第三章方差分析

合集下载

第三章常用试验设计的方差分析

第三章常用试验设计的方差分析

Ⅰ A1B1 Ⅱ A2B3 Ⅲ A3B1
A2B2 A3B2 A2B3
A3B3 A1B2 A3B2
A2B3 A2B1 A3B3
A3B2 A1B3 A2B2
A1B3 A3B1 A1B1
A3B1 A2B2 A1B2
A1B2 A1B1 A2B1
A2B1 A3B3 A1B3
AEDC B DBAE C BACD E
裂区设计
条区设计
剩余 误差
§6 多年、多地点试验的方差分析 ——一组相同试验方案数据的联合分析
为研究作物对多年多点环境的适应性和稳定性 进行的多个 相同方案的试验。叫联合试验, 如区试试验。
常采用随机区组设计,属于多个随机区组试验 的联合分析。
先对各个试验分析,检验各试验误差的同质性, 同质才能进行联合方差分析,不同质不可进行 联合方差分析。
SEAB
(b1)MeSbMeSa br
A1B1 A1B2 A1B3 A1B4 A2B1 A2B2 A2B3 A2B4 A3B1 A3B2 A3B3
5-2-2 三裂式裂区试验的方差分析 为三因素试验,裂区再分裂区。
主误:Ai和区组l的互效 裂误:Bj与区组l的互效
再裂误:AiBj 内的C k
sin1 P 如: si 1n0 .8si 1(n 0 .89 ) 4 6.4 33
si 1n0 .2si 1(n 0 .44 ) 7 2.2 5 67
课堂测验:
根据下图所给排列,写出各资料方差分析时的变异来源及其自由度;
A1B1 A2B2 A3B3 A2B3 A3B2 A1B3 A3B1 A1B2 A2B1
A
1
SST
i
j
k
xi2jk

第03章 方差分析ppt课件

第03章 方差分析ppt课件



要素效应(treatment effect):

程度不同引起




实验误差:实验过程中偶尔性

要素的干扰和丈量误差所致。
;
方差分析的根本思想











;
方差分析的目的
确定各种缘由在总变异中所占的重要程度。
要素效应 实验误差
相差不大,阐明实验处置对目的影 响不大。
相差较大,即要素效应比实验误差 大得多,阐明实验处置影响是很大 的,不可忽视。
检验P值
当 H 0 为真时,F 的值应在1 的周围动摇; 反之,F的值有增大的趋势。 检验p值为 pPH0(Ff)
f 为由观测数据求得的统计量F的观测值。
;
例1
测定东北、内蒙古、河北、安徽、贵州5个地域黄鼬冬季针 毛的长度,每个地域随机抽取4个样本,测定的结果如表, 试比较各地域黄鼬针毛长度差别显著性。
2453.16
贵州 22.3 22.5 22.9 23.7 91.4 22.85
2089.64
合计
530.5 26.53
14258.21
〔1〕首先计算出 x ,及 x2 ,并列于表中。
〔2〕计算出离均差平方和与自在度:
SST 18.76
SSA 173.71
;
40
SE SSTSSA S=186.7-173.71=12.99
n-1=(a-1)+(n-a)
;
统计性质
▪ 无偏论 估计H 0;成立与否,SSE/(na)总是 2 的一个无 ▪ H 0为真时,SSA/(a1) 为 2 的一个无偏估计。

第三章 试验的方差分析讲解

第三章  试验的方差分析讲解
设因素A有n个水平,每个水平重复试验m0次,水平Ai的第j次试验
值为yij(i=1,2,…n;j=1,2,…m0),则可将数据以下表形式表达:
yij
i 1
j 1 jm0
m0
Ti yi j j 1
m0
Ri yi2j
j 1
1 m0
yij
m0
yij
j 1
y11 y1 j y1m0
0.003688
SS因

n i 1
(
mi j 1
yij
)2


T
2

mi
N
0.451393
2.7592 17
0.003624


SSe SST SSA 0.000064
18
3.3 双因素试验的方差分析
fT N 1 16 fA n 1 51 4

303.6 4
75.9
Ve

SSe fe

50.0 10
5.0
13
3.2 单因素试验的方差分析
FA

VA Ve

75.9 5.0
15.2
从F分布表中查取临界值
F0.05 (4,10) 3.48, F0.01(4,10) 5.99
因为 FA F0.01(4,10) 5.99
60℃ 65 ℃ 70℃ 75℃ 80 ℃
1
90
97
96
84
84
2
92
93
96
83
86
3
88
92
93
88
82

第三章正交试验设计中的方差分析2例题分析

第三章正交试验设计中的方差分析2例题分析

第三章_正交试验设计中的方差分析2-例题分析第三章中的例题分析是关于正交试验设计中的方差分析的。

本例题分析主要涉及到两个因素和一个响应变量,通过正交试验设计的方法,对这两个因素的影响进行分析。

首先,我们需要了解正交试验设计的基本原理。

正交试验设计是一种实验设计方法,通过选择合适的试验因素和水平,使得每个试验条件都能够得到充分的信息,从而降低试验误差,提高试验效率。

在正交试验设计中,试验因素之间是相互独立的,这样可以更好地分析每个因素对响应变量的影响。

在本例题中,我们有两个因素,分别记作因素A和因素B,每个因素有两个水平。

我们还有一个响应变量Y,需要确定因素A、因素B和Y之间的关系。

接下来,我们需要进行方差分析。

方差分析是一种用于比较不同因素对响应变量的影响的统计方法。

在本例题中,我们可以使用两因素方差分析来分析因素A和因素B对响应变量Y的影响。

首先,我们需要计算总平方和(SST),表示响应变量的总变异。

然后,我们需要计算因素A的平方和(SSA),表示因素A对响应变量的影响,以及因素B的平方和(SSB),表示因素B对响应变量的影响。

同时,我们还需要计算交互作用的平方和(SSAB),表示因素A和因素B之间的交互作用对响应变量的影响。

接下来,我们可以计算各个平方和的自由度和均方差,从而得到F值。

F值可以用来判断因素对响应变量的影响是否显著。

如果F值大于临界值,则说明该因素对响应变量的影响是显著的。

最后,我们可以进行多重比较,比较每个因素水平之间的差异。

多重比较可以帮助我们确定哪些因素水平之间的差异是显著的。

通过以上的分析,我们可以得出因素A、因素B和响应变量Y之间的关系。

同时,我们还可以根据多重比较的结果,确定哪些因素水平之间的差异是显著的。

总结起来,本例题分析主要涉及到正交试验设计中的方差分析。

通过对两个因素和一个响应变量进行分析,我们可以确定因素对响应变量的影响是否显著,并确定哪些因素水平之间的差异是显著的。

第三章 正交试验设计(2)-正交试验数据方差分析和贡献率分析

第三章 正交试验设计(2)-正交试验数据方差分析和贡献率分析
e e B
σ = ˆ
t 0 .975
132 / 4 = 5.74 , 。 ( 4 ) = 2 . 7764
μ 3⋅2
的0.95的置信区间是:
68 ± 2.7764 × 5.74 / 1.8 = 68 ± 11.9 = (56.1,79.9)
贡献率分析
当试验指标不服从正态分布时, 进行方差分析的依据就不充分,此 时可以通过比较个因素的“贡献率” 衡量因素作用的大小。
μ 3.2 的 1 − α 置信区间为: μ 3.2± t1−α / 2 ( f e′)σ / ne ˆ ˆ
′ ˆ 这里 σ = S e / f e′ , ′ S e = S e + 不显著因子的平方和, f e′ = f e + 不显著因子的自由度,
ne = 试验次数 1 + 显著因子自由度之和
n e = 9 /( 1 + f A + f C ) = 9 / 5 = 1 . 8 , ′ S e = S e + S B=132 , f ′ = f + f =4 ,
ˆ ˆ μ = y = 50 , a3 = T13 − y = 61 − 50 = 11 ,
ˆ c 2 = T32 − y = 57 − 50 = 7 ,
•A3C2 水平组合下指标均值的无偏估计可以取为: ˆ ˆ ˆ ˆ μ 3⋅2 = μ + a3 + c 2 = 50+11+7=68。
区间估计
… Continue
因子水平表 因子 A:反应温度(℃) B:反应时间(分) C:加碱量(%) 水平 一 80 90 5 二 85 120 6 三 90 150 7
试验计划与试验结果
试验号 1 2 3 4 5 6 7 8 9 因子 反应温度 ℃ (1)80 (1)80 (1)80 (2)85 (2)85 (2)85 (3)90 (3)90 (3)90 反应时间 分 (1) 90 (2)120 (3)150 (1) 90 (2)120 (3)150 (1) 90 (2)120 (3)150 加碱量 试验结果 y % 转化率(%) (1)5 31 (2)6 54 (3)7 38 (2)6 53 (3)7 49 (1)5 42 (3)7 57 (1)5 62 (2)6 64

第三章 单因素方差分析

第三章 单因素方差分析

i 1
j 1
i 1
i 1
a
r
2
a
ri• ( yij / ri• ) 2Ny ri• yi• / N Ny 2
i 1
j 1
i 1
a
Ti • 2
i 1
/ ri•
Ny 2
a
Ti • 2
i 1
/ ri•
T2 N
ar
a
Se ST SA
yij2 Ti•2 / ri•
5
i1 j1
i1
合成物产出量数据表
水平
次数
A1 A2 A3
1
2
3
4
74
69
73
67
79
81
75
78
82
85
80
79
试判断:在显著水平a=0.05下触煤用量对合成物产出量有无显著影响?
8
解: a=3 , r1=r2=r3=r=4, N=ar=12 (1) 方差齐性。由极差均值法:
R1=7 ,R2=6, R3=6
R R1 R2 R3 6.33 3
A
121.5833
Ve
Se
e
8.055556
FA
VA Ve
15.0931
10
(4) 判断.对a=0.05, 查F分布分位数表得:
F0.05( A, e ) F0.05(2,9) 4.26

FA
VA Ve
15.0931
所以 FA Fa (2,9).
推断因素A是显著的,即三种触煤用量水平对合成物产出量的影响 是有显著差异的
yij2 71156
i1 j1
a Ti2 71083.5

第三章多组均数间比较的方差分析详解演示文稿

第三章多组均数间比较的方差分析详解演示文稿

第三章多组均数间比较的方差分析详解演示文稿一、引言方差分析是统计学中一种重要的分析方法,用于比较两个或多个样本均数之间的差异。

在实际应用中,我们常常需要比较多组数据的均数,这时就需要运用多组均数间比较的方差分析方法。

本文将详细介绍多组均数间比较的方差分析方法及其应用。

二、方差分析的基本原理方差分析的基本原理是通过比较因素(例如不同的处理组)对应的样本均数的差异来判断这些因素是否具有统计学上的显著性差异。

方差分析的核心概念是组内变异和组间变异。

组内变异是指同一处理组内观测值之间的差异,反映了同一处理组内个体间的差异。

组间变异是指不同处理组之间的观测值之间的差异,反映了不同处理组之间的差异。

方差分析的目标是确定组间变异相对于组内变异的大小,以便评估处理组间的差异是否具有统计学上的显著性。

三、多组均数间比较的方差分析步骤多组均数间比较的方差分析步骤如下:1.明确研究目的:确定需要比较的多个处理组以及需要比较的指标。

2.样本数据收集:收集每个处理组的样本数据。

3.建立假设:建立零假设(处理组均数之间没有显著差异)和备择假设(处理组均数之间存在显著差异)。

4.计算总变异度:计算总平方和(总变异度),表示总的数据变异情况。

5.计算组间变异度:计算组间平方和(组间变异度),表示不同处理组之间的差异情况。

6.计算组内变异度:计算组内平方和(组内变异度),表示同一处理组内个体间的差异情况。

7.计算F值:计算F值,用于检验处理组均数之间的差异是否具有统计学上的显著性。

8.判断显著性:根据计算得到的F值和相应的显著性水平,判断处理组均数之间的差异是否显著。

9.进行多重比较:如果处理组均数之间的差异显著,进一步进行多重比较。

四、方差分析的应用方差分析广泛应用于各个领域,例如医学、生物学、经济学等。

在医学领域,方差分析可以用于比较不同药物对疾病治疗效果的影响;在生物学领域,方差分析可以用于比较不同肥料对植物生长的影响;在经济学领域,方差分析可以用于比较不同市场策略对销售额的影响等。

试验设计与数据处理(第三版)李云雁 第3章 试验的方差分析知识讲解

试验设计与数据处理(第三版)李云雁 第3章  试验的方差分析知识讲解
第3章 试验的方差分析
方差分析(analysis of variance,简称ANOVA) 检验试验中有关因素对试验结果影响的显著性
试验指标(experimental index) 衡量或考核试验效果的参数
因素(experimental factor) 影响试验指标的条件 可控因素(controllable factor)
④计算均方
MS A
SS A df A
SS A r 1
MSB
SSB df B
SSB s 1
MSe
SSe dfe
(r
SSe 1)(s 1)
⑤F检验
FA
MS A MSe
FB
MSB MSe
FA服从自由度为(dfA,dfe)的F分布;
FB服从自由度为(dfB,dfe)的F分布;
对于给定的显著性水平 ,查F分布表:
下的试验结果服从正态分布 在各水平下分别做了ni(i=1,2,…,r)次试验 判断因素A对试验结果是否有显著影响
(3) 单因素试验数据表
试验次数 A1
A2

1
x11
x21

2
x12
x22




…jBiblioteka x1jx2j…




ni
x1n1
x2n2

Ai

Ar
xi1

xr1
xi2

xr2
… ……
xij
1 r s
x rs
i 1
xij
j 1
Ai水平时 :
xi•
1 s
s
xij
j 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为此,需要对总的偏差平方和进行分解。
第三章方差分析
11
1.总的偏差平方和

ST (xijx)2 ij
(x
1 N
xij)
ij
为总的偏差平方和, 它反映了样本数据 xij 间总的差 异量的大小。
为便于对 ST 进行分解,记水平 Aij j
第三章方差分析
12
2. 偏差平方和的分解
二.方差分析的基本假设 设因素 A 在水平 Ai 下的某项指标为总体 Xi,则假定
Xi ~N( i, 2 ), Xi 相互独立
第三章方差分析
7
三.方差分析的目的
就是要检验原假设
H0:1 = 2 = ···= a
是否成立。
若拒绝 H0,就说明因素 A 对试验结果有显著影响, 进一步还应确定使效果达到最佳的水平。
主要是由随机误差所引起的,称为误差平方和或组内平方和。
SAni(xi x)2反映了各样本(不同水平)间数据的差异, i
主要是由因素A的不同水平效应间的差异引起的, 称为因素
A的平方和 或 组间平方和。
利用 SA 和 Se 之比就可以构第造三章出方差检分验析 H0 的统计量。
超市管理部门希望了解:
⑴不同促销方式对销售量是否有显著影响?
⑵哪种促销方式的效果第三最章方好差分?析
4
【案例2】如何确定最优生产工艺
影响某化工厂化工产品得率的主要因素是反应温度和 催化剂种类。
为研究产品的最优生产工艺,在其他条件不变的情况 下,选择了四种温度和三种催化剂,在不同温度和催化 剂的组合下各做了一次试验,测得结果如下:
试验结果如下:
促销方式
A1 (广告宣传) A2 (有奖销售) A3 (特价销售) A4 (买一送一)
与上年同期相比(%) 104.8 95.5 104.2 103.0 112.3 107.1 109.2 99.2 143.2 150.3 184.7 154.5 145.6 111.0 139.8 122.7
ST (xijx)2 (xijxi xi x)2
ij
ij
( x i jx i) 2 2 x i j( x i)x i( x ) n i( x i x ) 2
ij
ij
i
(xijxi)2 ni(xix)2ˆ Se SA
ij
i
其中
Se (xijxi)2 反映了各样本(同一水平)内的数据差异, ij
若不能拒绝 H0,则说明因素 A 对该项指标无显著 影响,试验结果中的差异主要是由其他未加控制的
因素和试验误差所引起的。
虽然可以用两两 t 检验法来检验各 i 间是否存在
显著差异,但 t 检验无法检验多个因素间的交互效
应,而这正是方差分析要解决的主要问题。
第三章方差分析
8
§6.2 单因素方差分析
一.基本概念
第六章
第三章方差分析
1
本章教学目标
了解方差分析可以解决那些实际问题; 了解应用方差分析的基本条件; 掌握方差分析的基本概念及其分析方法; 正确使用 Excel 软件求解单因素和双因素方差分 析问题及其运行输出结果分析.
本章主要内容
§4.1 方差分析概述 §4.2 单因素方差分析 §4.3 双因素方差分析 本章重点:考虑交互作用的双因素方差分析
⑵随机误差 ij
第三章方差分析
9

μ
1 N
ni
i
μi
为一般平均。
(Nni 为试验总次) 数 i

i = i - ; i = 1, 2, ···, a
为水平 Ai 的效应, 反映了水平 Xi 的均值与一般平均 的差异。
从而要检验的原假设可改写为:
H0:1= 2 = ···= a = 0
第三章方差分析
因此需要了解:
⑴哪些因素会对所研究的指标产生显著影响;
⑵这些影响因素在什么状况下可以产生最好的结果。
方差分析就是解决这类问题的一种统计分析方法。
第三章方差分析
3
【案例1】哪种促销方式效果最好?
某大型连锁超市为研究各种促销方式的效果,选 择下属 4 个门店,分别采用不同促销方式,对包装 食品各进行了4 个月的试验。
10
二.方差分析的基本方法
方差分析 的基本思路: 将因素的不同水平和随机误差对试验结果的影响 进行分离,并比较两者中哪一个对试验结果 xij 的影 响起主要作用。
若因素的不同水平对试验结果 xij 的影响是主要的, 就拒绝 H0,说明因素 A 对试验结果有显著影响;
若试验结果 xij 中的差异主要是由随机误差引起的, 就不能拒绝 H0,说明因素 A 对试验结果无显著影响。
记水平 Ai 下的 ni 个试验结果为 xij ,则
xij = i + ij
i = 1, 2,···, a;j = 1, 2,···, ni
ij ~ N(0, 2 ),且相互独立
其中 ij 是由各种无法控制的因素引起的随机误差。
上式说明,试验结果 xij 受到两方面的影响:
⑴因素 A 的水平 Ai 的均值 i
第三章方差分析
6
一. 方差分析的基本概念
记 A, B, C ···为试验中状态发生变化的因素, 称因素在试验中所取的不同状态为水平。 设因素 A 有 a 个水平,记为 A1, A2, ···, Aa;因素 B 有 b个水平,记为 B1, B2, ···, Bb 等。 若试验中只有一个变动的因素,就称为单因素试验; 若有两个变动的因素,就称为双因素试验; 若有两个以上的变动因素,则称为多因素试验。
第三章方差分析
2
§6.1 方差分析概述
在生产经营管理过程中,通常有很多因素会影响产品 的质量、产量、销售量等指标。
如农作物的产量受品种、肥料、气候、雨水、光照、 土壤、播种量等众多因素的影响;
产品销售量受品牌、质量、价格、促销手段、竞争产 品、顾客偏好、季节、居民收入水平等众多因素的影响;
化工产品的得率受温度、压力、催化剂、原料配比等 因素的影响。
化工产品得率试验(得率:%)
催化剂
温度
B1
B2
B3
A1(60 OC)
66
73
70
A2(70 OC)
81
96
53
A3(80 OC)
97
79
66
A4(90 OC)
79
76
88
第三章方差分析
5
案例 2 要研究的问题
⑴温度是否对该产品的得率有显著影响? 若有显著影响,应将温度控制在什么范围内可使 得率最高? ⑵催化剂是否对该产品的得率有显著影响? 若有显著影响,哪种催化剂的效果最好? ⑶温度和催化剂的不同组合是否对产品得率有显 著影响? 如有显著影响,哪种温度和催化剂的组合可使得 率最高?
相关文档
最新文档