day9 ε固 = 0.42 ; ε流 = 0.71 ; ΔФ = 3.14×104N/m210 略11 D扩 = 2.77m12 略第六章传热1 δ1 = 0.22m ; δ2 = 0.1m2 t1 = 800℃3 t1 = 405℃4 δ = 50mm5 (λ’-λ)/ λ = -19.7%6 略7 Q,/Q = 1.64 λ小的放内层8 a = 330W/m2*℃9 a = 252.5W/ m2*℃10 q = 3.69kw/m211 q1/q2 =112 w = 3.72×10-3kg/s ; w’=7.51×10-3kg/s13 Tg = 312℃14 Tw = 746K15 τ = 3.3hr16 ε A = 0.48 ; ε B = 0.4017 略18 热阻分率0.3%K’=49.0W/m2·℃ ; K,, = 82.1W/m2·℃19 w = 3.47×10-5kg/m·s ; tw = 38.7℃20 δ= 82mm21 a1 =1.29×104W/m2·℃ ; a,2 = 3.05×103W/m2·℃ ; R = 7.58*10-5m2·℃/W22 δ= 10mm ; Qmax = 11.3KW23 R = 6.3×10-3m2·℃/W24 n = 31 ; L = 1.65m25 L = 9.53m26 qm = 4.0kg/s ; A = 7.14m227 qm2 = 10.9kg/s ; n = 36 ; L = 2.06m ; q,m1 = 2.24kg/s28 qm = 0.048kg/s29 t2 = 76.5℃ ; t2 = 17.9℃30 t,2 = 98.2℃ ; 提高水蒸气压强T’=112.1℃31 qm1 = 1.24kg/s32 T,2 = 78.7℃ ; t,2 = 61.3℃33 T = 64.6℃ ; t2a = 123.1℃ ; t2b = 56.9℃34 t2 = 119℃35 τ = 5.58hr36 单壳层Δtm = 40.3℃ ; 双壳层Δtm’=43.9℃37 a = 781W/m2·℃38 L = 1.08m ; t2’=73.2℃39 NP = 2 ; NT = 114 ; L实 = 1.2L计 = 3.0m ; D = 460mm 第七章蒸发1 W = 1500kg/h ; w1 = 12.8% ; w2 = 18.8%2 Δt = 12.0℃3 A = 64.7m2 ; W/D = 0.8394 W = 0.417kg/s ; K = 1.88×103W/m2·℃ ; w’= 2.4%5 t1 = 108.6℃ ; t2 = 90.9℃ ; t3 = 66℃6 A1 = A2 = 9.55m2第八章吸收1 E=188.1Mpa;偏差0.21%2 G=3.1×10-3kgCO2/kgH2O3 Cmin=44.16mg/m3水;Cmin=17.51mg/m3水4 (xe-x)=1.19×10-5;(y-ye)=5.76×10-3 ;(xe-x)=4.7×10-6 ;(y-ye)=3.68×10-35 (y-ye)2/(y-ye)1=1.33 ; (xe-x)2/(xe-x)1=2.676 τ=0.58hr7 τ=1.44×106s8 Kya=54.9kmol/m3·h ; H OG=0.291m ;液相阻力分率15.1%9 N A=6.66×10-6kmol/s·m2 ; N A’=1.05×10-5kmol/(s·m2)10 略11 略12 NOG=13 略14 略15 x1=0.0113; =2.35×10-3 ;H=62.2m16 (1)H=4.61m;(2)H=11.3m17 Gmin=0.489kmol/m2·h ; x2=5.43×10-618 HA=2.8m ; HB=2.8m19 (1)HOG=0.695m;Kya=168.6kmol/m3·h;(2)w=4.36kmol/h20 y2=0.00221 η’=0.87;x1’=0.0032522 y2’=0.000519第九章精馏1 (1)α1=2.370 ;α2=2.596 ;(2)αm=2.4842 t=65.35℃; xA=0.5123 t=81.36℃ ; yA=0.18724 (1)NT=7; (2)V=20.3kmol/h; (3)D=47.4kmol; W=52.6kmol25 t=60℃; xA=0.188; xB=0.361; xC=0.45126 x(A-D) :0.030;0.153;0.581;0.237 y(A-D) :0.141;0.306;0.465;0.08527 D/F=0.4975;W/F=0.5025; xD(A-D):0.402;0.591;0.007;9.7×10-5 ;xW(A-D):1.4×10-5;0.012;0.690;0.29828 N=14.1 ; N1=7.9第十章气液传质设备1 EmV=0.7582 ET=41%3 N实=104 D=1.2m5 HETP=0.356m6 D=0.6m; △P/H=235.44Pa/m第十一章萃取1 (1)E=64.1kg;R=25.9kg;x=0.06;y=0.046 (2)kA=0.767;β=14.62 (1)E=92.2kg;R=87.8kg;yA=0.13; xA=0.15(2)E°=21.31kg;R°=78.69kg;yA°=0.77;xA°=0.163 (1)R=88.6kg;E=130.5kg;yA=0.0854;yS=0.862;yB=0.0526;xS=0.0746;xB=0.82 5 (2)S=119.1kg4 xA2=0.225 E1=125kg;RN=75kg;yA1=0.148;yS1=0.763;yB1=0.089;xSN=0.0672;xBN=0.9136 (1)S/B=24.9;(2)S/B=5.137 (1)Smin=36.47kg/h (2)N=5.1第十二章其它传质分离方法1 m=47.7kg2 t1=44.9℃3 a=138.3m2/g4 τB=6.83hr5 W3=0.0825;qm2=5920.3kg/h; JV1=0.0406kg/m2·s;JV2=0.0141kg/m2·s 第十三章热质同时传递的过程1 略2 (1)θ1=20℃; (2)t2=40℃;H=0.0489kg水/kg干空气3 H=0.0423kgH2O/kg干H24 (1)W=0.0156kgH2O/kg干空气(2)tw3=18.1℃5 t2=45.2℃;H2=0.026kg水/kg干气6 W=2.25kg水/kg干气7 P2=320.4kN/m28 Z=2.53m第十四章固体干燥1 =74.2%; =5.6%2 W水=0.0174kg水/kg干气; Q=87.6kJ/kg干气3 略4 (1)ΔI=1.25kJ/kg干气;(2)t2=55.9℃;(3)t2=54.7℃5 (1)t2=17.5℃;H2=0.0125kg水/kg干气 (2) =10.0%6 自由含水量=0.243kg水/kg干料结合水量=0.02kg水/kg干料。
化工原理(钟理) 上册 部分习题答案

第一章1-4 水从倾斜直管中流过,在断面A 和断面B 接一空气压差计,其读数R =10㎜,两测压点垂直距离a =0.3m ,试求(1)A 、B 两点的压差等于多少?(2)若采用密度为830kg ⋅m -3的煤油作指示液,压差计读数为多少? (3)管路水平放置而流量不变,压差计读数及两点的压差有何变化?习题1-4 附图解:首先推导计算公式。
因空气是静止的,故p 1=p 2,即11gh p p A ρ+=gR a R h g p p B 012)(ρρ+--+= ga gR p p B A ρρρ+-=-)(01. 若忽略空气柱的重量Pa a R g p p B A 303831.081.91000)(=⨯⨯=+=-ρ2. 若采用煤油作为指示液mmm g ga p p R gagR p p B A B A 8.580588.081.9)8301000(01.081.91000)()(00==⨯-⨯⨯=---=+-=-ρρρρρρ 3.f BB B A A Ah u g z p u g z p +++=++2222ρρ f B A h ga p p ρρ+=-管路流量不变,管路损失能量不变,管水平放置时Pa gR ga p p h p p B A f B A 1.98)()(==--=='-ρρρ压差计读数R 不变1-9 精馏塔底部用蛇管加热如图所示,液体的饱和蒸汽压为1.093×105N ⋅m -2,液体密度为950kg ⋅m -3,采用∏形管出料,∏形管顶部与塔内蒸汽空间有一细管相连。
试求 (1)为保证塔底液面高度不低于1m ,∏形管高度应为多少?(2)为防止塔内蒸汽由连通管逸出,∏形管出口液封高度至少应为多少?解:1. 假设液体排出量很小,塔内液体可近似认为处于静止状态。
由于连通管的存在,塔内压强P A 等于∏形管顶部压强P B 。
在静止流体内部,等压面必是等高面,故∏形管顶部距塔底的距离H =1m 。
化工原理(钟理)02551习题解答第一章流体流动习题及解答(上册).doc

流体流动习题解答1-1 已知甲城市的大气压为760mmHg ,乙城市的大气压为750mmHg 。
某反应器在甲地操作时要求其真空表读数为600mmHg ,若把该反应器放在乙地操作时,要维持与甲地操作相同的绝对压,真空表的读数应为多少,分别用mmHg 和Pa 表示。
[590mmHg, 7.86×104Pa]解:P (甲绝对)=760-600=160mmHg 750-160=590mmHg=7.86×104Pa1-2用水银压强计如图测量容器内水面上方压力P 0,测压点位于水面以下0.2m 处,测压点与U 形管内水银界面的垂直距离为0.3m ,水银压强计的读数R =300mm ,试求 (1)容器内压强P 0为多少?(2)若容器内表压增加一倍,压差计的读数R 为多少?习题1-2 附图[(1) 3.51×104N ⋅m -2 (表压); (2)0.554m] 解:1. 根据静压强分布规律 P A =P 0+g ρHP B =ρ,gR因等高面就是等压面,故P A = P BP 0=ρ,gR -ρgH =13600×9.81×0.3-1000×9.81(0.2+0.3)=3.51×104N/㎡ (表压)2. 设P 0加倍后,压差计的读数增为R ,=R +△R ,容器内水面与水银分界面的垂直距离相应增为H ,=H +2R∆。
同理, ''''''02R p gR gH gR g R gH gρρρρρρ∆=-=+∆--000p g g p p 0.254m g g 10009.81g g 136009.812R H R ρρρρρρ⨯∆⨯⨯,,,4,,-(-)- 3.5110====---220.30.2540.554m R R R ∆,=+=+=1-3单杯式水银压强计如图的液杯直径D =100mm ,细管直径d =8mm 。
化工原理课后题答案

化工原理课后题答案1. 解:(1) 乙醛的饱和蒸汽压随温度的升高而增大,所以温度越高,收集到的甲醇的量就越多。
(2) 通过降低乙醛的饱和蒸汽压,如在装置中增加冷凝器,可以提高甲醇的回收率。
2. 解:(1) 乙烯的化学式为C2H4,分子量为28 g/mol。
(2) 对乙烯C2H4完全燃烧,需要的理论氧气量按照化学计量比为1:3,即每1 mol的乙烯需要3 mol的氧气。
(3) 所以,1 g乙烯需要$\dfrac{3 \times 32}{28}$ g的氧气进行完全燃烧。
3. 解:(1) 中和反应的化学方程式为:NaOH + HCl → NaCl + H2O。
(2) 摩尔质量:NaOH = 40 g/mol,HCl = 36.5 g/mol。
(3) 反应物NaOH与HCl摩尔比为1:1,所以1 g的NaOH可以与1 g的HCl完全反应。
(4) 根据化学方程式,1 mol的NaOH可以与1 mol的HCl完全反应,生成1 mol的NaCl。
(5) 所以,1 g的NaOH可以完全中和36.5 g的HCl,生成58.5 g的NaCl。
4. 解:(1) 化学反应的平衡常数K用来表示反应物浓度与产物浓度之间的比值。
(2) 如果K > 1,表示产物浓度远大于反应物浓度,反应是偏向产物一侧进行的。
(3) 如果K < 1,表示反应物浓度大于产物浓度,反应是偏向反应物一侧进行的。
(4) 如果K = 1,表示反应物浓度与产物浓度相等,反应处于平衡状态。
5. 解:(1) 工业上常用的高聚物有聚乙烯、聚丙烯、聚氯乙烯等。
(2) 高聚物的制备通常采用聚合反应,如聚乙烯的制备通常使用乙烯单体进行聚合反应。
(3) 聚合反应一般分为自由基聚合、阴离子聚合和阳离子聚合等不同机制。
6. 解:(1) 化学反应速率是指单位时间内反应物消耗或产物生成的量。
(2) 影响化学反应速率的因素包括反应物浓度、反应温度、催化剂和反应物物理状态等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 流体流动习题解答1-1 已知甲城市的大气压为760mmHg,乙城市的大气压为750mmHg 。
某反应器在甲地操作时要求其真空表读数为600mmHg ,若把该反应器放在乙地操作时,要维持与甲地操作相同的绝对压,真空表的读数应为多少,分别用mmHg 和Pa 表示。
[590mmHg, 7.86×104Pa]解:P(甲绝对)=760—600=160mmHg750-160=590mmHg=7.86×104Pa1-2用水银压强计如图测量容器内水面上方压力P 0,测压点位于水面以下0。
2m 处,测压点与U 形管内水银界面的垂直距离为0。
3m ,水银压强计的读数R =300mm ,试求 (1)容器内压强P 0为多少?(2)若容器内表压增加一倍,压差计的读数R 为多少?习题1-2 附图[(1) 3.51×104N m -2(表压); (2)0.554m]解:1. 根据静压强分布规律 P A =P 0+g ρH P B =ρ,gR因等高面就是等压面,故P A = P BP 0=ρ,gR -ρgH =13600×9.81×0。
3-1000×9.81(0。
2+0。
3)=3。
51×104N/㎡ (表压)2. 设P 0加倍后,压差计的读数增为R ,=R +△R,容器内水面与水银分界面的垂直距离相应增为H ,=H +2R∆.同理,''''''02Rp gR gH gR g R gH gρρρρρρ∆=-=+∆-- 000p g g p p 0.254m g g 10009.81g g 136009.812R H R ρρρρρρ⨯∆⨯⨯,,,4,,-(-)- 3.5110====---22 0.30.2540.554m R R R ∆,=+=+=1-3单杯式水银压强计如图的液杯直径D =100mm ,细管直径d =8mm 。
用此压强计测量容器内水面上方的压强p 0,测压点位于水面以下h =0。
5m 处,试求(1)当压强计读数为R =300mm ,杯内水银界面测压点A 与细管的垂直距离a =0。
4m,容器内压强p 0等于多少?(2)表压p 0增加一倍并忽略杯内界面高度的变化,读数R 为多少? (3)表压p 0增加一倍并考虑杯内界面位置的变化,读数R 为多少?习题1-3 附图[(1) 3.12×104N m -2(表压);(2)0.534m ;(3) 0.536m ]解:1. 因A 、B 两点位于同一平面,p A =p B , P 0=ρ,gR -ρg (h +a )=13600×9。
81×0.3-1000×9。
81(0.5+0。
4)=3。
12×104N/㎡(表压)2. 表压加倍后,设压强计读数为R ,。
若忽略杯内水银界面的变化,则,042 3.121010009.810.50.40.534136009.81p g h a R gmρρ++=⨯⨯+⨯+==⨯,,()()3. 与(1)相比,表压加倍后杯内水银面下降了1h ∆,管内水银面上升2h ∆,压强计读数的增加量为12R h h ∆=∆+∆2122d h h D ∆=∆由以上两式可得1221Rh D d∆∆=+ 根据等高面即等压面的原理01p g h a h g R R ρρ+++∆=+∆,,()()2022[]d Rp gR g h a g R g D d ρρρρ∆--+=∆-+,,,()00222p p R d g g D d ρρ-∆=-+,,=42223.12100.2340.008136009.8110009.810.10.008⨯=⨯-⨯+ 0.30.2340.534R R R =+∆=+=, 此结果表明,使用单杯压强计,因h 1<<h 2,完全可以忽略杯内界面高度的变化,既方便又准确.1-4 水从倾斜直管中流过,在断面A 和断面B 接一空气压差计,其读数R =10㎜,两测压点垂直距离a =0。
3m ,试求(1)A 、B 两点的压差等于多少?(2)若采用密度为830kg m -3的煤油作指示液,压差计读数为多少? (3)管路水平放置而流量不变,压差计读数及两点的压差有何变化?习题1-4 附图[(1)3.04kPa;(2)58。
8mm ;(3)98。
1Pa ] 解:首先推导计算公式。
因空气是静止的,故p 1=p 2,即121A p gh g h R gR ρρρ----B ()=p ()p A -gh 1 = p B —gh 2 + gR(-1)在等式两端加上gH ρ,1A A B p g H h g H h gR ρρρρ+-+-+-B ()=p ()() 1A A B p gZ gZ gR ρρρρ++-B ()-(p )=() 1A B gR ρρΦ-Φ=-() 1. 若忽略空气柱的重量1A B gR ρρΦ-Φ=-()=9。
81×0.01×1000=98.1N/㎡2/A B A B B p p g Z N mρ-=Φ-Φ-⨯⨯⨯A 3()-(Z )=98.1+10009.810.3=3.04102. 若采用煤油作为指示液2198.15.8810m 58.8mm g 9.811000830A B R ρρ-ΦΦ⨯-====(-)(-)3. 管路流量不变,A B ΦΦ-不变,压差计读数R 亦不多变。
管路水平放置,Z A —Z B =0,故2p p 98.1/m A B A B N -Φ-Φ==1-5在图示管路中水槽液面高度维持不变,管路中的流水视为理想流体,试求 (1)管路出口流速;(2)管路中A 、B 、C 各点的压强(分别以N/㎡和m H 2O 表示); (3)讨论流体在流动过程中不同能量之间的转换。
习题1-5 附图[(1)9.9m s -1;(2)P A =—39。
24kPa=-4mH 2O , P B =9.81kPa=1mH 2O, P C =—29。
43kPa=—3mH 2O;(3)略]解:1.以大气压为压强基准,以出口断面为位能基准,在断面1—1和2-2间列机械能守恒式可得2122()29.8159.9/u g z z m s =-=⨯⨯=2.相对于所取基准,水槽内每kg 水的总机械能为W =Hg =5gJ/kg 。
理想流体的总机械能守恒,管路中各点的总机械能皆为W,因此,A 点压强254542AA A p u W gz g g g g ρ=--=--=- P A =-4×1000×9.81=—3.924×104N/m 2(或—4m H 2O ) B 点的压强2221000[515]210009.8119810/(1m H O)B B B u p W gz g g g N m ρ=--=---=⨯⨯=()()C 点压强24221000[532]2100039.81 2.94310/(-3m H O)c c C u p W gz g g g N m ρ=--=--=-⨯⨯=-⨯() 由于管内流速在(1)中已经求出,从断面1-1至A 、B 、C 各断面分别列机械能守恒式,亦可求出各点的压强。
3。
相对于所取的基准,水槽内的总势能为5gJ/kg ,水槽从断面1—1流至断面2—2,将全部势能转化为动能。
水从断面1—1流至断面A —A,获得动能25/2A u g J kg =()。
但因受管壁约束,流体从断面1流至断面A ,所能提供的位能只有g (z 1-z A )=1g (J/kg ),所差部分须由压强能补充,故A 点产生4m H 2O 的真空度。
水从断面A 流至断面B,总势能不变。
但同样因受管壁的约束,必有g (z A -z B )=5g 的位能转化为压强能,使B 点的压强升至1m H 2O 。
同理,水从断面B 流至断面C ,总势能不变,但位能增加了g (z C -z B )=4gJ/kg ,压强能必减少同样的数值,故C 点产生了3m H 2O 的真空度。
最后,流体从断面C 流至出口,有g (z C -z 2)=3g 的位能转化为压强能,流体以大气压强流出管道。
1-6用一虹吸管将水从池中吸出,水池液面与虹细管出口的垂直距离为5m ,虹吸管出口流速及虹吸管最高点C 的压强各为多少?若将虹吸管延长,使池中水面与出口垂直距离增为8m 。
出口流速有何变化?(水温为30℃,大气压强为760㎜Hg.水按理想流体处理)习题1-6 附图[9.9 m s -1, 32。
7kPa ;12。
4 m s —1] 解:1在断面1-1、2-2之间列机械能守恒式得2229.8159.9/u gz m s ⨯⨯=在断面1-1和C —C 之间列机械能守恒式,并考虑到u C =u 2,可得 24136009.810.7610009.817 3.27102c c a a u p p gh p g h z N ρρρ=--=-+=⨯⨯-⨯⨯=⨯()2。
虹吸管延长后,假定管内液体仍保持连续状态,在断面1—1和2,—2,之间列机械能守恒式得22u gz =,,2322136009.810.7610009.8110 3.3010/c c a a u p p gh p g h z N m ρρρ=--=-+=⨯⨯-⨯⨯=⨯,,,()因C 点的压强小于水在30o C 的饱和蒸气压Pv=4242N/m 2,故水在C 点已发生气化。
C 点压强不能按上述算,而应保持为流体的饱和蒸气压。
故在断面1-1和C ,—C ,之间列机械能守恒式得s m gh p p u v a C /4.12]81.921000)4242101300(2[]2)(2['2/12/1=⨯--=--=ρ出口流速 u 2’=u C '1-7如图,水通过管线(Φ108x4 mm )流出, 管线的阻力损失(不包括出管子出口阻力)可以用以下公式表示:h f =6.5u 2式中u 式是管内的平均速度,试求 (1)水在截面A -A 处的流速; (2)水的体积流率为多少m 3h —1。
习题1-7 附图[(1)2。
9 m s -1;(2)82 m 3h —1] 解: 对槽液面与管出口列B.E.方程f h ug z p u g z p +++=++2222222111ρρ u 1=0, p 1=p 2, z 1=6m , z 2=0,h f =6.5u 26⨯9。
81=225.62u u +, u=u A =2.9m/s, v=uA=h m /8236001.049.232=⨯⨯⨯π1-8高位槽内贮有20℃的水,水深1m 并维持不变。
高位槽底部接一长12m 直径100mm 的垂直管。