苏教版一次函数

合集下载

苏教版一次函数课件

苏教版一次函数课件

总结词
物理现象描述
详细描述
在物理学中,一次函数可以用来 描述和解释许多物理现象,如速 度与时间的关系、物体的位移等 。
CHAPTER
05
练习与巩固
基础练习题
总结词
掌握一次函数的基本概念和性质
详细描述
针对一次函数的定义、图像和基本性 质,设计一系列基础题目,帮助学生 理解一次函数的基本概念和性质。
斜。
函数表达式中的参数
参数k和b对于确定一次函数的 图像和性质具有重要意义。
k的符号决定了函数的增减性, b的符号决定了函数图像在y轴 上的位置。
理解和掌握参数k和b的意义对 于解决实际问题至关重要。
CHAPTER
0速度与距离
总结词:简单明了
详细描述:在匀速直线运动中,速度和时间的关系可以用一次函数表示。距离是 速度和时间的乘积,也可以用一次函数表示。
苏教版一次函数ppt课件
CONTENTS
目录
• 一次函数简介 • 一次函数的表达式 • 一次函数的应用 • 一次函数的实际应用案例 • 练习与巩固
CHAPTER
01
一次函数简介
一次函数的定义
一次函数定义
一般形式为y=kx+b(k≠0),其 中x为自变量,y为因变量,k为斜
率,b为截距。
线性函数
04
一次函数的实际应用案例
生活中的一次函数应用
01
总结词:普遍存在
02
详细描述:一次函数在日常生活 中有着广泛的应用,如购物时找 零钱、计算银行利息、预测股票 价格等。
数学中的一次函数应用
总结词
基础数学概念
详细描述
在数学领域,一次函数是基础的概念之一,常用于解决代数问题、不等式和方 程等。

苏科版数学八年级上册6.2《一次函数》教学设计1

苏科版数学八年级上册6.2《一次函数》教学设计1

苏科版数学八年级上册6.2《一次函数》教学设计1一. 教材分析苏科版数学八年级上册 6.2《一次函数》是学生在学习了初中数学基础知识后,对函数概念的进一步理解。

本节内容主要让学生掌握一次函数的定义、性质和图像,以及如何运用一次函数解决实际问题。

教材通过丰富的实例和生动的语言,引导学生探究一次函数的本质特征,培养学生的数学思维能力和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了实数、方程、不等式等基础知识,对数学概念有一定的理解能力。

但部分学生对函数概念的理解可能仍存在模糊之处,对一次函数的应用能力和解决实际问题的能力有待提高。

因此,在教学过程中,要关注学生的个体差异,针对不同学生的学习需求进行有针对性的指导。

三. 教学目标1.理解一次函数的定义和性质,掌握一次函数的图像特点。

2.能够运用一次函数解决实际问题,提高学生的数学应用能力。

3.培养学生的数学思维能力和团队合作精神。

四. 教学重难点1.一次函数的定义和性质。

2.一次函数图像的特点。

3.运用一次函数解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入一次函数,让学生感受数学与生活的紧密联系。

2.合作学习法:引导学生分组讨论,共同探究一次函数的性质和图像特点。

3.启发式教学法:教师提问,引导学生思考,激发学生的学习兴趣和探究欲望。

4.反馈评价法:及时了解学生的学习情况,针对性地进行指导。

六. 教学准备1.教学课件:制作一次函数的相关课件,包括图片、动画和实例等。

2.练习题:准备一次函数的相关练习题,包括基础题、应用题和拓展题。

3.教学工具:准备黑板、粉笔、直尺等教学工具。

七. 教学过程1.导入(5分钟)利用生活实例引入一次函数的概念,如“某商品的原价是80元,打8折后的价格是多少?”引导学生思考,激发学生的学习兴趣。

2.呈现(10分钟)展示一次函数的定义和性质,如y=kx+b(k≠0,k、b为常数)。

通过动画和实例,让学生直观地感受一次函数的图像特点,如直线、斜率、截距等。

八年级数学上册《一次函数》教材分析苏教版

八年级数学上册《一次函数》教材分析苏教版

八年级数学上册《一次函数》教材分析苏教版八年级数学上册《一次函数》教材分析苏教版一、教材《一次函数》是苏教版初中数学八年级上册第六单元第二节的内容。

从知识内容来说,本课是对函数的进一步认识与提升,进一步发展学生的抽象逻辑思维,渗透建模思想。

函数本身是反映现实世界变化规律的重要模型,教材在编排上充分体现了从实际生活情境中抽象数学问题,建立模型并形成概念的过程,并将正比例函数纳入一次函数的研究中,力图通过实例从代数表达式的角度认识一次函数。

从教材体系来说,之前学生已经掌握了变量之间的关系,初步体会了函数概念的基础之上的教学。

通过本节课的学习可以培养学生函数思想和建模意识,为之后探究一次函数图像、二次函数等奠定了扎实的基础。

本课的知识起到了承前启后的作用,也符合学生的认知规律。

二、学情八年级的学生好奇、好动、好表现,应尽量让学生发表自己的想法。

因此本节课既要考虑学生的认知思维特点,也要积极关注学生的已有知识储备。

就现阶段的学生而言,已经掌握了两个变量的关系,能列出变量间的关系表达式,但是借助生活情境,正确将实际问题抽象为函数模型是有一定困难的,因此需要积极引导学生学习好的数学方法,进一步体会变量和函数之间的关系更多说课稿因此在教学过程中教师要充分借助具体情境来激发学生学习兴趣的同时设置问题来引发学生思考,类比观察、探究规律,巧妙地建立概念。

三、教学目标教学目标是教学活动实施的方向和预期达到的结果,是一切教学活动的出发点和归宿。

精心设计了如下的教学目标:(一)知识与技能理解一次函数和正比例函数的概念,体会之间的联系,并能根据已知生活情境给出一次函数解析表达式,发展抽象概括能力。

(二)过程与方法经历动手试验、规律探索的活动过程,提高抽象思维能力,并借助于将实际生活情境转化为数学问题,渗透建模思想。

(三)情感态度与价值观在知识的探求过程中提高学习数学的兴趣,提高数学的应用意识。

四、教学重难点本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:(一)教学重点一次函数和正比例函数的概念。

苏教版八年级上学期教案第五章一次函数

苏教版八年级上学期教案第五章一次函数

第五章一次函数5.1函数(1)[教学目标]1.通过简单实例,了解常量与变量的意义.2.通过实例,了解函数的概念和表示方法,并能说出一些函数的实例.3.能根据图象对简单实际问题中的函数关系进行分析.4.能根据实际问题的意义以及函数关系式,确定函数的自变量取值范围,并会求出函数值.[教学过程(第一课时)]1.情境创设情境一:在行驶的列车上,围绕位置变化与数量变化的话题,谈论车速、路程、时间的变化,是学生熟悉的场景,能自然贴切地引入常量与变量的概念。

如果学生没有乘坐火车的经历,可改用汽车或创设其他类似情境.情境二:分别用表格、关系式和语言等方式给出不同的实际问题,让学生从这些情境中,发现在各种变化过程中,往往存在着两个相互联系的变量,从而引入函数的概念.2.探索活动活动一:展示一幅列车行驶或车厢内的图片.用下列问题引导学生加入小明、小丽、小亮和小华的讨论,感受常量与变量的意义:(1)列车在行驶,位置在改变,因此与位置有关的数量在改变,这里有不变的数量吗?(2)除了小丽、小明所说的那些不变的数量外,在这个问题中还有不变的数量吗?(3)除了小亮、小华所说的那些变化的数量外,在这个问题中还有变化的数量吗?活动二:可以用下列问题引导学生展开活动,体会函数的意义:(1)你从水库工作人员制作的表格里获得哪些信息?水位高低与水库容量有什么关系?(2)小鱼的条数n与所需火柴棒的根数S的关系为S=8+6(n—1),说说你从中获得的信息;(3)变化中的圆面积与半径的大小密切相关,你能大致描述它们之间的关系吗?(4)上述问题有共同之处吗?说说你的看法.5.1函数[教学目标]1.通过简单实例,了解常量与变量的意义.2.通过实例,了解函数的概念和表示方法,并能说出一些函数的实例.3.能根据图象对简单实际问题中的函数关系进行分析.4.能根据实际问题的意义以及函数关系式,确定函数的自变量取值范围,并会求出函数值.[教学过程(第一课时)]1.情境创设情境一:在行驶的列车上,围绕位置变化与数量变化的话题,谈论车速、路程、时间的变化,是学生熟悉的场景,能自然贴切地引入常量与变量的概念。

《一次函数》(苏科版八年级上)

《一次函数》(苏科版八年级上)

数学:5.2《一次函数》教案(苏科版八年级上)课题:§5.2一次函数教学目标1、理解一次函数和正比例函数的概念,以及它们之间的关系。

2、能根据所给条件写出简单的一次函数表达式。

3、经历一般规律的探索过程、发展学生的抽象思维能力。

4、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。

5、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。

教学重点:1、一次函数、正比例函数的概念及关系。

2、会根据已知信息写出一次函数的表达式。

教学过程:1、新课导入有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的增加,弹簧的长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,究竟是什么样的关系,请看:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。

(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:x/千克0 1 2 3 4 5y/厘米 3(2)你能写出x与y之间的关系式吗?分析:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加0.5厘米,总长度为3.5厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加0.5厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即。

2、做一做某辆汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升。

(1)完成下表: 汽车行驶路程x/千米 0 50 100 150 200 300 油箱剩余油量y/升你能写出x 与y 之间的关系吗?3、一次函数,正比例函数的概念上面的两个函数关系式为y=0.5x+3,y=100-0.18x ,都是左边是因变量y ,右边是含自变量x 的代数式。

并且自变量和因变量的指数都是一次。

苏教版八上一次函数

苏教版八上一次函数

问题2: 某弹簧的自然长度为9厘米,在弹簧限
度内,所挂物体的重量x(克)每增加10克,弹 簧长度y增加8厘米, (1)完成下表:
x(克) y(厘米)
0 9
10
20 25
30
17
33
(2)你能写出y与x之间的关系式吗?
y=8x+9
细心观察: 请同学们找出这些函数的
共同点,并回答问题: ⑴ y=25x+6 (2) y=6.5x
一 次 函 数
学习目标:能结合具体情境理解一次函数和正 比例函数概念。 学习重难点:1.一次函数、正比例函数的概念 以及一次函数、正比例函数的关系。 2.能结合具体情境写出一次函数的表达式。
引入问题:如果加油前,汽车的油箱里还剩
有6L汽油,已知加油枪的流量为25L/分
(1)完成下表
x (分钟) 0 1 2 3 4 5
(3) y=8x+9
1.这些函数中自变量是什么?
2.在这些函数式中,表示函数的自变量 的式子,是关于自变量的几次式? 3.关于x的一次式的一般形式是什么?
一次函数的概念:函数表达式都是用自变量 的一次整式表示.
即:若两个变量 x、y之间的关系可以表示成
y=kx+b(k、b为常数,k ≠ 0)的形式,则称y是
题型一:已知函数表达式,判断是否是一次函数、正比例函数。
例1:下列函数关系式中,那些是一次函数?哪些是正比 例函数?
(1)y= - x - 4
它是一次函数, 不是正比例函数。 它不是一次函数, 也不是正比例函数。 它是一次函数, 也是正比例函数。 它不是一次函数, 也不是正比例函数 它是一次函数,不是正 比例函数。
(2)y=x2
(3)y=2πx 1 (4)y= —— x

苏科版数学八年级上册6.3《一次函数的图象》说课稿1

苏科版数学八年级上册6.3《一次函数的图象》说课稿1

苏科版数学八年级上册6.3《一次函数的图象》说课稿1一. 教材分析《一次函数的图象》是苏科版数学八年级上册第六章第三节的内容。

本节内容是在学生已经掌握了函数的概念、一次函数的定义和性质的基础上进行学习的。

通过本节内容的学习,使学生能够掌握一次函数的图象特征,能够运用一次函数的图象解决一些实际问题。

二. 学情分析学生在学习本节内容时,已经具备了初步的函数知识,对于一次函数的概念和性质有一定的了解。

但是,对于一次函数的图象特征和如何运用一次函数的图象解决实际问题,可能还存在一些困难。

因此,在教学过程中,需要注重引导学生通过观察、操作、思考、交流等活动,自主探索一次函数的图象特征,提高学生解决问题的能力。

三. 说教学目标1.知识与技能目标:使学生掌握一次函数的图象特征,能够识别一次函数的图象,能够运用一次函数的图象解决一些实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生自主探索、合作交流的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的数学思维能力。

四. 说教学重难点1.教学重点:一次函数的图象特征。

2.教学难点:如何运用一次函数的图象解决实际问题。

五. 说教学方法与手段1.教学方法:采用观察、操作、思考、交流等教学方法,引导学生自主探索一次函数的图象特征。

2.教学手段:利用多媒体课件,展示一次函数的图象,帮助学生直观地理解一次函数的图象特征。

六. 说教学过程1.导入新课:通过复习一次函数的定义和性质,引出本节课的内容——一次函数的图象。

2.自主探索:让学生自主探究一次函数的图象特征,引导学生通过观察、操作、思考、交流等活动,总结一次函数的图象特征。

3.合作交流:让学生分组讨论,分享各自探索的成果,互相学习,互相启发。

4.讲解演示:教师根据学生的探索结果,进行讲解和演示,使学生更直观地理解一次函数的图象特征。

5.练习应用:布置一些练习题,让学生运用所学的知识解决实际问题,巩固所学内容。

苏教版八年级上册数学[一次函数的图象和性质(基础)知识点整理及重点题型梳理]

苏教版八年级上册数学[一次函数的图象和性质(基础)知识点整理及重点题型梳理]

苏教版八年级上册数学重难点突破知识点梳理及重点题型巩固练习一次函数的图象与性质(基础)【学习目标】1. 理解一次函数的概念,理解一次函数y kx b =+的图象与正比例函数y kx =的图象之间的关系;2. 能正确画出一次函数y kx b =+的图象.掌握一次函数的性质.利用函数的图象解决与一次函数有关的问题,还能运用所学的函数知识解决简单的实际问题.3. 对分段函数有初步认识,能运用所学的函数知识解决实际问题.【要点梳理】要点一、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,k ≠0)的函数,叫做一次函数.y kx = (k 为常数,且k ≠0)的函数,叫做正比例函数.其中k 叫做比例系数. 要点诠释:当b =0时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k ,b 的要求,一次函数也被称为线性函数.要点二、一次函数的图象与性质1.函数y kx b =+(k 、b 为常数,且k ≠0)的图象是一条直线:当b >0时,直线y kx b =+是由直线y kx =向上平移b 个单位长度得到的; 当b <0时,直线y kx b =+是由直线y kx =向下平移|b |个单位长度得到的.2.一次函数y kx b =+(k 、b 为常数,且k ≠0)的图象与性质:正比例函数的图象是经过原点(0,0)和点(1,k )的一条直线;一次函数(0)y kx b k =+≠图象和性质如下:3. k 、b 对一次函数y kx b =+的图象和性质的影响:k 决定直线y kx b =+从左向右的趋势,b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.4. 两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定:(1)12k k ≠⇔1l 与2l 相交; (2)12k k =,且12b b ≠⇔1l 与2l 平行;要点三、待定系数法求一次函数解析式一次函数y kx b =+(k ,b 是常数,k ≠0)中有两个待定系数k ,b ,需要两个独立条件确定两个关于k ,b 的方程,这两个条件通常为两个点或两对x ,y 的值.要点诠释:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数y kx b =+中有k 和b 两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式.要点四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点诠释:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.【典型例题】类型一、待定系数法求函数的解析式1、根据函数的图象,求函数的解析式.【思路点拨】由于此函数的图象过(0,2),因此b =2,可以设函数的解析式为2y kx =+,再利用过点(1.5,0),求出相应k 的值.【答案与解析】利用待定系数法求函数的解析式.解:设函数的解析式为y kx b =+.它的图象过点(1.5,0),(0,2)41.50322k b k b b ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩∴∴ ∴该函数的解析式为423y x =-+. 【总结升华】用待定系数法时需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式.举一反三:【变式1】已知一次函数的图象与正比例函数2y x =的图象平行且经过(2,1)点,则一次函数的解析式为________.【答案】 23y x =-;提示:设一次函数的解析式为y kx b =+,它的图象与2y x =的图象平行,则2k =,又因为一次函数的图象经过(2,1)点,代入得1=2×2+b .解得3b =-. ∴ 一次函数解析式为23y x =-.【391659 一次函数的图象和性质,例1】【变式2】(1)已知直线(0)y kx b k =+≠,与直线2y x =平行,且与y 轴的交点是(0,2-),则直线解析式为___________________.(2)若直线(0)y kx b k =+≠与31y x =+平行,且同一横坐标在两条直线上对应的点的纵坐标相差1个单位长度,则直线解析式为__________________.【答案】(1)22y x =-;(2)32y x =+或3y x =.提示:(1)因为所求直线与2y x =平行,所以2y x b =+,将(0,-2)代入,解得2b =-,所以22y x =-.(2)由题意得3k =,假设点(1,4)在31y x =+上面,那么点(1,5)或(1,3)在直线3y x b =+上,解得2b =或0b =.所求直线为32y x =+或3y x =.类型二、一次函数图象的应用2、为缓解用电紧张的矛盾,某电力公司制定了新的用电收费标准,每月用电量x (度)与应付电费y (元)的关系如图所示.根据图象求出y 与x 的函数关系式.【思路点拨】根据函数关系的变化进行分段,分别求出各段的函数解析式.【答案与解析】解:根据图象,当0≤x ≤50时,可设解析式为y kx =,将(50,25)代入解析式,所以12k =,所以12y x =; 当x >50时可设解析式为y ax b =+,将(50,25),(100,70)代入解析式得502510070a b a b +=⎧⎨+=⎩, 解得0.920a b =⎧⎨=-⎩,所以0.920y x =-.所以当0≤x≤50时函数解析式为12y x=;当50x>时函数解析式为0.920y x=-.∴所求的一次函数解析式为:1(050)20.920(50)x xyx x⎧≤≤⎪=⎨⎪->⎩.【总结升华】求分段函数解析式的基本方法是:先分求,后整合.分求某段解析式的方法与求一次函数解析式的方法相同,在整合时要用大括号联结,并在各解析式后注明自变量的取值范围.举一反三:【变式】小高从家骑自行车去学校上学,先走上坡路到达点A,再走下坡路到达点B,最后走平路到达学校C,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( )A.14分钟B.17分钟C.18分钟D.20分钟【答案】D;提示:由图象可知,上坡速度为80米/分;下坡速度为200米/分;走平路速度为100米/分.原路返回,走平路需要8分钟,上坡路需要10分钟,下坡路需要2分钟,一共20分钟.类型三、一次函数的性质3、一次函数y=ax﹣a+1(a为常数,且a≠0).(1)若点在一次函数y=ax﹣a+1的图象上,求a的值;(2)当﹣1≤x≤2时,函数有最大值2,请求出a的值.【答案与解析】解:(1)把(﹣,3)代入y=ax﹣a+1得﹣a﹣a+1=3,解得a=;(2)①a>0时,y随x的增大而增大,则当x=2时,y有最大值2,把y=2代入函数关系式得2=2a﹣a+1,解得a=1;②a<0时,y随x的增大而减小,则当x=﹣1时,y有最大值2,把x=﹣1代入函数关系式得 2=﹣a﹣a+1,解得a=﹣,所以或a=1.【总结升华】本题考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.由于y=kx+b 与y 轴交于(0,b ),当b >0时,(0,b )在y 轴的正半轴上,直线与y 轴交于正半轴;当b <0时,(0,b )在y 轴的负半轴,直线与y 轴交于负半轴.4、(2016•玉林)关于直线l :y=kx +k (k ≠0),下列说法不正确的是( )A .点(0,k )在l 上B .l 经过定点(﹣1,0)C .当k >0时,y 随x 的增大而增大D .l 经过第一、二、三象限【思路点拨】直接根据一次函数的性质选择不正确选项即可.【答案与解析】解:A 、当x=0时,y=k ,即点(0,k )在l 上,故此选项正确;B 、当x=﹣1时,y=﹣k +k=0,此选项正确;C 、当k >0时,y 随x 的增大而增大,此选项正确;D 、不能确定l 经过第一、二、三象限,此选项错误;故选D .【总结升华】本题解题的关键是掌握一次函数的性质,一次函数y=kx +b (k 、b 为常数,k ≠0)是一条直线,当k >0,图象经过第一、三象限,y 随x 的增大而增大;当k <0,图象经过第二、四象限,y 随x 的增大而减小;图象与y 轴的交点坐标为(0,b ). 举一反三:【变式】一次函数y=ax+b 和一次函数y=bx+a 图象正确的是 ( )A .B .C .D .【答案】B ; 提示:可先确定一次函数y=ax+b 的字母系数的正负,再判断函数y=bx+a 的字母系数的正负,从而得到答案.【389342 正比例函数,例3】5、如图所示,在同一直角坐标系中,一次函数1y k x =、2y k x =、3y k x =、4y k x = 的图象分别为1l 、2l 、3l 、4l ,则下列关系中正确的是( )A .1k <2k <3k <4kB .2k <1k <4k <3kC .1k <2k <4k <3kD .2k <1k <3k <4k【答案】B ;【解析】首先根据直线经过的象限,知:2k <0,1k <0,4k >0,3k >0,再根据直线越陡,|k |越大,知:2||k >|1k |,|4k |<|3k |.则2k <1k <4k <3k【总结升华】此题主要考查了正比例函数图象的性质,首先根据直线经过的象限判断k 的符号,再进一步根据直线的平缓趋势判断k 的绝对值的大小,最后判断四个数的大小.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数1、了解函数的概念和表示方法,并能说出一些函数的实例.2、能根据实际问题的意义以及函数关系式,确定函数的自变量取值范围,并会求出函数值.3、掌握一次函数、正比例函数在实际生活中的利用,并能利用其所具有的的性质解决一些简单的实际问题。

一、一次函数:如果y=kx+b(k,b 是+常数,k ≠0),那么y 叫做x 的一次函数. (1)作为一次函数自变量的最高次数是1,且其系数,这两个条件缺一不可。

(2)函数()中可以为任意常数,当时,一次函数就成(为常数,且),这时叫做的正比例函数,也可以说与成正比例,常数叫做因变量与自变量的比例系数.因此正比例函数是一次函数的特例,但一次函数不一定是正比例函数。

例1.下列函数关系式中,哪些y 是x 的一次函数?哪些是正比例函数?(1)y x -=12(2)x y 23-=(3)x y 32=(4)32-=x y (5)x y 32-=(6)023=+y x解:(2)(4)(5)(6)是一次函数,(2)(6)是正比例函数 例2.若函数()213m y m x =-+是一次函数,求m 的值,并写出解析式。

解:由题意得,12=m ,则1±=m ,因为01≠-m ,所以1≠m 则1-=m二、一次函数的图像:一次函数y =kx +b (k ≠0)的图像是一条与坐标轴斜交的直线。

因此,只需求出直线y =kx +b 上的两点,就可得到它。

一般,作正比例函数y =kx 的图像常取点(0,0)和(1,k );作一次函数)0(≠+=b b kx y 的图像常取(b ,0)和(0,k b-)两点,这两点是直线与坐标轴的交点。

学习目标学习过程三.一次函数的性质:(1)参数k 、b 的意义和对一次函数y =kx +b 的图像与性质的影响。

当时,y 随x 的增大而增大,这时函数的图像从左到右呈上升趋势; 当时,y 随x 的增大而减小,这时函数的图像从左到右呈下降趋势;因此,k 的符号与直线的方向、函数的增减性是相互决定的。

(2)b 是一次函数y =kx +b 中,当x =0时所对应的函数值,因此直线y =kx +b 与y 轴交于点(0,b ),b 是直线y =kx +b 与y 轴上的交点的纵坐标,所以,b 的符号和直线与y 轴交点位置是相互对应的.(3)k 、b 的符号对直线位置的影响:图像过一、二、三象限 图像过一、三、四象限图像过一、二、四象限 图像过二、三、四象限讨论k 、b 符号与直线y =kx +b 在坐标系中的位置要注意用k 、b 的意义去解决,不必死记对应的结论。

四、解析式的确定:确定一次函数解析式的常用方法是待定系数法,它的一般步骤如下: (1)写出函数解析式的一般形式:(),其中k ,b 是待定系数。

(2)把自变量与函数的对应值代入函数解析式中,得到关于待定系数k ,b 的方程或方程组。

(3)解方程或方程组求出待定系数k ,b 的值,从而写出一次函数的解析式。

注:已知两直线:)0(111≠+=k b x k y 和)0(222≠+=k b x k y ,且21b b ≠,则2121//l l k k ⇔=专项训练:1.若23y x b =+-是正比例函数,则b 的值是 ( )A.0B.23 C.23- D.32- 2.东方超市鲜鸡蛋每个0.4元,那么所付款y 元与买鲜鸡蛋个数x (个)之间的函数关系式是_______________. 3.平行四边形相邻的两边长为x 、y ,周长是30,则y 与x 的函数关系式是__________.4.为解决药价虚高给老百姓带来的求医难的问题,国家决定对某药品分两次降价。

若设平均每次降价的百分率为x ,该药品的原价是m 元,降价后的价格是y 元,则y 与x 的函数关系式是( ) (A )y =2m (1-x ) (B )y =2m (1+x ) (C )y =m (1-x )2(D )y =m (1+x )25.若关于x 的函数1(1)m y n x -=+是一次函数,求m 、n 的值。

6.已知y=,其中=(k ≠0的常数),与成正比例,求证y 与x 也成正比例。

能力提高:1.下面两个变量是成正比例变化的是 ( ) A . 正方形的面积和它的边长. B . 变量x 增加,变量y 也随之增加; C . 矩形的一组对边的边长固定,它的周长和另一组对边的边长. D . 圆的周长与它的半径.2.下面哪个点不在函数y=-2x+3的图象上 ( ) A .(-5,13) B .(0.5,2) C .(3,0) D .(1,1)3.一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为 ( )4.21y x =-自变量x 的取值范围是 。

5.若一次函数()12+-=k kx y 是正比例函数,则k 的值为 。

6.一次函数y=-3x+6的图象与x 轴的交点坐标是 ,与y 轴的交点坐标是 。

7.根据下列条件求函数的解析式①y 与x 2成正比例,且x=-2时y=12. ②函数y=(k 2-4)x 2+(k+1)x 是正比例函数.拓展延伸:1、小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,那么小亮行走过的路程S (米)与他行走的时间t (分)之间的函数关系用图象表示正确的是( )2、如图38,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图39所示,则△ABC 的面积是( ) A.10 B.16 C.18 D.203、如图36表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象。

根据图象下列结论错误的是( )A 。

轮船的速度为20千米/时B 。

快艇的速度为40千米/时C 。

轮船比快艇先出发2小时D 。

快艇不能赶上轮船4. 均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线),这个容器的形状是图中( )5、如图29,三个大小相同的正方形拼成六边形ABCDEF ,一动点P 从点A 出发沿着A →B →C →D →E方向匀速运ABCDA BC O th 图31图36x (小时)y (千米)轮船快艇86160o2480图39 49xoy图38BD A C PC 。

D 。

5101525450900t /分s /米205101525450900t /分s /米20 A 。

B 。

5101525450900t /分s /米2020s /米t /分9004502515105动,最后到达点E .运动过程中△PEF 的面积(s )随时间(t )变化的图象大致是( )6、三军受命,我解放军各部奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km .如图44是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是( ) A.1 B.2 C.3 D.4二、解决问题:1、如图40,在平面直角坐标系中,点P (x ,y )是第一象限直线y =-x +6上的点,点A (5,0),O 是坐标原点,△PAO 的面积为s 。

求s 与x 的函数关系式;2、如图90,直线l 1的解析表达式为y =-3x +3,且l 1与x 轴交于点D ,直线l 2经过点A \B ,直线l 1,l 2交于点C . (1)求点D 的坐标; (2)求直线l 2的解析表达式; (3)求△ADC 的面积;(4)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请直接..写出点P 的坐标.AP (x ,y )y oxA 。

B 。

C 。

D 。

o t s stoo ts s t o图29CA DBEFP 图441 2 3 4 5 6 时间(h )24 04.5 12路程(km ) 甲队到达小镇用了6小时,途中停顿了1小时甲队比乙队早出发2小时,但他们同时到达乙队出发 2.5小时后追上甲队乙队到达小镇用了4小时,平均速度是6km /h3、在购买某场足球赛门票时,设购买门票数为x (张),总费用为y (元)。

现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元(总费用=广告赞助费+门票费); 方案二:购买门票方式如图35所示。

解答下列问题:(1)方案一中,y 与x 的函数关系式为______;方案二中,当0≤x ≤100时,y 与x 的函数关系式为______,当x >100时,y 与x 的函数关系式为______;(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由; (3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元。

求甲、乙两单位各购买门票多少张。

4、已知直线l 1:y =-4x +5和直线l 2:y =12x -4,求两条直线l 1和l 2的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.某公司在A 、B 两地分别库存挖掘机16台和12台,现在运往甲、乙两地支援建设,其中甲地需要15台,乙地需要13台.从A 地运一台到甲、乙两地的费用分别是500元和400元;从B 地运一台到甲、乙两地的费用分别是300元和600元.设从A 地运往甲地x 台挖掘机,运这批挖掘机的总费用为y 元. (1)请填写下表,并写出y 与x 之间的函数关系式;1400010000150100y (元)x (张)o图90323B D CA (4,0)xoyl 2l 1(2)公司应设计怎样的方案,能使运这批挖掘机的总费用最省?6、某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费。

(1)如果该单位要印刷2400份,那么甲印刷厂的费用是______,乙印刷厂的费用是______。

(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?7、、某校八年级举行英语演讲比赛,拍了两位老师去学校附近的超市购买笔记本作为奖品.经过了解得知,该超市的A 、B 两种笔记本的价格分别是12元和8元,他们准备购买者两种笔记本共30本. (1)如果他们计划用300元购买奖品,那么能卖这两种笔记本各多少本?(2)两位老师根据演讲比赛的设奖情况,决定所购买的A 种笔记本的数量要少于B 种笔记本数量的32,但又不少于B 种笔记本数量的31,如果设他们买A 种笔记本n 本,买这两种笔记本共花费w 元. 1、请写出w (元)关于n (本)的函数关系式,并求出自变量n 的取值范围;2、请你帮助他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?运往地运出地甲乙 总计 A x 台台 16台 B台 台 12台 总计15台13台28台。

相关文档
最新文档