勾股定理第三四课时
2024八年级数学下册第十七章勾股定理17.1勾股定理第3课时应用勾股定理解数学问题课件新版新人教版

出它的面积;
【解】△ABC如图①,S△ABC= .
探索创新:
(3)若△ABC三边的长分别为 a,2 a, a(a>0),请利
用图③中的正方形网格(每个小正方形的边长均为a)画出相
应的△ABC,并求出它的面积;
【解】△ABC如图②,可得
∵∠ABC=120°,AB=BC,
∴∠BAC=∠BCA=30°, ∵∠AOB=90°,
∴OB= a,
∴OF=OB+BF= ,OA=OC= .
∴AC=CE= a.
易得∠PFO=∠OEM=90°.
∵点P的坐标为(-2 ,3),
∴ =3,即a=2.
∴OE=OC+CE=
=3
( − ) + 的最小值.
【解】如图,作BD=12,过点B作AB⊥BD,过点D作
ED⊥BD,使AB=2,ED=3,连接AE交BD于点C.则AE的长
即为代数式 + + ( − ) + 的最小值.
过点A作AF⊥DE交ED的延长线于点F,得到长方形ABDF,
则AB=DF=2,AF=BD=12,∴EF=ED+DF=3+2=5.
∴AE= + =13,即 +
+ ( − ) + 的最小值为13.
利用勾股定理探求格点三角形面积
11.[新考法 构图求面积法]问题背景:
在△ABC中,AB,BC,AC三边的长分别为 , ,
,求这个三角形的面积.
小辉同学在解答这道题时,先建立一个正方形网格(每个
∴∠CAD=45°=∠ACD.
∴AD=CD=2 cm.
人教版八年级数学下册《勾股定理》PPT精品教学课件

数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2
•
3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了
八年级数学下册教学课件《勾股定理》(第3课时)

3.以原点O为圆心,以OB为半径作弧,弧与数轴交于C
点,则点C即为表示 13 的点.
l B 13 2
3
O 0
1
A•
2 3 C4
也可以使OA=2, AB=3,同样可
以求出C点.
探究新知
17.1 勾股定理
方法点拨
利用勾股定理表示无理数的方法: (1)利用勾股定理把一个无理数表示成直角边是两个正 数的直角三角形的斜边. (2)以原点为圆心,以无理数斜边长为半径画弧与数轴 存在交点,在原点左边的点表示是负无理数,在原点右边 的点表示是正无理数.
解:如图所示,有8条.
一个点一个点地 找,不要漏解.
巩固练习
17.1 勾股定理
如图,在5×5正方形网格中,每个小正方形的边 长均为1,画出一个三角形的长分别为 2 、2、10 .
解:如图所示. A C
B
探究新知
17.1 勾股定理
知识点 4 利用勾股定理在折叠问题中求线段的长度
如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折 叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3, 求AM的长.
能力提升题
在△ABC中,AB、BC、AC三边的长分别为 5、10、13,求这个三
角形的面积.小辉同学在解答这道题时,先建立一个正方形网格
(每个小正方形的边长为1),再在网格中画出格点△ABC(即 △ABC三个顶点都在小正方形的顶点处),如图所示.这样不需 求△ABC的高,而借用网格就能计算出它的面积.
探究新知
17.1 勾股定理
问题2 长为 13 的线段是直角边的长都为正整数的直角三角 形的斜边吗?
13 ?
13 ?
13 ?
1
勾股定理的优秀教案5篇

勾股定理的优秀教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、讲话致辞、条据文书、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, speeches, written documents, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的优秀教案5篇教案的制定可以帮助教师思考教学策略和方法是否合理,激发学生的学习兴趣和积极参与,写好教案帮助教师评估学生的学习情况和教学效果,及时调整教学计划和教学内容,以下是本店铺精心为您推荐的勾股定理的优秀教案5篇,供大家参考。
2022秋八年级数学上册 第14章 勾股定理14.1 勾股定理 3直角三角形的判定授课课件华东师大版

知1-讲
例5 如图,E、F分别是正方形ABCD中BC和CD边
上的点,且AB=4,CE=
1 4
BC,F为CD的中
点,连结AF,AE,EF,问:△AEF是什么三
角形?请说明理由.
知1-讲
导引:直接判断EF2+AF2与AE2的关系不太容易, 1
但由于“AB=4,CE= 4 BC,F为CD的中 点”,因此可以很容易求出AF,EF,AE的 长,然后判断EF2+AF2与AE2的关系,从而 得到三角形的形状.
知1-讲
解: (1)在△ABC中,∵∠A+∠B+∠C=180°, ∴∠B=180°-25°-65°=90°, ∴△ABC是直角三角形.
(2)在△ABC中,∵AC2+BC2=122+162=202 =AB2, ∴△ABC是直角三角形,且∠C为直角.
(3)∵三角形的三边长满足b2-a2=c2, 即b2=a2+c2, ∴此三角形是直角三角形,且b是斜边长.
知2-讲
解: ∵AB2 + BC2 = (n2 -1)2 + (2n)2 =n4 - 2n2 + 1 + 4n2 =n4 + 2n2 + 1 =(n2 + 1) 2
想一想,为什么 选择AB2 + BC2 ? AB、BC、CA的 大小关系是怎样 的?
=AC 2
∴△ABC是直角三角形,边AC所对的角是直角.
导引:先将等式两边同时分解因式,然后通过对分 解后的式子的讨论,得出△ABC的形状.
解:
∵a2c2-b2c2=a4-b4,
知1-讲
∴c2(a2-b2)=(a2-b2)(a2+b2).
即(a2-b2)(a2+b2-c2)=0.
(1)当a2-b2≠0时,则有c2=a2+b2.
勾股定理导学案(同名13074)

第一章勾股定理导学案第1课时探索勾股定理(1)学习目标:1、经历探索勾股定理的过程,发展学生的合情推理意识,体会数形结合的思想。
2 、会初步利用勾股定理解决实际问题。
学习过程:一、课前预习:1、三角形按角的大小可分为:、、。
2、三角形的三边关系:三角形的任意两边之和;任意两边之差。
3、直角三角形的两个锐角;4、在RtΔABC中,两条直角边长分别为a、b,则这个直角三角形的面积可以表示为:。
二、自主学习:探索直角三角形三边的特殊关系:(1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;(2)猜想:直角三角形的三边满足什么关系?(3)任画一直角三角形,量出三边长度,看得到的数据是否符合你的猜想。
猜想:三、合作探究::如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的?AB CACB 图1-1图1-2ABCACB图1-3图1-4问题1、你能用三角形的边长表示正方形的面积吗?问题2、你能发现直角三角形三边长度之间存在什么关系吗?与同伴进行交流。
问题3、分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度。
问题(2)中的规律对这个三角形仍然成立吗?图形 A 的面积 B 的面积 C 的面积A 、B 、C 面积的关系 图1-1图1-2图1-3图1-4思考:每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。
勾股定理:直角三角形 等于 ;几何语言表述:如图1.1-1,在Rt ΔABC 中, C = 90°, 则: ;若BC=a ,AC=b ,AB=c ,则上面的定理可以表示为: 。
四、课堂练习:1、求下图中字母所代表的正方形的面积如图示:A 代表的正方形面积为它的边长为B 代表的正方形面积为它的边长为64225AB169144AB蚂蚁沿图中所示的折线由A 点爬到B 点,蚂蚁一共爬行了多少厘米?(图中小方格的边长1、2、2、求出下列各图中x 的值。
新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。
2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。
3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。
教学重点:知道勾股定理的结果,并能运用于解题。
教学难点:进一步发展学生的说理和简单推理的意识及能力。
教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。
教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。
今天我们就来一同探索勾股定理。
二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
这个事实是我国古代3000多年前有一个叫XXX的人发现的。
他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。
下面这个古老的精彩的证法出自我国古代无名数学家之手。
已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
八年级数学下册17.1勾股定理第3课时利用勾股定理作图或计算导学

第十七章勾股定理17.1勾股定理教课备注第 3 课时利用勾股定理作图或计算学习目标: 1. 会运用勾股定理确立数轴上表示实数的点及解决网格问题;2. 灵巧运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.重点:会运用勾股定理确立数轴上表示实数的点及解决网格问题.难点:灵巧运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.自主学习学生在课前达成自主学一、知识回首习部分 1. 我们知道数轴上的点与实数一一对应,有的表示有理数,有的表示无理数. 你能在数轴上分别画出表示 3,-2.5的点吗?配套 PPT 讲授 2. 求以下三角形的各边长 .1.情形引入(见幻灯片3-4)讲堂研究2.研究点 1 新知讲解一、重点研究(见幻灯片研究点1:勾股定理与数轴5-12)1. 你能在数轴上表示出2的点吗?2呢? ( 提示:能够结构直角三角形作出想想边长为无理数的边,就能在数轴上画出表示该无理数的点.)2.长为13的线段能是这样的直角三角形的斜边吗, 即是直角边的长都为正整数?3.以下是在数轴上表示出13的点的作图过程,请你把它增补完好.(1)在数轴上找到点 A, 使 OA=______;(2)作直线 l ____OA,在 l 上取一点B,使AB=_____;(3)以原点 O为圆心,以 ______为半径作弧,弧与数轴交于 C 点,则点 C 即为表示 ______的点 .重点概括:利用勾股定理表示无理数的方法:(1)利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边 . ( 2)以原点为圆心,以无理数斜边长为半径画弧与数轴存在交点,在原点左侧的点表示是负无理数,在原点右侧的点表示是正无理数.近似地,利用勾股定理能够作出长2, 3,5L为线段 , 形成如图所示的数学海螺 .典例精析例 1 如图,数轴上点 A 所表示的数为a,求 a 的值 .易错点拨 : 求点表示的数时注意画弧的起点不从原点起,因此所表示的数不是斜边长.针对训练1. 如图,点 A 表示的实数是()A. 3B.5C.3D.5第1题图第2题图2. 如图,矩形ABCD中, AB=3, AD=1,AB 在数轴上,若以点 A 为圆心,对角线AC 的长为半径作弧交数轴于点M,则点 M表示的数为()A.2B. 5 1C.101D.53. 你能在数轴上画出表示17的点吗?研究点 2:勾股定理与网格综合求线段长典例精析例 2 在如下图的 6× 8 的网格中,每个小正方形的边长都为 1,写出格点△ ABC各极点的坐标,并求出此三角形的周长.教课备注配套 PPT 讲解3.研究点 2 新知讲解(见幻灯片13-17)方法总结 : 勾股定理与网格的综合求线段长时,往常是把线段放在与网格构成的直角三角形中,利用勾股定理求其长度 .例 3如图,在2× 2 的方格中,小正方形的边长是1,点 A、 B、 C 都在格点上,求AB 边上的高 .教课备注教课备注配套 PPT 讲解配套 PPT 讲解方法总结 : 此类网格中求格点三角形的高的题,常用方法是利用网格求面积,再用面积法求高 .针对训练1.如图是由 4 个边长为 1 的正方形构成的田字格,只用没有刻度的直尺在这个田字格中最多能够作出多少条长度为5 的线段?2. 如图,在 5× 5 正方形网格中,每个小正方形的边长均为1,画出一个三角形5.讲堂小结(见幻灯片 29)的长分别为 2, 2, 10 .4.研究点研究点 3:勾股定理与图形的计算3 新知讲解典例精析6.当堂检测(见例 4 如图,折叠长方形ABCD的一边 AD,使点 D 落在 BC边的 F 点处,若 AB=8cm,幻灯片 22-28)(见幻灯片18-21)BC=10cm,求 EC的长 .方法总结 : 折叠问题中联合勾股定理求线段长的方法:(1)设一条未知线段的长为x( 一般设所求线段的长为x) ;(2) 用已知线数或含x 的代数式表示出其余线段长;(3) 在一个直角三角形中应用勾股定理列出一个对于x 的方程; (4) 解这个方程,进而求出所求线段长.变式题如图,四边形 ABCD是边长为 9 的正方形纸片,将其沿 MN折叠,使点 B 落在 CD 边上的B′处,点 A 的对应点为 A′,且 B′ C= 3,求 AM的长 .教课备注6.当堂检测(见针对训练幻灯片 22-28)如图,四边形ABCD中∠ A=60°,∠ B=∠ D=90°, AB=2, CD=1,求四边形 ABCD的面积.1.二、讲堂小结利用勾股在数轴上表示出无理数的点往常与网格求线段长或面定理作图利用勾股定理解决网格中的问题积联合起来或计算利用勾股定理解决折叠问题及其往常用到方程思想他图形的计算当堂检测1. 如图,在边长为 1 个单位长度的小正方形构成的网格中,点A、B 都是格点,则线段 AB 的长度为()A.5B.6C.7D.25AB第1题图第2题图第3题图2. 小明学了利用勾股定理在数轴上作一个无理数后,于是在数轴上的 2 个单位长度的地点找一个点D,而后点D做一条垂直于数轴的线段CD, CD为 3 个单位长度,以原点为圆心,以到点 C的距离为半径作弧,交数轴于一点,则该点地点大概在数轴上()A.2 和 3之间B.3和4之间C.4 和 5之间D.5和6之间3.如图,网格中的小正方形边长均为1,△ ABC的三个极点均在格点上,则 AB边上的高为 _ ______.4.如图,在四边形 ABCD中, AB=AD=8cm,∠ A=60°,∠ ADC=150°,已知四边形 ABCD的周长为 32cm,求△ BCD的面积.八年级数学下册17.1勾股定理第3课时利用勾股定理作图或计算导学5.如图,在矩形 ABCD中,AB=8,BC=4,将矩形沿 AC折叠,点 D 落在点 D′处,求重叠部分△ AFC的面积 .能力提高6.问题背景:在△ ABC中, AB、 BC、 AC 三边的长分别为5a、10、3 , 求这个三角形的面积.小辉同学在解答这道题时,先成立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ ABC(即△ ABC三个极点都在小正方形的极点处),如下图.这样不需求△ABC的高,而借用网格就能计算出它的面积.( 1)求△ ABC的面积;( 2)若△ ABC三边的长分别为5a,2 2a, 17a (a > 0) ,请利用图②的正方形网格(每个小正方a)画出相应的△ABC,并求出它的面积.图①图②。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.1.2 勾股定理的应用(2) 课 型:新 授 主 备:张永辉 审 核:八年级数学备课组 时 间:13年4月 班 级: 姓 名:
【学教目标】
1、利用勾股定理,能在数轴上表示无理数的点
2、利用数形结合的思想进行相关作图。
【学习重点】在数轴上表示无理数的点和勾股定理的应用。
【学习难点】勾股定理的灵活运用。
一、学前准备:
1、勾股定理的内容
2、13=9+4,即()213=()29+﹝ ﹞2;若以 和 为直角三角形的两直角边长,则斜边长为13。
同理以 和 (均填正整数)为直角三角形的两直角边长,则斜边长为17。
二、师生探究:
探究一:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示13的点吗?
分析:(1)如果能画出长为_______的线段,就能在数轴上画出表示13的点。
(2)由勾股定理知,长为2的线段是两条直角边都为______的直角三角形的斜边。
长为13的线段能是直角边为正整数的直角三角形的斜边吗?
由勾股定理,可以发现,长为13的线段是直角边为正整数_____、 ______的直角三角形的斜边。
作法:在数轴上找到点A ,使OA=_____,作直线l 垂直于OA ,在l 上取点B ,使AB=_____,以原点O 为圆心,以OB 为半径作弧,弧与数轴的交点C 即为表示13的点。
2.在数轴上画出表示17的点?(尺规作图)
探究二:1.如图:螺旋状图形是由若干个直角三角形所
组成的,其中①是直角边长为1的等腰直角三角形。
那么OA 1= ,OA 2= ,OA 3= ,OA 4= ,
OA 5= ,OA 6= ,OA 7= ,…,OA 14= , …,OA n = . 思考:利用课本上的方法能找出表示6和280的点吗? 我的回答是: , 原因是 。
三、当堂练习 1.在数轴上找出表示10和280的点. 2.把一根长为10㎝的铁丝弯成一个直角三角形的两条直角边,如果要使三角形的面积是9㎝2,那么还要准备一根长为____的铁丝才能把三角形做好. 3.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则EB 的长是( ). A .3 B .4 C .5 D .5 4.如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA⊥AB 于A ,CB⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处? 四、拓展提高 1.如图,某学校(A 点)与公路(直线L )的距离为300米, 又与公路车站(D 点)的距离为500米,现要在公路上建一个小商店(C 点),使之与该校A 及车站D 的距离相等,求商店与车站之间的距离. 2.如下图,要在河边修建一个水泵,分别向张村A 和李庄B 送水,已知张村 A 、李庄B 到河边的距离分别为2千米和7千米,且张、李二村相距13千米。
(1)、水站应建在什么地方,可使所用的水管最短?请在图中设计出 水泵的位置; (2)、如果铺设水管的工程费用为每千米1500米,为使铺设水管费用 最节省,请求出最节省的铺设水管的费用为多少? 学教反思
5 ● ● ● ● ● ●
O 1 2 3 4 5 ● ● ● ● ● ●
O 1 2 3 4 A D E B C
B
18.1.2 勾股定理的应用(3)
课 型:新 授 主 备:张永辉 审 核:八年级数学备课组 时 间:13年4月 班 级: 姓 名:
【学教目标】
1、能利用勾股定理,根据已知直角三角形的两边长求第三条边长;并在数轴上表示无理数。
2、体会数与形的密切联系,增强应用意识,提高运用勾股定理解决问题的能力。
【学习重点】利用勾股定理在数轴上表示无理数。
【学习难点】实际问题向数学问题的转化。
一、学前准备:
1. 数轴上的点与实数有怎样的对应关系? ____________。
即:数轴上的点都表示一个实数,反之,每一个实数都能在数轴上表示。
2.①30°的直角三角形的三边之比为
②45°的直角三角形的三边之比为
3.已知一个Rt △的两直角边长分别为3和2,则第三边长的长是多少?
4. 在∆ ABC 中, ∠C=90°,AC=9,CB=12,斜边为上的高为多少?
二、合作探究,生成总结
探讨 1. 我们知道数轴上的点,有的表示有理数,有的表示无理数,你能在数轴上画出表示
、13的点吗?
归纳:在数轴上画无理数(1)把被开方数写出两数的平方和,即
(2)以a 、b 为直角边 (3)斜边长 即为所求的线段. 练一练:
1.17的点
探讨2. 已知:如图,四边形ABCD 中,AD ∥BC ,AD ⊥DC ,AB ⊥AC ,∠B=60°,CD=1cm ,求BC 的长。
归纳:求几何图形中线段长,利用 分析是常用方法。
练一练: 1. △ABC 中,∠C=90°,AB=4,BC=32 ,CD ⊥AB 于D ,求:(1)AC 、CD 、BD 、AD 的长 (2)△ABC 的面积 2.已知:如图,等边△ABC 的边长是6cm 。
⑴求等边△ABC 的高。
⑵求S △ABC 。
3.已知:在Rt △ABC 中,∠C=90°,CD ⊥BC 于D ,∠A=60°,CD=3 ,求线段AB 的长。
三、拓展提高 1.如图,在△ABC 中,οο30,90=∠=∠B C ,AB 的垂直平分线交BC 于D ,垂足为E ,BD=4。
求AC 的长。
2.已知,如图1-1-5,折叠长方形(四个角都是直角,对边相等)的一边使点D 落在BC 边的点F 处,已知AB=8cm ,BC=10cm ,求EC 的长. 学教反思
B D 图1-1-5。